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Abstract

In this article, we have developed a state feedback controller to regulate the
position of the ball on the plate. First, we determine the linear model of the ball
and plate system based on retarded functional differential equations (RFDE),
and secondly, according to the geometric approach and considering the
feedback delay in the closed-loop, we integrated a controller based on a state
feedback of the system. Finally, we tested the effectiveness of our methodology
through simulations.
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Introduction

In this article, we are interested in the balancing problem in the ball-plate system. In
particular, we focus on the determination of the set of gain values of the state feedback
control law allowing to regulate the position of the ball. This result can be used
subsequently to meet the other requirements of the specification.

The ball and plate structure is an extension of the ball and beam system. Because of its
simple configuration and easy-to-implement functions, it has become a popular target
device for controller realization. For the purpose of tracking control, an approximate
input and output linearization method based on imprecise models is introduced [2]. By
using the touch screen as a position sensor with a conventional PID controller, actual
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experiments can be carried out [1]. In addition, a ball and plate system for teaching was
developed [4,5]. Many researchers have established an online learning fuzzy control
algorithm based on this teaching equipment [6,7]. By using a CCD camera instead of a
touch screen device to obtain the position of the ball, a fuzzy control scheme is also
proposed [8,9, 10]. In [12] a large mechanical ball and plate system was built to execute
a state feedback control using a camera to obtain the position of the ball.

In this article, we also use a state feedback controller, however, our difference from
previous studies is the use of geometric considerations (see [3,11]) taking into account
feedback delay. The rest of this article is structured as follows. In Section 2, we
introduced the mathematical model of the ball and plate system. Then, in Section 3, we
reveal the main results of this paper, including the formulation of the controller to
ensure system stability. In Section 4, we verified the results obtained in the previous
sections through simulation. Finally, we make a conclusion in Section 5.

Mathematical Model of Ball and Plate System

In this section we will determine the state space model of the ball and plate system. For
this, using the Lagrangian equation (1) we will determine the equation that describes
the dynamics of the system and which will be linearized afterwards.

Fig.1. Schematic diagram of the ball-plate system

According to Lagrange's method, the equation that describes the dynamics of the ball
and plate system is described by :

7 (5) — 5 =0 0

With
L= Eyr + Exr— Ep (2)
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Exr , Exr and E,, represent respectively the kinetic energy of translation, the kinetic
energy of rotation and the potential energy of the ball.

Fig.2. Lateral view of the ball-plate system

Based on the different parameters of the system (see Figure 1 and Figure 2), we have :

1 1 . .
Exr = 3 myvy = 3 my (X5 + Vp) 3)
1 2 1, (kE+yP)
Ek,R = E]bwb = E]b —rg (4)
Ep = —mpgxp sin(a)—mbgyb sin(f) (%)

After calculation, we thus have the differential equation which describes the dynamics
of the system along the x-axis :

2
mpgdry

Xy =
b mbr§+]b

sin(a) (6)

The equation linking angle @ and angle 9, is as follows (see Figure 2) :
sin(¥,) ry = sin(a)Ly = h (7

So from (6) and (7) we have :

2
. _ MmpgrpTm .
b = (mprg+Jp) Lx sin(%x) ®)

Similarly, proceeding in the same way, the differential equation that describes the
dynamics of the system along the y-axis is as follows :

2
- mpgd?py 'm .
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Considering small variation of 9, and 9J,, we have :
sin(9,) = 9, , sin(ﬁy) ~ v,
Equations (13) and (13) become thus :

Xp = Gy Oy (10)
yp = Gy 0, (11)
with
o meehe o mary

(mprg+Jp) Lx (mpri+Jp) Ly

Remarks: Considering the similarity of the x-axis and y-axis models, we will start the
controller synthesis based on the x-axis model and infer the results of the y-axis at the
end.

Therefore, considering the feedback delay t,, The state-space model along the x-axis
can be defined by :

x(t) = Ax(t) + Bu(t—1,)
{y(t) - Cx(D) (12)
Where
x(t) = [xp(t) % (O]7, u) = 9,(t)
and

_J0 1 10 _
A_[o o]' B_[Gx]’ ¢=[1 o]
Ball And Plate Controller : Geometric Considerations

Based on a geometric approach, we will develop in this section a state feedback control
law acting on the packet loss rate and allowing the stabilization of the system (12).

On the basis of a geometrical analysis, we will develop a state feedback controller
acting on the angles ¥, and ¥,, and providing stabilization of the closed-loop system

(12).

A. State Feedback Controller
The state feedback controller is defined by the equation :
u(t) = —K, x(t) (13)
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Where K, = [ky; kyz] represents the state feedback gain, x(t) is the internal state
of the system x(t) = [xp(t) X,(t)]7, i.e. the position and velocity of the ball, and
u(t) is the control signal.

Using the Laplace transform, equations (17) and (18) are transformed into :

sx(s) = Ax(s) + Bu(s)e ™S
y(s) = Cx(s) (14)
u(s) = —K, x(s)

Consequently, the characteristic equation of the system defined by (12) is expressed as:

H(s, kyq, kyp, T,) = det(sl, — (A — BK, e ™*%))=0 (15)

which can be written as :
H(S, kyq, kyp, T) = Q(s) + P(s)e™ ™5 (16)
with
Q(s) = s?, P(s) = Gy(skyp + kx1) (17)

To study the stability of the system, we will first consider a zero delay, equation (16)

becomes :
H(s, ky1,ky2,0) = 5% + Gy (Skyy + kyy) =0 (18)
Using Routh's criterion, we have found the conditions :

kxl >0, kxz >0 (19)

B. Analysis in the (k1, k2) plane
Let's now consider the real case, corresponding to a non-zero feedback delay.

In order to determine the conditions that guarantee the stability of the system (12), we
will first consider the case of a system at the limit of stability, which corresponds to the
existence of a pure imaginary root of equation (16), so we have :

H(iw' kxlf ka» T;) =0 (20)
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This is equivalent to :
_(UZ + Gx(i(l)kxz + kxl)e_jw Tx = 0

By separating the real and imaginary parts, after simplification, we have the following
two equations:

w? cos(wty)

ko =—¢ (21)
Ky = %i‘"fx) (22)

Equations (21) and (22) define the set of values of k,; and k,., as a function of w, thus,
by varying w, we find the crossing curves [3]. Thus, we have found a second condition
on the stability of the system (12) in the plane (k,q, ky,). To illustrate these results, we
plotted the crossing curves for different values of the delay 7, (see Figure 3, Figure 4
and Figure 5).

800

600 -
400 -
200
or { L —
200]

400 |

600 L L 1 L L L

-30 -20 -10 0 10 20 30
k.
x2

Fig.3. Crossing curves in the (k,q, ky2) space with 7,, = 0.4

We are now going to determine the direction of the crossing [3], which is defined by
the sign of R,I; — Ry, , with :

1 0H(S, kyq, kyp, T2)
R, +j; = ——
1T Jh S ok, —jw
1 0H(S, kyq, Koo, T2
R, +jI, = s ( ax]; 2 )
x1

s=jw
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Fig.4. Crossing curves in the (k,q, ky2) space with ,, = 0.7
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Fig.5. Crossing curves in the (kyq, k,») space with 7,, = 1

After calculation of the derivatives we find the real and imaginary parts, then, after
simplification we have :

2

RyI, — RyI, = % >0 (23)

This means that the direction of the crossing is to the right, i.e. when w varies in the

*

direction of the positive pulsations, a solution of (12) (kyq, ky,) Will cross the
imaginary axis from right to left.
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C. Stability region of closed-loop system

We will now use all the results found previously to determine the region of the stability
of the closed-loop system (12) in the plane (k,q, ky,). Thus, we have proved that the
conditions (19) must be checked, and that the direction of crossing is to the right. Thus,
considering a feedback delay along the x-axis equal to 0.7s , we find the region of
stability shown in Figure 6.

e
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Fig.6. Stability region in the (k,q, k,) space with 7, = 0.7

This region of stability defines the set of Ky = [ky,; ky,] gain values for which the
characteristic equation H(s, kyq, kx2, T,) = 0 is Hurwitz for any feedback delay t,
suchas 7, < 7y .

It is therefore important to know this critical value of delay 75 , for this, let us consider
the equation (20) for a selected gain K, and for a root which is at the limit of stability,
1.e.. S = jw, we have :

Q(jw) + P(jw)e /@™ =0 (24)

With
Qlw) = —w?, P(jw)= G(jw ke + kx)
Equation (24) becomes
ki ? = jw® ky,
G ((k31)? + (wk3)?)

cos(w t3) —jsin(w t3) =
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By equality of the real parts, we find the critical feedback delay :

* l xl 0.)
Ty =~ Arccos [Gx((k YIS 2)2)] (25)

D. Results of the closed-loop system along the y-axis

The control signal u(t) ensuring the stability of the closed-loop system along the y-
axis is defined by the equation :

u(t) = —K, x(t) (26)
Where the state feedback gain and the state vector are respectively defined by K, =
[ky1  ky2] and x(t) = [yp(t) ¥p(O]7

By considering the system parameters along the y-axis and following the same steps
illustrated in the previous sections, we have determined the stability region of the
closed-loop system along the y-axis. Thus, considering a feedback delay along the y-
axis equal to 0.9s , we find the region of stability shown in Figure 7.

Stability region'l

Ky

Fig.7. Stability region in (k,, ky,) plane with 75, = 0.9

The critical feedback delay is also defined by :

* l y1 @
Ty == Arccos [Gy((ky1)2+(wky2)2)] (27)

Which means that the state feedback gain K, = [k;k,1 k;z] asymptotically stabilizes
the evolution of the ball along the y-axis for any delay 7,, < 7, .
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Simulation Results

In order to test the results found, we will consider the following system parameters:
Ly =0.134m, Ly =0.168m ,ry = 0.0245m, r, = 0.02m,
Jp = 0.0000416 kg * m?, m, = 0.26 kg , 1, = 0.7s, 7, = 0.9s.

In order to test if our approach actually allows to control the position of the ball on the
plate. In our case, the objective is that the ball must be positioned at (x = 0,y = 0).

To do this, we will choose several gain values Ky = [ky; Kky,] and K = [k;l k;z]
within the regions shown in Figure 6 and Figure 7 respectively. Then, based on

equations (25) and (27), we will determine the critical delays. The results are shown in
Table 1 and Table 2.

TABLE . Critical delay and state feedback gain for each pair selected (kyq, ky2)

Case | (kyy1, Kx2) K; Ty

1 (0.44,0.54) | [0.44 0.54] | 0.9183

2 | (0.64,0.92) | [0.64 0.92]| 0.8187

3 (0.45,1.22) | [0.45 1.22] | 0.8385

TABLE Il. Critical delay and state feedback gain for each pair selected (kyq, ky5)

Case | (kyq, ky) K; T,

4 (0.34,0.52) | [0.34 0.52] | 1.1587

5 | (0.53,0.95) | [0.53 0.95] | 1.0069

6 | (0.34,1.33) | [0.34 1.33]| 1.0042

In order to test the efficiency of this approach we will consider different values of gains
along the x and y axes, and to visualize the evolution in time of the ball position
(xp , ¥p), we have plotted the different curves in space (x; , Vp, t).

Figures Figure 8, Figure 9, Figure 10 and Figure 11 illustrate respectively the temporal
evolution of the ball position in the configurations (case 1, case 4), (case 2, case 4),
(case 2, case 6) and (case 3, case 5).
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Fig.10. Evolution of the ball position with the configuration (case 2, case 6)
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Fig.11. Evolution of the ball position with the configuration (case 3, case 5)

In analysing the results, it can be seen that all the chosen state feedback gains can ensure
the stability of the system. However, we also find that inappropriate selection can lead
to large oscillations (see Figure 8 and Figure 10) and shorten the intervals of permitted
delays (see Table 1 and Table 2).

Therefore, we recommend that an algorithm must be developed to ensure the desired
evolution of the ball, taking into account the response time and the desired overshoot.

It should also be noted that the controller we have developed (13) is based on the system
state x(t), thus the efficiency of this state feedback controller is dependent on the exact
measurement of the system state. Measuring the state is not always accessible in
practice, so it is necessary to set up an observer allowing the estimation of the system's
state.

In our case, taking into consideration the feedback delays, the most convenient observer
is the Luenberger observer (see Figure 12) defined by the following equations :

{ () = AZ() + Bult — 1) + Le[y(t — 7o) — 9(t — 12,)]
y() = Cx(t)

Where X(t) is an estimation of the system state and L, is the gain of the observer.

Controller

S dback Uy (t) x(t)
g Ve tate Feedback | u,(t t
G : v &) Ball-Plate System Y )~
Gains K, , K,
Luenberger
i.b(t) —> Ob <+
server
A0 ;

Fig.12. The block diagram of the ball and plate controller
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Conclusion

In this article, we proposed a frequency method allowing the state feedback control of
the ball position. Thus, as shown in section 4, all the selected gains ensure the regulation
of the ball position. Moreover, this flexibility in the choice of controller parameters
allows the adaptation of the controller with the desired requirements such as response
time or first overshoot. However, it should be noted that in order to ensure the
effectiveness of these results, it is necessary to be able to measure accurately the state
of the system. Therefore, in future work, we will increase the controller performance
by implementing the Luenberger observer.
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