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Abstract 

In this article, we have developed a state feedback controller to regulate the 
position of the ball on the plate. First, we determine the linear model of the ball 
and plate system based on retarded functional differential equations (RFDE), 
and secondly, according to the geometric approach and considering the 
feedback delay in the closed-loop, we integrated a  controller based on a state 
feedback of the system. Finally, we tested the effectiveness of our methodology 
through simulations. 

Keywords: Frequency-Domain, Ball-plate system, State-feedback control, 
Delay systems. 

 

Introduction 

In this article, we are interested in the balancing problem in the ball-plate system. In 
particular, we focus on the determination of the set of gain values of the state feedback 
control law allowing to regulate the position of the ball. This result can be used 
subsequently to meet the other requirements of the specification. 

The ball and plate structure is an extension of the ball and beam system. Because of its 
simple configuration and easy-to-implement functions, it has become a popular target 
device for controller realization. For the purpose of tracking control, an approximate 
input and output linearization method based on imprecise models is introduced [2]. By 
using the touch screen as a position sensor with a conventional PID controller, actual 
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experiments can be carried out [1]. In addition, a ball and plate system for teaching was 
developed [4,5]. Many researchers have established an online learning fuzzy control 
algorithm based on this teaching equipment [6,7]. By using a CCD camera instead of a 
touch screen device to obtain the position of the ball, a fuzzy control scheme is also 
proposed [8,9, 10]. In [12] a large mechanical ball and plate system was built to execute 
a state feedback control using a camera to obtain the position of the ball. 

In this article, we also use a state feedback controller, however, our difference from 
previous studies is the use of geometric considerations (see [3,11]) taking into account 
feedback delay. The rest of this article is structured as follows. In Section 2, we 
introduced the mathematical model of the ball and plate system. Then, in Section 3, we 
reveal the main results of this paper, including the formulation of the controller to 
ensure system stability. In Section 4, we verified the results obtained in the previous 
sections through simulation. Finally, we make a conclusion in Section 5. 

 

Mathematical Model of Ball and Plate System 

In this section we will determine the state space model of the ball and plate system. For 
this, using the Lagrangian equation (1) we will determine the equation that describes 
the dynamics of the system and which will be linearized afterwards. 

 
Fig.1. Schematic diagram of the ball-plate system 

 

According to Lagrange's method, the equation that describes the dynamics of the ball 
and plate system is described by : 

𝜕

𝜕𝑡
(

𝜕𝐿

𝜕𝑥̇
) −  

𝜕𝐿

𝜕𝑥
= 0                              (1) 

 

With  

𝐿 =  𝐸𝑘,𝑇  +  𝐸𝑘,𝑅 −  𝐸𝑝                          (2) 
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𝐸𝑘,𝑇 ,  𝐸𝑘,𝑅 and 𝐸𝑝  represent respectively the kinetic energy of translation, the kinetic 
energy of rotation and the potential energy of the ball. 

 
Fig.2. Lateral view of the ball-plate system 

 

Based on the different parameters of the system (see Figure 1 and Figure 2), we have : 

𝐸𝑘,𝑇 =  
1

2
 𝑚𝑏𝑣𝑏

2  =  
1

2
 𝑚𝑏(𝑥̇𝑏

2 + 𝑦̇𝑏
2)                      (3) 

𝐸𝑘,𝑅 =  
1

2
 𝐽𝑏𝜔𝑏

2  =  
1

2
 𝐽𝑏

(𝑥̇𝑏
2+𝑦̇𝑏

2)

𝑟𝑏
2                          (4) 

   𝐸𝑝  =  −𝑚𝑏𝑔𝑥𝑏 sin(𝛼)−𝑚𝑏𝑔𝑦𝑏 sin(𝛽)                     (5) 

After calculation, we thus have the differential equation which describes the dynamics 
of the system along the x-axis : 

𝑥̈𝑏 =
𝑚𝑏𝑔𝑟𝑏

2

𝑚𝑏𝑟𝑏
2+𝐽𝑏

 sin(𝛼)                                     (6) 

The equation linking angle 𝛼  and angle 𝜗𝑥 is as follows (see Figure 2) : 

sin(𝜗𝑥) 𝑟𝑀 = 𝑠𝑖𝑛(𝛼)𝐿𝑋 = ℎ                            (7) 

So from (6) and (7) we have : 

𝑥̈𝑏 =
𝑚𝑏𝑔𝑟𝑏

2 𝑟𝑀

(𝑚𝑏𝑟𝑏
2+𝐽𝑏) 𝐿𝑋

 sin(𝜗𝑥)                               (8) 

Similarly, proceeding in the same way, the differential equation that describes the 
dynamics of the system along the y-axis is as follows : 

𝑦̈𝑏 =
𝑚𝑏𝑔𝑟𝑏

2 𝑟𝑀

(𝑚𝑏𝑟𝑏
2+𝐽𝑏) 𝐿𝑌

 sin(𝜗𝑦)                                         (9) 
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Considering small variation of 𝜗𝑥 and 𝜗𝑦 we have : 

sin(𝜗𝑥) ≈ 𝜗𝑥 ,   sin(𝜗𝑦) ≈ 𝜗𝑦 

Equations (13) and (13) become thus : 

𝑥̈𝑏 = 𝐺𝑥 𝜗𝑥                                    (10) 

𝑦̈𝑏 = 𝐺𝑦 𝜗𝑦                                    (11) 

with  

𝐺𝑥 =
𝑚𝑏𝑔𝑟𝑏

2 𝑟𝑀

(𝑚𝑏𝑟𝑏
2+𝐽𝑏) 𝐿𝑋

   and   𝐺𝑦 =
𝑚𝑏𝑔𝑟𝑏

2 𝑟𝑀

(𝑚𝑏𝑟𝑏
2+𝐽𝑏) 𝐿𝑌

 

Remarks: Considering the similarity of the x-axis and y-axis models, we will start the 
controller synthesis based on the x-axis model and infer the results of the y-axis at the 
end. 

Therefore, considering the feedback delay 𝜏𝑥, The state-space model along the x-axis 
can be defined by : 

{
  𝑥̇(𝑡)  =  𝐴 𝑥(𝑡)  +  𝐵 𝑢(𝑡 − 𝜏𝑥)

 𝑦(𝑡)  =  𝐶 𝑥(𝑡)                             
                    (12) 

Where 

𝑥(𝑡) =  [𝑥𝑏(𝑡) 𝑥̇𝑏(𝑡)] 𝑇, 𝑢(𝑡) =  𝜗𝑥(𝑡) 

and  

𝐴 = [
0 1
0 0

] , 𝐵 = [
0

𝐺𝑥
] , 𝐶 = [1 0] 

 

Ball And Plate Controller : Geometric Considerations 

Based on a geometric approach, we will develop in this section a state feedback control 
law acting on the packet loss rate and allowing the stabilization of the system (12). 

On the basis of a geometrical analysis, we will develop a state feedback controller 
acting on the angles 𝜗𝑥 and 𝜗𝑦 and providing stabilization of the closed-loop system 
(12). 

 

A. State Feedback Controller 

The state feedback controller is defined by the equation : 

𝑢(𝑡)  =  −𝐾𝑥 𝑥(𝑡)                              (13) 
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Where  𝐾𝑥 = [𝑘𝑥1 𝑘𝑥2]   represents the state feedback gain, 𝑥(𝑡) is the internal state 
of the system 𝑥(𝑡) =  [𝑥𝑏(𝑡) 𝑥̇𝑏(𝑡)] 𝑇, i.e. the position and velocity of the ball, and 
𝑢(𝑡) is the control signal. 

Using the Laplace transform, equations (17) and (18) are transformed into : 

{

𝑠 𝑥(𝑠)  =  𝐴 𝑥(𝑠)  +  𝐵 𝑢(𝑠)𝑒−𝜏𝑥𝑠

𝑦(𝑠)  =  𝐶 𝑥(𝑠)                           

𝑢(𝑠)  =  −𝐾𝑥  𝑥(𝑠)                     
                (14) 

Consequently, the characteristic equation of the system defined by (12) is expressed as:    

𝐻(𝑠, 𝑘𝑥1, 𝑘𝑥2, 𝜏𝑥) = det (𝑠𝐼2 − (𝐴 − 𝐵𝐾𝑥 𝑒−𝜏𝑥𝑠))=0         (15) 

 

which can be written as : 

      𝐻(𝑠, 𝑘𝑥1, 𝑘𝑥2, 𝜏𝑥) = 𝑄(𝑠) + 𝑃(𝑠)𝑒−𝜏𝑥𝑠                        (16) 

with                                              

𝑄(𝑠) =  𝑠2 ,  𝑃(𝑠) =  𝐺𝑥(𝑠𝑘𝑥2 + 𝑘𝑥1)                (17) 

To study the stability of the system, we will first consider a zero delay, equation (16) 

becomes : 

𝐻(𝑠, 𝑘𝑥1, 𝑘𝑥2, 0) = 𝑠2 + 𝐺𝑥(𝑠𝑘𝑥2 + 𝑘𝑥1) = 0           (18) 

Using Routh's criterion, we have found the conditions : 

𝑘𝑥1 > 0,   𝑘𝑥2 > 0                              (19) 

 

B.  Analysis in the (k1, k2) plane 

Let's now consider the real case, corresponding to a non-zero feedback delay. 

In order to determine the conditions that guarantee the stability of the system (12), we 
will first consider the case of a system at the limit of stability, which corresponds to the 
existence of a pure imaginary root of equation (16), so we have : 

          𝐻(𝑗𝜔, 𝑘𝑥1, 𝑘𝑥2, 𝜏𝑥
∗) = 0                           (20) 
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This is equivalent to : 

−𝜔2 + 𝐺𝑥(𝑗𝜔𝑘𝑥2 + 𝑘𝑥1)𝑒−𝑗𝜔 𝜏𝑥
∗

= 0 

By separating the real and imaginary parts, after simplification, we have the following 
two equations: 

𝑘𝑥1 =
𝜔2 cos(𝜔𝜏𝑥

∗ )

𝐺𝑥
                                        (21) 

𝑘𝑥2 =
𝜔 𝑠𝑖𝑛(𝜔𝜏𝑥

∗ )

𝐺𝑥
                                (22) 

Equations (21) and (22) define the set of values of 𝑘𝑥1 and 𝑘𝑥2 as a function of 𝜔, thus, 
by varying 𝜔, we find the crossing curves [3]. Thus, we have found a second condition 
on the stability of the system (12) in the plane (𝑘𝑥1, 𝑘𝑥2). To illustrate these results, we 
plotted the crossing curves for different values of the delay 𝜏𝑥 (see Figure 3, Figure 4 
and Figure 5). 

 

Fig.3. Crossing curves in the (𝑘𝑥1, 𝑘𝑥2) space with 𝜏𝑥 = 0.4 

 

We are now going to determine the direction of the crossing [3], which is defined by 
the sign of 𝑅2𝐼1 − 𝑅1𝐼2 , with  : 

                                             

𝑅1 + 𝑗𝐼1   =  −
1

𝑠
 
𝜕𝐻(𝑠, 𝑘𝑥1, 𝑘𝑥2, 𝜏𝑥

∗)

𝜕𝑘𝑥2
|

𝑠=𝑗𝜔

 

 

𝑅2 + 𝑗𝐼2   =  −
1

𝑠
 
𝜕𝐻(𝑠, 𝑘𝑥1, 𝑘𝑥2, 𝜏𝑥

∗)

𝜕𝑘𝑥1
|

𝑠=𝑗𝜔
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Fig.4. Crossing curves in the (𝑘𝑥1, 𝑘𝑥2) space with 𝜏𝑥 = 0.7 

 

 

 
Fig.5. Crossing curves in the (𝑘𝑥1, 𝑘𝑥2) space with 𝜏𝑥 = 1 

 

After calculation of the derivatives we find the real and imaginary parts, then, after 
simplification we have : 

𝑅2𝐼1 − 𝑅1𝐼2 =
𝐺𝑥

2

𝜔
 > 0                          (23) 

 

This means that the direction of the crossing is to the right, i.e. when 𝜔 varies in the 
direction of the positive pulsations, a solution of (12) (𝑘𝑥1

∗ ,  𝑘𝑥2
∗ ) will cross the 

imaginary axis from right to left. 
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C.  Stability region of closed-loop system 

We will now use all the results found previously to determine the region of the stability 
of the closed-loop system (12) in the plane (𝑘𝑥1, 𝑘𝑥2). Thus, we have proved that the 
conditions (19) must be checked, and that the direction of crossing is to the right. Thus, 
considering a feedback delay along the x-axis equal to 0.7s , we find the region of 
stability shown in Figure 6. 

 
Fig.6. Stability region in the (𝑘𝑥1, 𝑘𝑥2) space with 𝜏𝑥 = 0.7 

 

This region of stability defines the set of  𝐾𝑥
∗ = [𝑘𝑥1

∗    𝑘𝑥2
∗ ]   gain values for which the 

characteristic equation 𝐻(𝑠, 𝑘𝑥1
∗ , 𝑘𝑥2

∗ , 𝜏𝑥) = 0 is Hurwitz for any feedback delay 𝜏𝑥  
such as 𝜏𝑥 < 𝜏𝑥

∗   . 

It is therefore important to know this critical value of delay 𝜏𝑥
∗  , for this, let us consider 

the equation (20) for a selected gain  𝐾𝑥
∗ and for a root which is at the limit of stability, 

i.e. .   𝑠 = 𝑗𝜔, we have : 

𝑄(𝑗𝜔) + 𝑃(𝑗𝜔)𝑒−𝑗𝜔𝜏𝑥  
∗

= 0                      (24) 

 

With 

𝑄(𝑗𝜔) =  − 𝜔2 ,    𝑃(𝑗𝜔) =  𝐺𝑥(𝑗𝜔 𝑘𝑥2 + 𝑘𝑥1) 

Equation (24) becomes 

cos(𝜔 𝜏𝑥
∗) − j sin(𝜔 𝜏𝑥

∗) =  
𝑘𝑥1

∗  𝜔2 − 𝑗𝜔3 𝑘𝑥2
∗

𝐺𝑥((𝑘𝑥1
∗ )2 + (𝜔𝑘𝑥2

∗ )2)
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By equality of the real parts, we find the critical feedback delay : 

      𝜏𝑥  
∗ =

1

𝜔
 𝐴𝑟𝑐𝑐𝑜𝑠 [

𝑘𝑥1
∗  𝜔2

𝐺𝑥((𝑘𝑥1
∗ )2+(𝜔𝑘𝑥2

∗ )2)
]                  (25) 

 

D.  Results of the closed-loop system along the y-axis 

The control signal 𝒖(𝒕)  ensuring the stability of the closed-loop system along the y-
axis is defined by the equation : 

𝑢(𝑡)  =  −𝐾𝑦 𝑥(𝑡)                              (26) 

Where the state feedback gain and the state vector are respectively defined by  𝐾𝑦 =

[𝑘𝑦1 𝑘𝑦2]  and  𝑥(𝑡) =  [𝑦𝑏(𝑡) 𝑦̇𝑏(𝑡)] 𝑇 

By considering the system parameters along the y-axis and following the same steps 
illustrated in the previous sections, we have determined the stability region of the 
closed-loop system along the y-axis. Thus, considering a feedback delay along the y-
axis equal to 0.9s , we find the region of stability shown in Figure 7. 

 

 
Fig.7. Stability region in (𝑘𝑦1, 𝑘𝑦2) plane with  𝜏𝑦

∗ = 0.9 

 

The critical feedback delay is also defined by : 

𝜏𝑦  
∗ =

1

𝜔
 𝐴𝑟𝑐𝑐𝑜𝑠 [

𝑘𝑦1
∗  𝜔2

𝐺𝑦((𝑘𝑦1
∗ )2+(𝜔𝑘𝑦2

∗ )2)
]                  (27) 

Which means that the state feedback gain 𝐾𝑦
∗ = [𝑘𝑦1

∗     𝑘𝑦2
∗ ]  asymptotically stabilizes 

the evolution of the ball along the y-axis for any delay 𝜏𝑦 < 𝜏𝑦  
∗ . 
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Simulation Results 

In order to test the results found, we will consider the following system parameters: 
𝐿𝑋 = 0.134 𝑚 , 𝐿𝑌 = 0.168 𝑚 , 𝑟𝑀 = 0.0245 𝑚 , 𝑟𝑏 = 0.02 𝑚 , 

𝐽𝑏 = 0.0000416 𝑘𝑔 ∗ 𝑚2,  𝑚𝑏 = 0.26 𝑘𝑔 ,  𝜏𝑥 = 0.7𝑠 ,   𝜏𝑦 = 0.9s . 

In order to test if our approach actually allows to control the position of the ball on the 
plate. In our case, the objective is that the ball must be positioned at (𝑥 = 0, 𝑦 = 0). 

To do this, we will choose several gain values  𝐾𝑥
∗ = [𝑘𝑥1

∗    𝑘𝑥2
∗ ] and 𝐾𝑦

∗ = [𝑘𝑦1
∗     𝑘𝑦2

∗ ]  
within the regions shown in Figure 6 and Figure 7 respectively. Then, based on 
equations (25) and (27), we will determine the critical delays. The results are shown in 
Table 1 and Table 2. 

 

TABLE I. Critical delay and state feedback gain for each pair selected (𝑘𝑥1
∗ ,  𝑘𝑥2

∗ ) 

Case (𝒌𝒙𝟏
∗ ,  𝒌𝒙𝟐

∗ )  𝑲𝒙
∗  𝝉𝒙  

∗  

1 (0.44, 0.54) [0.44    0.54] 0.9183 

2 (0.64, 0.92) [0.64    0.92] 0.8187 

3 (0.45, 1.22) [0.45    1.22] 0.8385 

 

TABLE II. Critical delay and state feedback gain for each pair selected (𝑘𝑦1
∗ ,  𝑘𝑦2

∗ ) 

Case (𝒌𝒚𝟏
∗ ,  𝒌𝒚𝟐

∗ ) 𝑲𝒚
∗  𝝉𝒚  

∗  

4 (0.34, 0.52) [0.34    0.52] 1.1587 

5 (0.53, 0.95) [0.53    0.95] 1.0069 

6 (0.34, 1.33) [0.34    1.33] 1.0042 

 

In order to test the efficiency of this approach we will consider different values of gains 
along the x and y axes, and to visualize the evolution in time of the ball position 
(𝑥𝑏 , 𝑦𝑏), we have plotted the different curves in space (𝑥𝑏 , 𝑦𝑏 , 𝑡). 

Figures Figure 8, Figure 9, Figure 10 and Figure 11 illustrate respectively the temporal 
evolution of the ball position in the configurations (case 1, case 4), (case 2, case 4), 
(case 2, case 6) and (case 3, case 5). 



A Frequency-Domain Analysis and Design of a Ball and Plate System Controller 495 

 
Fig.8. Evolution of the ball position with the configuration (case 1, case 4) 

 
Fig.9. Evolution of the ball position with the configuration (case 2, case 4) 

 
Fig.10. Evolution of the ball position with the configuration (case 2, case 6) 
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Fig.11. Evolution of the ball position with the configuration (case 3, case 5) 

In analysing the results, it can be seen that all the chosen state feedback gains can ensure 
the stability of the system. However, we also find that inappropriate selection can lead 
to large oscillations (see Figure 8 and Figure 10) and shorten the intervals of permitted 
delays (see Table 1 and Table 2).  

Therefore, we recommend that an algorithm must be developed to ensure the desired 
evolution of the ball, taking into account the response time and the desired overshoot. 

It should also be noted that the controller we have developed (13) is based on the system 
state 𝑥(𝑡), thus the efficiency of this state feedback controller is dependent on the exact 
measurement of the system state. Measuring the state is not always accessible in 
practice, so it is necessary to set up an observer allowing the estimation of the system's 
state. 

In our case, taking into consideration the feedback delays, the most convenient observer 
is the Luenberger observer (see Figure 12) defined by the following equations : 

{
  𝑥̇̂(𝑡)  =  𝐴 𝑥̂(𝑡)  +  𝐵 𝑢(𝑡 − 𝜏1𝑥) + 𝐿𝑥[𝑦(𝑡 − 𝜏2𝑥) − 𝑦̂(𝑡 − 𝜏2𝑥)]

 𝑦̂(𝑡)  =  𝐶 𝑥̂(𝑡)                                                                                         
 

Where 𝑥̂(𝑡)  is an estimation of the system state and 𝐿𝑥 is the gain of the observer.  

 
Fig.12. The block diagram of the ball and plate controller 
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Conclusion 

In this article, we proposed a frequency method allowing the state feedback control of 
the ball position. Thus, as shown in section 4, all the selected gains ensure the regulation 
of the ball position. Moreover, this flexibility in the choice of controller parameters 
allows the adaptation of the controller with the desired requirements such as response 
time or first overshoot. However, it should be noted that in order to ensure the 
effectiveness of these results, it is necessary to be able to measure accurately the state 
of the system.  Therefore, in future work, we will increase the controller performance 
by implementing the Luenberger observer. 
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