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Abstract

In this paper, we prove some uniqueness results when a polynomial and a
homogeneous differential polynomial of an L-function weakly share a rational
function. Our results improve and generalize some earlier results due to Mandal,
Datta [10].

Key words and phrases: L-function, meromorphic function, uniqueness, weakly

weighted sharing, homogeneous differential polynomial.

2010 Mathematics Subject Classification: 11M36, 30D35

1. INTRODUCTION

In 1992 a model for L-functions is introduced by Selberg. The study of value
distributions of L-functions is mainly concerned with the set {z € C : L(z) = a}
where a € C.

A meromorphic function L is said to be an L-function in the Selberg class if it satisfy

the following properties.

o0
m=

z

(i) L(z) can be expressed as a Dirchlet series L(z) = >~ _, a(m)/m”.

(i) | a(m) |= O(m*), for any € > 0.
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(iii) There exists a nonnegative integer n such that (z — 1)"L(z) becomes an entire
function of finite order.

(iv) Every L-function satisfies the functional equation
)\L(Z) = OJ)\L<1 — Z),

where
n

A(z) = L(2)A* [ T(njz + v;)

j=1
with positive real numbers A, 7); and complex numbers v;, w with Re(v;) > 0 and
|w|=1.

(v) L(z) satisfies L(z) = ][, L,(2), where L,(2) = exp(d .~ b(p")/p"*) with
b(p") = O(p™) for some # < 1/2 and p denotes prime number.

If L satisfies (i) - (iv) then we say that L is an L-function in the extended Selberg
class. In this paper, by an L-function we mean an L-function in the extended Selberg
class with a(1) = 1. Here we use the standard notations and definitions of the value
distribution theory [4].

2. PRELIMINARIES

Let £ and ¥ be a meromorphic function defined in the complex plane C. If £ — ¢
and v — o have same set of zeros ignoring(counting) multiplicities, then we say that
¢ and 7 share o IM (CM). If % and i share 0 CM (IM), we say that ¢ and v share
oo CM (IM). We denote by S(r,&) any quantity satisfying S(r,&) = o(T'(r,§)) as
r — 00, outside a possible exceptional set of finite linear measure. A meromorphic
function p is said to be a small function of £ if T'(r, p) = S(r,§). Let « € C U {00}
and n be a positive integer. We denote by E,(a;&)(Ey)(a;€)) the set of all zeros
of £ — « with multiplicities not exceeding n, where zeros are counted according to
their multiplicities(ignoring multiplicities). We denote by S(€) the set of all the small
functions of &.

With the help of CM sharing Steuding [13] proved the following theorem in 2007.

Theorem 2.1. [13] Let L and H be two L-functions with a(1) = 1 and d # oo be a
complex number. If L and H share d CM, then L = H.

Definition 2.1. /5, 6] Let £ and x be two meromorphic functions defined in the complex
plane and m be an integer (> 0) or infinity . For d € C U {oco} we denote by E,,(d; &)
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the set of all zeros of & — d where an zero of multiplicity t is counted t times if t < m
and m + 1 times if t > m. If E,,(d;€) = E,,(d; x), we say that &, x share the value
d with weight m. We write £, x share (d,m) to mean that &, x share the value d with
weight m.

Definition 2.2. [10] Let £ be a meromorphic function defined in the complex plane and

p be a small function of §. Then we denote by E,.\(p; &), Eny(p; &) and Ep,(p;§) the
sets E,,)(0;& — p), Em)(O;f — p) and E,,(0; & — p) respectively.

With the help of weighted sharing Wu and Hu [14] proved the following uniqueness
result in 2015.

Theorem 2.2. [14] Let L and H be two L-functions, and let o, € C be two distinct
values. Take two positive integers my, ma with myms > 1. If B, (o, L) = E,,, (o, H),
and E,,,,(a, L) = E,,, (o, H), then L = H.

In 2018 Hao and Chen [3] proved the following uniqueness theorem considering
weighted sharing .

Theorem 2.3. [3] Let L be an L-function and F' be a meromorphic function defined in
the complex plane C with finitely many poles. Let o1,y € C be distinct and mq,ms
be positive integers such that mymy > 1. If By, (0, F) = Ep, (a;, L), j = 1,2, then
L=F.

Considering weighted sharing in 2020 Datta and Mandal [2] proved the following

uniqueness theorem.

Theorem 2.4. [2] Let £ be a nonconstant meromorphic function and L be a nonconstant
L-function. If Eq(0; &) = Eo(0; L), Erv(1;€) = Ex(1; L) and N(r;0;) + N(r; 1;€) =
S(r; &) then either L = £ or T(r; L) = N(r;0; L] < 2) + S(r;L) and T(r;€) =
N(r;0; L'| < 1)+ S(r; L).

With the help of small function sharing in 2020 Mandal and Datta [10] proved the
following theorem.

Theorem 2.5. [10] Let L be a nonconstant L-function and p be a small function of L
such that p # 0, 00. If Eq)(p; L) = Euy(p; (L™)"), Ea)(p; L) = E)(p; (L™)W) and

2No i (r,0; L™) < (0 + 0o(1))T(r, L), 2.1

where m > 1, k > 1 are integers and 0 < o < 1, then L = (L™)*).
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Definition 2.3. Let &, v and x be nonconstant meromorphic functions. We denote by
Ng(r,x; &, 1) the counting function of all common zeros of & — x and ¢ — x with
same multiplicities. We denote by N p(r, x; €,%)) the corresponding reduced counting
function.

Definition 2.4. Let & 1 be nonconstant meromorphic functions and x be a
meromorphic function. We denote by Ny(r, x; €, 1) the counting function of all common
zeros of € — x and ) — x. We denote by N(r,x;&,1)) the corresponding reduced
counting function.

Definition 2.5. [9] Let &, 1) be nonconstant meromorphic functions and p € S(£) N
S). If

N(r,p;&) + N(r,p;90) = 2Np(r, p; €, ) = S(r,€) + S(r,¥),

we say that & and 1 share p “CM”. If

N<T7 P; 5) —|—N(T‘, P; 1/1) - QNO(Tu nyﬂﬁ) = S(Ta 5) + S(ﬁ”@;
we say that & and 1) share p “I M.

Definition 2.6. Let & 1 be nonconstant meromorphic functions and x be a
meromorphic function. We say that £ and ¢ share x “CM” (“IM”) if ¢ — x and  — x
share O “CM” (“IM").

Definition 2.7. [8]. Let & be a meromorphic function defined in the complex plane. Let
n be a positive integer and o € C U {oo}. By N(r, ;& |< n) we denote the counting
function of the o points of & with multiplicity < n and by N(r, o; & |< n) the reduced
counting function. Also by N(r,a;& |> n) we denote the counting function of the «
points of & with multiplicity > n and by N (r, o; € |> n) the reduced counting function.
We define

Ny(r,a;€) = N(r,a;€) + N(r,o; £ |> 2) + - + N(r,a; £ |> n).

Definition 2.8. [8]. Let & and 1) be two meromorphic functions defined in the complex
plane. Then we denote by N(r,¢;¢ |< m), N(r,;¢ |< m), N(r,;€ |> m),
N(r, ;€[> m), Np(r, ;&) etc. the counting functions N(r,0;& — 1 |< m),
N(r,0:6 =4 [< m), N(r,0:6 =4 [> m), N(r,0:€ =4 |> m), No(r,0:§ — )

etc. respectively.

Definition 2.9. Let two nonconstant meromorphic functions £ and 1 share a value

o “IM” and m be a positive integer or co. We denote by Ng(r,o; &, 9| < m)
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(Ng(r,o; €, > m)) the counting function of the a-points of & and 1 with
multiplicities not greater than m(not less than m) and the multiplicities with respect
to £ is equal to the multiplicities with respect to 1), where each a-point is counted once
only.

Definition 2.10. Let two nonconstant meromorphic functions & and ) share a value
a “IM” and m be a positive integer or co. We denote by No(r,a; &, > m) the
counting function of the common «-points of & and ) with multiplicities not less than

m, where each a-point is counted once only.

Definition 2.11. Let two nonconstant meromorphic functions &, 1) share a meromorphic
functions x “IM”. By Ng(r,x;&,¢| < m) and No(r,x;€,9| > m) we denote the
counting functions Ng(r,0;¢ — x,¥ — x| < m) and No(r,0;¢ — x,¢ — x| > m)
respectively.

Definition 2.12. [9] Let p € S(£) N S(v) and two nonconstant meromorphic functions
& W share p “IM?”. If m is a positive integer or co and

N(r,p;&| <m) = Ng(r, p;§,9| <m) = S(r,€)

N(r,p;o| <m) — Np(r,p;&, 9] <m) = S(r,¢)

N(r,p; €l > m+1) = No(r, p;&,9| > m+1) = S(r,§)

N(r,p;¢] > m+1) — No(r,p; €, 0| > m+1) = S(r, )
orm = 0 and

N(T7 Ps g) - NO(T7 paquvb) = S(T7 g)

N(T’, 1071/)) - NO(r> pagad)) = S(T, 770)7

then we say & and 1) weakly share p with weight m. We write & and 1) share “(p, m)” to
mean that £ and 1) weakly share p with weight m.

Definition 2.13. Let two nonconstant meromorphic functions &, 1) share a meromorphic
functions x “IM”. Also let m be a positive integer or co. We say that &, 1 share

“(x,m)” if € — x, ¥ — x share “(0,m)”.
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Definition 2.14. [1] Let £ be a meromorphic function, t;; (i = 0,1,2,...n, j =
1,2,....,m) be nonnegative integers and p; € S(§) such that p; # 0 for j =
1,2,....,m. We define the differential polynomial P(§) of £ by P(§) = Z;”Zl M;(§),
where M;(&) = p;[[_o(€D)b5.  The numbers d(P) = maXi<j<m > rotij and
d(P) = mini<j<,, y .oty are called degree and lower degree of P(&) respectively.
If d(P) = d(P) = d (say), then we say that P(£) is a homogeneous differential
polynomial of degree d generated by §. We define QQ by QQ = maxi<j<pm Y g itij-

Definition 2.15. [7] Let £ be a meromorphic function and k be a positive integer.
We denote by Ng(r,0;£®) (Ng(r,0; ™)) the counting function (reduced counting
function) of those zeros of £*) which are not the zeros of £(€ — 1).

Definition 2.16. [/]] Let two nonconstant meromorphic functions & and 1 share a
value oo “IM”. We denote by N (r, o; €| > 1)) the counting function of the a-points of &
and 1) with multiplicities with respect to & is greater than the multiplicities with respect
to 1, where each a-point is counted once only.

Definition 2.17. Let two nonconstant meromorphic functions & and 1) share a value o
“IM” and k be a positive integer. We denote by N (r, o; €,9|¢ > 1 = k) the counting
function of the common «-points of & and 1 with multiplicities with respect to £ is
greater than the multiplicities with respect to 1 and multiplicities with respect to v is

equal to k, where each a-point is counted once only.

Now the following questions come naturally.

Question 2.1. Is it possible to consider rational function sharing in place of small

function sharing in theorem 2.5?

Question 2.2. Is it possible to consider polynomial of L and homogeneous differential
polynomial generated by L in place of L and (L™)"%) respectively in theorem 2.5?

3. MAIN RESULTS

Let L be a nonconstant L-function and a;,b; € S(L),i =0,1,2,..t,7 =0,1,2, ..., 5.
Henceforth we denote by R(z) the function R(z) = %;ig %2 where a; # 0 and by # 0.
Also we denote by P(L) a homogeneous differential polynomial of degree d generated

by L as defined in definition 2.14.

Using the concept of weakly weighted sharing we try to solve Questions 2.1, 2.2 and
prove the following theorems.
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Theorem 3.1. Let L be a nonconstant L-function and p(z) be a polynomial of degree
A > 1 with p(0) = 0. Let P(L) be a homogeneous differential polynomial of degree d
generated by L. If p(L) and P(L) share “(R(z),1)” and one of the following holds

(i) 1=0 and

2N(r,0;p(L)) + Na(r, 0;p(L)) + 2Nan(r, 0 - L) < (A+0o(1))T(r, L) - 3.1)

(ii) I=1 and

%N(T, 0;p(L)) + Na(r, 0; p(L)) 4+ Nayn(r, 0 : L) < (A+o(1))T(r, L), (3.2)

then p(L) = P(L).

4. LEMMAS

In this section we present some necessary lemmas.

Henceforth we denote by €2 the function defined by

@// 2@/ \1/// 2\1//

R D 7

Lemma 4.1. [13]. Let L be an L-function with degree q. Then T'(r, L) = 4rlogr +
O(r).

Lemma 4.2. [10]. Let L be an L-function. Then N (r,oc0; L) = S(r, L) = O(logr).

t

Lemma 4.3. [16]. Let £(z) = Sutiztetaiz ho g nonconstant rational function

Bo+P1z+.....4Bs2®
defined in the complex plane C, where o, o, ....., au(# 0) and By, P, ..., Bs(#£ 0) are

complex constants. Then T (r,§) = max{t, s} logr + O(1).

Lemma 4.4. Let & be a nonconstant meromorphic function defined in the complex plane
and P (&) be a homogeneous differential polynomial of degree d generated by £ defined
as in definition 2.14. If P(§) # 0 then for any positive integer k

(i) Ni(r,0; P(§)) < Niyn(r, 0;8) + T'(r, P(€)) — dT'(r, &) + S(r,€)

(ii) Ni(r,0; P(€)) < Niyn(r,0;€) + QN(r, 00 &) + S(r, €).
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Proof. Using first fundamental theorem we have

Ni(r,0; P(€)) < N(r,0;P(£)) = Y N(r,0; P(¢)| > 1)

PE),y _ (r,0;€%) i N(r,0;P(€)| > 1)+ 0(1)

=k

A
S~
=
e
™
+
3
=
8

o0

T(r,P(§)) — dT(r,&) + N(r,0;6%) = > "N(r,0; P(§)| > 1) + S(r,€)
=k

IN

IN

~—

+ Y N0l =)

1=(k+n+1)d

T(Tv P(&)) - dT(Tv 5) + N(k‘—i—n)d(ra 0; Ed

- i N(r,0; P(&)| > 1) + S(r, &)

=k

IN
H

This proves (i).
Now

T(r, P(€)) N(r,00; P(§)) + m(r, 00; P(§))

N(r, 00: P(€)) + m(r, 001 %) + m(r, 00; Pﬁ)
N (r,00; P(§)) + dm(r,00;§) + S(r,§)
dN (r,00;€) + QN (r,00; &) 4+ dm(r, 00; &) + S(r,€)

dT(r, &) + QN(r,00;€) + S(r,&). 4.2)

IN

ININ A

From (4.1) and (4.2) we have
Ni(7,0; P(€)) < Nign(r,0;) + QN (1, 00;€) + S(r,€).

This proves (ii).
This completes the proof. O

Lemma 4.5. [12] Let £ be a nonconstant meromorphic function and let ®(§) =
%i’gﬂ; be irreducible rational function in § with coefficients o; and B;, 1 =
0,1,2,.,t, j = 0,1,2,....,s where o, # 0 and Bs # 0. Then T(r,®(§)) =

max{t, s}T(r, &) + 5(r, €).

Lemma 4.6. Let £ be a nonconstant meromorphic function and ji;,v; € S(§), i =
0,1,2,...t, 7=0,1,2,....s. Also let H(§) = %if where 11; # 0 and v, Z 0. Then
T(r,H(¢)) = max{t, s}T(r,§) + S(r, ).

(r, P(§)) = dT'(r,§) + Nin(r,0;) + S(r,§)). (4.1)
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Proof. Since p,;,v; € S(€),1 = 0,1,2,..,t, j (), 1,2, ..., s, therefore T'(r, ;) =
S(r,€),i=0,1,....;tand T'(r,v;) = S(r,&), j 1,....., s. Hence the result follows
by lemma 4.5 [

Lemma 4.7. Let L be a nonconstant L-function. Then T'(r, R(z)) = S(r, L).

Proof. By lemma 4.1, lemma 4.3 and lemma 4.6 we get the required result. [

Lemma 4.8. [1] Let P(§) be a homogeneous differential polynomial of degree d

generated by a nonconstant meromorphic function & as defined in definition 2.14. Then

P(§)
fd

Lemma 4.9. [9] Let | be a nonnegative integer and two nonconstant meromorphic
functions ® and V share “(1,1)”. If Q Z 0 and 2 < | < oo, then

N(r,0; ) < Q(N(r,0;€) + N(r,00;)) + S(r, ).

T(r,®) < No(r,00; ) + No(r,0; P) + No(r,00; W) + No(r,0; U) + S(r, D) + S(r, ¥)
and
T(r,U) < No(r,00; D) + No(r,0; D) + Na(r,00; W) + Na(r,0; W) + S(r,®) + S(r, V).

Lemma 4.10. [15] Let two nonconstant meromorphic functions ® and ¥ share “(1,0)”,
then

(i) N(r,1;®| > ¥) 4+ 2N(r,1;¥| > &) + N(r,1;®,¥| > 2) — N(r,1,®,U|d >
v =1)
=N L0, 0¥ > ® = 1) < N(r, 1;9) - N(r, 1; 9).

(ii) N(r,1;®| > ¥) < N(r,00; ®) 4+ N(r,0; ®) + S(r, ).
(iii) N(r,1;®,¥|® > ¥ =1) < N(r,0;®) + N(r,00; ®) — Ng(r,0; D) + S(r, ®).
(iv) N(r,1;¥,®|¥ > & =1) < N(r,0; ¥) +N(r,00; ¥) — Ng(r,0; U) + S(r, ).

Lemma 4.11. [15] Let two nonconstant meromorphic functions ® and V share “(1,1)”,
then

(i) 2N(r,1;®| > ¥) + 2N(r,1;¥| > ®) + N(r,1;®,¥| > 2) — N(r,1,®, V[P >
U =2)
< N(r,1;¥) — N(r, 1; ¥).
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(ii) N(r,1;®,¥|® > ¥ = 2) <
S(r, ®).

Lemma 4.12. Let L be a nonconstant L-function and p(z) be a polynomial of degree
A > 1 with p(0) = 0. Let P(L) be a homogeneous differential polynomial of degree
d generated by L. Let ®(z) = % and V(z) = P(L Z) . If p(L) and P(L) share
“(R(2),0)” and Q2 # 0, then

2N (r,0;p(L)) + Na(r, 0; p(L)) + 2Na4a(r,0 : L) = (A + o(1))T(r, L).

Proof. Clearly ® and ¥ share “(1,0)” except for the zeros and poles of R(z).

By lemma 4.7 we have R(z) is a small function of L.

Hence
N(r,00;Q) < N(r,00;®)+ N(r,0;®| > 2) + N(r,0; ¥| > 2)
+ N(r,1;®| > ) + N(r, 1;¥| > &) + Ng(r,0;dW)
+ Ng(r,0;¥W) + S(r, ®) + S(r, V) 4.3)
and
Np(r,1;®, 0] <1) < N(r,00;Q) 4+ S(r, ®). (4.4)

Using (4.3), (4.4) and lemma 4.10 we have

N(r,1;®) + N(r,1;¥) < Ng(r,1;®,9|<1)+ N(r,1;®| > V) + N(r, 1; | > )
+ Np(r,1;®, 9] >2)+ N(r,1;¥) + S(r,®) + S(r, )
< Np(r,1;®,9| < 1)+ N(r,1;¥) — N(r,1; ¥| > ®)
+ N(r,1,0,¥[® >V =1)+ N(r,1,¥, ¥ > =1)
+ S(r, @)+ S(r,¥)
< N(r,00;®)+ N(r,0;®| >2) + N(r,0; | > 2)
+ N(r,1;®| > ¥) + Ng(r,0; W)
+ Ng(r,0;9W) £ N(r, 1;0) + N(r, 1,0, 9| > T = 1)
+ N, 1,0, ®|¥ > & =1)+ S(r,®) + S(r, V). 4.5)

Using Nevanlinna second fundamental theorem we get from (4.5), lemma 4.2, lemma
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4.4, lemma 4.7 and lemma 4.10

T(r,®)+T(r,¥) r,00; ®) + N(r o0; W) + N(r,0;®) + N(r,0; ¥) + N(r,1; D)

N(
N(r,1;0) — Ng(r,0; 81) = Ng(r,0; UMW) + S(r, ®) + S(r, ¥)

IN + A

N(r,1; ) + 4N (r, 00; ®) + 2N (r, 00; ¥) + 3N (r, 0; )
2N (r,0; W) + N(r,0; ®| > 2) + N(r,0; ¥| > 2) + S(r,®) + S(r, ¥)
N(r,1;0) +4N(r,00; L) + 2N (r,00; L) + 3N (r, 0; ®)
2N (r,0; ) + N(r,0;®| > 2) + N(r,0; ¥| > 2) + S(r, L)
T(r,¥)+ 2N (r,0;p(L)) + Na(r,0;p(L)) + N(r,0; P(L))
Ny(r,0; P(L)) + S(r, L)
T(r,¥) +2N(r,0;p(L)) + Na(r,0; p(L)) + 2Na4p(r,0; L)
2QN (r,o0; L) + S(r, L)

T(r,¥) + 2N (r,0;p(L)) + Na(r,0;p(L))
2Ny p(r,0; L) + S(r, L).

IN + IN + IN + IN +

—+

4.6)
Using lemma 4.7 we have from (4.6)

2N (r,0;p(L)) + No(r,0; p(L)) + 2Nay, (1,0; L) > (X + o(1))T(r, L).
This completes the proof of the lemma. ]

Lemma 4.13. Let L be a nonconstant L-function and p(z) be a polynomial of degree
A > 1 with p(0) = 0. Let P(L) be a homogeneous differential polynomial of degree
d generated by L. Let ®(z) = % and ¥ (z) = P(L Z) . If p(L) and P(L) share
“(R(2),1)” and Q2 # 0, then

SN 0:p(L)) + Nar,0:p(L)) + Nonr,0: L) > (A + o(1)T(r, ).

Proof. Clearly ® and ¥ share “(1,1)” except for the zeros and poles of R(z).
By lemma 4.7 we have R(z) is a small function of L.
Hence using Lemma 4.2 and Lemma 4.7 we get

N(r,o00;Q) N(r,00;®) + N(r,0;®| > 2) + N(r,0; ¥| > 2)

Ng(r,0;8M) + Ny (r,0; ¥D) + S(r, ®) + S(r, V)
N(r,00; L) + N(r,0;®| > 2) + N(r,0; ¥| > 2)

Ng(r,0; M) + Ng(r,0, M) + S(r, L)

N(r,0;®| > 2) + N(r,0;¥| > 2) + Ng(r,0; 1)
Ne(r,0;¥W) 4+ S(r, L) 4.7)

IN + IN + A

+
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and
N(r,1;®|=1) < N(r,0;2) + S(r,®) < N(r,00; Q) + S(r, D). (4.8)

Using (4.7), (4.8) and Lemma 4.2, Lemma 4.7 and Lemma 4.11 we have

N(r,1;®) + N(r,1; ) g(r,1;®,0] <1)+ N(r,1;®| > ¥) + N(r,1; | > @)
g(r,1;®, ¥ >2)+ N(r,1;¥) + S(r,®) + S(r, ¥)

g(r,1;®, ¥ <1)+ N(r,1;¥) — N(r,1;®| > ¥)

(r, 9| > ®) + N(r,1,®,¥|® > U = 2) + S(r,®) + S(r, V)

<
+
<

I =

IN

|
=

1 1—
(r,; U] > &)+ 5]\7(7‘,0,(1)) + EN(T, 00, D)

=

o (r,0; 1)) + S(r, &) 4+ S(r, V)
r,00;®) + N(r,0;®| > 2) + N(r,0; ¥| > 2) — N(r,1; ®| > ¥)
r,1; 0| > ®) + Ng(r,0;0M)) + N (r, 0, 0Y) + N(r, 1;7)

A
5‘ /_2\‘[\3\»—!

+
DO | =

N(r,0,@) + 5N (7,00, %) — L No(r,0:90) + (s, @) + 5(r, V)
r,0;®| > 2) + N(r,0; U] > 2) — N(r,1;®| > ¥)

r1; | > &) 4+ Ng(r,0;0Y) + Ng(r,0; ¥V

r1;0) + %N(r, 0,P) — %N(@(r, 0; W) + S(r, L). (4.9)

A
EEE

+ N

Using Nevanlinna second fundamental theorem we get from (4.9), lemma 4.2, lemma 4.4,

lemma 4.7 and lemma 4.11

T(r,®)+T(r,¥) < N(r,o00;®)+ N(r,o0;¥) + N(r,0;P)

+ N(r,0;0) + N(r,1;®) + N(r,1; ¥)

— Ng(r,0;0W) — Ng(r,0; M) + S(r, @) + S(r, V)
N(r,1; ) + N(r,00; ®) + N(r, 00; ¥) + ;N(r, 0; D)

IN

N(r,0; %) + N(r,0;®| > 2) + N(r,0; ¥| > 2) + S(r, L)

T(r,¥)+ N(r,00; L) + N(r,o00; L) + %N(r, 0;p(L))

N(r,0; P(L)) + N(r,0;p(L)| > 2) 4+ N(r,0; P(L)| > 2)+ S(r,L)
T(r, W) + SN (r,0;p(L)) + Nar, 0: (L)) + Na(r, 0: P(L)) + S, L)

IN 4+ IN +

IN

T(Tv \Il) + %N(T, Ovp(L)) + N2(Ta O,p(L)) + N2+n(r> O; L)
QN (r,00; L) + S(r, L)
T(r,0) + SN (r,0:p(L)) + No(r, 0:p(L))

Noin(r,0; L) + S(r, L). (4.10)

IN +

—+
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Using lemma 4.7 we have from (4.10)
1
SN, 05p(L)) + No(r, 0; (L)) + Noga(r,0; L) 2 (A+ 0(1))T(r, L).

This completes the proof of the lemma. ]

5. PROOF OF THE MAIN RESULT
Proof of Theorem 3.1

Let ®(2) = 2 and W(z) = £EE)

By lemma 4.7 we have T'(r, R(z)
two cases

= S(r, L). Now we have to consider the following

Case 1 Let €2 £ 0.
Then by Lemma 4.12 and Lemma 4.13 we arrive at a contradiction.

Case2Let 2 =0.

Hence
@// 2@/ \Ij/l 2\11/
(5_c1>—1) (@_\If—1

) = 0. (5.1)

Integrating (5.1) we get
(D+1)®+(C—-D-1)

U = 52
D® + (C - D) ’ (5-2)
where C' # 0 and D are constants.
Now we have to consider the following three subcases.
Subcase 2.1 Let D = 0. Then from (5.2) we have
d+C -1
V=——"——", 53
c (5.3)
If C' # 1, then from (5.3) we get
N(r,1—C,®) = N(r,0; ). (5.4)

Using lemma 4.2, lemma 4.4, (5.4) we get by Nevanlinna second fundamental theorem

T(r,p(L)) = T(r,®)+ S(r,L)

< N(r,00;®) + N(r,0;®) + N(r,1 — C;®) + S(r, L)

< N(r,00; L) 4+ N(r,0; ®) + N(r,0; ¥) 4 S(r, L)

< N(r,0; P(L)) + N(r,0;p(L)) + S(r, L)

< Nign(r,0; L) + QN(r,00; L) + N(r,0;p(L)) + S(r, L)

< Noyn(r,0; L) 4+ No(r,0;p(L) + S(r, L). (5.5
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From (5.5) we get No(7,0; p(L))+Nayn(r,0; L) > (A-0(1))T(r, L), which contradicts
(3.2). Hence C' = 1 and therefore p(L) = P(L).

Subcase 2.2 et D = —1. Then from (5.2) we have

C
‘IJ_C+1—<1>' (56)

If C' # —1, then using lemma 4.2 we get from (5.6)
N(r,1+C,®) = N(r,00;¥) = N(r,o0; L) + S(r, L) = S(r, L). (5.7)

Using lemma 4.2, lemma 4.4, (5.7) we get by Nevanlinna second fundamental theorem

T(r,p(L)) = T(r,®)+S(r L)
< N(r,00;®) + N(r,0;®) + N(r,1+ C;®) + S(r, L)
< N(r,00; L)+ N(r,0;®) + N(r,00;®) + S(r, L)
< N(r,0;p(L)) + N(r,00; L) + S(r, L)
< N(r,0;p(L)) + S(r, L). (5.8)

From (5.8)we get N(r,0;p(L)) > (X + o(1))T'(r, L), which contradicts (3.2).
If C' = —1, then

P = 1. (5.9
From (5.9) we have
p(L)P(L) = R*(2). (5.10)
From (5.10) we have
N(r,00; L) + N(r,0;L) = S(r, L). (5.11)

Using lemma 4.8 and (5.11) we get N (r, 0o; PL(f)) = S(r, L) and hence

P(L), P(L) P,
T(r, Td ) = N(r, o0; T ) + m(r, oo; T ) =S(r,L). (5.12)
Using lemma 4.6 and (5.12) we have
(d+\NT(r,L) < T(r,%) +0(1)
< T(r,(1+ 'OAL” N Lfll)PL(f))JrO(l)
< - D760) + T D) 4 e 1)
< A=1)T(r,L)+ S(r,L) (5.13)
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From (5.13) we get T'(r, L) = S(r, L), which is a contradiction.

Subcase 2.3 Let D # 0, —1.

If C — D # 1, the from (5.2) we get N(r, =<5-2+L; &) = N(r,0; ¥). Now proceeding

as in Subcase 2.1 we arrive at a contradiction.

If C — D = 1, then by (5.2) we get N(r, =; @) = N(r, 00; ¥). Now proceeding as in

Subcase 2.2 we arrive at a contradiction.

This completes the proof.

REFERENCES

[1] S. Bhoosnurmath, S. R. Kabbur, On entire and meromorphic functions that share
one small function with their differential polynomial, Int. J. Analysis, 2013,
Atrticle ID 926340.

[2] N. K. Datta, N. Mandal, On the uniqueness theorems of L-functions concerning
weighted sharing, Adv. Math. Sc.J., 9(11)(2020), 9019-9029.

[3] W. J. Hao, J. FE. Chen, Uniqueness theorems for L-functions in the extended
Selberg class, Open Math, 16(2018), 1291-1299.

[4] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.

[5] L. Lahiri, Weighted sharing and Uniqueness of meromorphic functions, Nagoya
Math. J., 161(2001), 193-206.

[6] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions,
Complex Var. Theory Appl., 46(2001), 241-253.

[7] L. Lahiri, N. Mandal, Meromorphic functions sharing a single value with unit
weight, Kodai Math. J. 29(2006), 41-50.

[8] L. Lahiri, N. Mandal, Small functions and uniqueness of meromorphic functions,
J. Math. Anal. Appl. 340(2008), 780-792.

[9] S. Lin, W. Lin, Uniqueness of meromorphic functions concerning weakly
weighted sharing, Kodai Math. J. 29(2006), 269-280.

[10] N. Mandal, N. K. Datta, Uniqueness of L-function and its certain differential

monomial concerning small functions, J. Math. Comput. Sci. 10(5)(2020),
2155-2163.

[11] N. Mandal, N. K. Datta, Small functions and uniqueness of difference differential
polynomials of L-functions, Int. J. Diff. Eq., 15(2)(2020), 151-163.



514 Nirmal Kumar Datta and Nintu Mandal

[12] A. Z. Mohonko, On the Nevanlinna characteristics of some meromorphic
functions, Theory of functions, Functional analysis and its applications, 14 (1971),
83-87.

[13] J. Steuding, Value-distribution of L-functions, Spinger, Berlin, 2007.

[14] A. D. Wu, P. C. Hu, Uniqueness theorems for Dirichlet series, Bull. Aust. Math.
Soc., 91(2015), 389-399.

[15] H.Y.Xu, Y. Hu, Uniqueness of meromorphic function and its differential
polynomial concerning weakly weighted sharing, General Mathematics,
19(3)(2011), 101-111.

[16] L. Yang, Value distribution theory, Spinger Verlag Berlin, 1993.



