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ABSTRACT

In this contribution, we use differentiable topological manifolds to determine
solutions of the Thomas equation. First we transform the equation from partial
differential form to ordinary differential form, using Sophus Lie’ symmetry
group theoretical methods. We then apply our differentiable topological
manifolds approach to it.
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1 Introduction

The Thomas equation is a nonlinear second-order partial differential equation (PDE)
given by

Uy + au, + fus + du,u, = 0. (1)

Here u depends on t and x, while the coefficients a, f and ¢ are constant parameters.
It is a subject in the physical sciences, particularly in the study of chemical processes;
a model proposed by Henry Thomas [1].

As indicated in the abstract, we partly use Sophus Lie’ symmetry group theoretical
methods to simplify the equation. Several authors have used this technique. They
include Sakovich [2] Stephani [3], Ouheden [4] , Al-Ghafri [5], Yan [6], Wei at al [7],
and many others The problems most encountered is that they ended up with integrals
they could not resolve analytically, subsequently resorting to special cases of the
coefficients, consequently compromising the results. Our differentiable topological
methods approach is designed to circumvent this impasse.
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We introduce Lie’s methods in Section 2, a theory developed by the Norwegian
Mathematician Sophus Lie (1842-1899), first introduced through his now famous 1881
paper [8]. It has since snowballed, now followed and practiced by many scholars. The
Russian Mathematician, Lev Vasilyevich Ovsyannikov (1919-2014) is among those
who revived the theory in the 1950s. His work includes [9], [10], [11], [12] and [13].
Many more followed in his footsteps, that includes Nail Ibragimov and
Gazizov, see [14].

The approach as used in Section 2, consists of a systematic procedure for the
determination of continuous symmetry transformations of a system of the nonlinear
PDE (1). This procedure is replicated in many texts, see Olver [15], Bluman and Kumei
[16], and Ibragimov [17].

In Section 3, we briefly outline the differentiable topological methods approach, a
procedure first proposed by the third author [18].

Section 4 is on the application of the technique discussed in Section 3 to the Thomas
equation. That is, the Thomas equation that has been transformed into an ordinary
differential equation using methods discussed in Section 2.

2 The pure Lie approach

The application of Lie’s theory to a differential involves first applying a symmetry
generator to it, resulting in what is known as the determining equation, which in turn
leads to what are known as Lie symmetries, then to invariants, then the ordinary
differential equation.

The infinitesimal symmetry generator for a PDE with one dependent variable and two
independent variables, is given by
] ] ]
X=¢—+ 1+
dx at u ( 2)

The Thomas equation is second-order PDE, for this we require an extension of the
generator to the second-order form

21 — 10 20 | 712 0 | ,11_ 0 | 22 0 3
X X+ ¢ Oux+€ aut+{ auxt+{ auxx+{ ) )

autt

This depends on the operators of total differentiation. That is,
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These lead to the prolongations

{1 = T, t ux(Tu - fx) = Uy — (ux)zfu = Ux UMy, (6)
(%= 1o+ ue(ty — M) — U — (W) *Ny — Uiy, (7)
{12 = Ty + ux(Ttu - Ext) + ut(Txu - nxt) - (ux)zftu + (8)

Uy Uy (Tuu - Szux - ntu) - (ut)znux - (ux)zutfuu - (ut)zuxnuu -
zuxuxtfu - zutuxtnu - uxxs;t = UMy — utuxxs;u = Uy Ut Ny +
uxt(Tu — $x — 771:)-

2.1  Application of the symmetry generator

The application of the generator, such as the one we just presented above, to an
expression F = 0, leads to the invariance condition

x2F|._ =o. (9)

Here F = u,; + au, + fu; + du,u,. Thatis, it is equation (1). Expressing it in the
following way,will prove usefull:

Uyt = —QU, — LU — SULU; . (10)

This expression assists in simplifying the invariance condition further. After
substituting (2) and (3) into (9), we obtain

(B + 6u )Tt + (a+ Budi? + (2 = 0. (11)
Putting (6), (7), (8) and (10) in (11) we have:
Bg: + Bufi + Bu(f — ) — Pueés + Su g, + Suuf + (11)
6ux ut(f - Tt) - 6uxux§t tagy + aufx + aux(f - Ex) -
au Ty + Purgy + Pucufy + Pusu,(f — &) — BuseTy + gue +
ufxt _aux(f_ gx - Tt) - .But(f_ fx - Tt) _Suxut(f_ Ex -
Te) + Ue(ft = Sxe) + U (e — Tot) — Upe Ty — Unx$e = 0,

known among Symmetry Analysts as the determining equation.

2.1.1 The monomials
Simplifying (12), we obtain the following equations. That is, the monomials.

(D% at, + Bt + T, = 0, (12)
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Uyl Tpy — Exe + 67, — Bé +an, =0,

(13)
Ut Ty — Nyt + 6Tx —any, + ,B‘Ex =0,
(14)
UpUs: Tyy — Syux — Mew + BSu +any + 6Tu =0,
(15)
(ux)z: — Sty — 6€t +aé, =0,
(16)
(ut)z: — Ny — 0Ny + B, = 0,
(17)
ux(ut)z: Nuu = 0,
(18)
ut(ux)z: — & =0,
(19)
Upx: — & =0,
(20)
Uge: — My = 0,
(21)
UpUyyx $u =0,
(22)
UyUpe: =1y, = 0. (24)
From equation (21) and (23) we have
§=¢(x), (24)
and equations (22) and (24) give
n =n(o). (25)

From equation (16):

Tyu + 07, = 0. (26)
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After some calculations on (27), we get
7=N(x,t) + M(x,t)e %%, (27)

where N and M are arbitrary functions of x and t. From (28), we get

7, = N, + M,e™ %%, (28)
7, = N, + M,e™%, (29)
Ty = —OMe= %%, (30)
Ty = —OM, e %% (32)

Using equations (29) and (31) in equation (14), we get
—6M.e%* + 6N, + M,e % + an, = 0. (32)
We then calculate the following
any = —0Ng, (33)

Ne = _%- (34)

Substituting (30) and (32) in (15), we get

—6M,e~%% + SN, + 6Me~%% + Bé, = 0. (35)
This simplifies to
BSx = —6Ny, (36)
£ =— 51Vx_ (37)
B

From (29) and (30), we get
N, =0, (38)
N(x,t) =px +zt + A, (39)

where p, z and A, are arbitrary constants. From (40), we obtain
N, =p, (40)

and
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Putting (41) in (38):

Sp
=——x+A4,
3 3 2

where A, is an arbitrary constant. Now putting (42) in (35):

0z

Ne = p

It integrates into
n= t+A
(04 ¥

where A is an arbitrary constant. From (13) we have
ap + fz=0.

It then follows then from (47) that

This can be simplified to

P_a,

B

where A, is an arbitrary constant. It then implies that

Substituting (49) in (44) gives
E == _6A4t + Az.
Then putting (50) in (46) yields

N = §A,t + As.

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)
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From (48), we then get

__@r (52)
zZ=——
B
Now putting (53) in (40) suggests
N(x,t)sz—%t+A1. (53)
This can be expressed tersely in the form
N(x,t) = %(,Bx —at) + A, (54)
We simplify (55) as
N(x,t) = A,(Bx — at) + A;. (55)

Subsequently, we get the defining equation

T=M(x,t)e %% + A, (Bx — at) + A;. (56)

2.1.2 The symmetries
The defining equations determined in the previous subsection, lead to the symmetries

0 (57)
X, = E

d (58)
X, = a

d (59)
X3 =3

X ——6xi+6ti+(ﬁx—at)i (60)
* dx at ou’

2.2 Invariant solutions

Solutions obtained through Lie symmetry group theoretical methods are referred to as
invariant solutions, or group invariant solutions. This follows from the invariance
conditions discussed earlier. We establish the solutions that follow from the full
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symmetry X,, here using the expression

dx dt du

E(x,tu) - totw)  nlotw)

2.2.1 The solutions through the symmetry X,
The symmetry X,, leads to the characteristic equation

dx _dt du
—6x 6t (Bx—at)

(61)

(62)

which can be separated into two equations, leading to the result in (66), expressible in

the form given in (67):

dx _dt

—8x 6t

dx_ dt

x ot
Inx = —Int+ Iny,

Inx+Int = Iny.

The first invariant that follows is

y = xt,
or
t=2.
X
Substituting this into (63) gives
_dx___ du
R
1(,Bx - dx = ~5du,
X

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)
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The second invariant is

a
v(y) = fx + 73} + Su. (72)
From (73) we can write u in terms of v. That is,
u—lv—ﬁx—ﬂ (73)
) ) 8x
Substituting (69) in (74)
1 B «a (74)
u= EU — EX — gt.
We can now find u,, u;, and u,, from (75):
L (75)
8 5’
X f (76)
AR A
u _ x_tvll + lv/ (77)
xt — 6 6 .
Substituting (68) into (78) leads to
Y ) 78
Uyt = EU + EU . ( )

Substituting (76), (77) and (79) in (1) finally yields the ordinary differential equation

Yoo 1, at I_ﬁ ﬁ_x '_ﬁ (E ’_E)(f ’_g)— (79)
5V +6v+6v 5+5v 6+55v 5)\ 5V 5_0'

Y. 1, at I_ﬁ & I_ﬁ Xt 2 _at ’_& ! ﬁ— (80)
5V +6v+6v 5+5v 5+5(v) 5V 5v+5—0.

Thus we have taken the original PDE and transformed it to an ODE. That is,

Yo L oy Xt ;N2 aB _ 81
5V +6v+6(v) 5 = 0. (81)

After substituting (68) in (82), we get

yv" +v' +y(@)? —ap = 0. (82)
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Since af is constant we write the ODE in the form

y" +v +y@w)?2—¢ =0. (83)

3 The differentiable topological manifolds approach

The differentiable topological manifolds approach that is briefly discussed here,
borrows heavily from the method variation of parameters, a technique commonly used
for solving second-order non-homogeneous linear ODES

Ey L pw - (84)
a——+tb—+cy=f(x),

where the coefficients a, b and ¢ are constant parameters, for a given f(x), with y =
y(x).
3.1 The basics of the variation of parameters method

The usual first steps involve solving the homogeneous case. That is the case

f(x) =0, (85)
so that
a’y ay — (86)
a3 +bdx+cy =0,
from which it is found that,
Ye = Gy, + Gy, (87)

known as the complementary solution. The constants C; and C, are the parameters that
need to be varied, hence the title the method of variation of parameters. That is, at
some stage we will have

vi=C =12 (88)

Odd as it seems, this is how the method of variation of parameters proceeds. This leads
to the particular solution

Yp = ViY1+ V22 (89)
so that the general solution is given as:
y=Yc+t Yp (90)

We take two assumptions to the next subsection and beyond. The assumption giving
rise to (87) will be interpreted as describing points within quotient spaces, leading to
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(124). The second assumption, the one leading to (89), relates this space to the entire
differentiable topological manifolds, where it is located. It leads to (97) and (98) which
generate (130). As indicated earlier, this procedure developed by the third author of
this contribution. For ease of references, we rephrase the procedure here.

3.2  Differentiable Topological Manifold

We start with a topological space M = (X, Jy), a Hausdorff topology. That is, a set X
with topology Jx For it to be a differentiable topological manifold, or simply a
differentiable manifold, we require an atlas A in addition. Then we have DM =

(X!]XJ A)
We now consider two points p € U, and q € U, such that the sets U, and U, are
elements of the same manifold. We can then build the sub-topologies WUy Jxlu,) and

(Uq,]X|Uq). That is, t (the topology of X) is restricted to U, and U,. A mapping v, if
it exists, then the space (U,,Jx|y,) into the Euclidean space (RM,Lgnly,(U,)-
Similarly, ¥, maps (Uq,]X|Uq) into the Euclidian space (R", Lgn |y, (Ug)-

If these mapping are homeomorphisms, then a set A, with

A= {(Up"/’p)' (Uq'lpq)} (91)

is called an atlas, with 1,1, called coordinates.

Our interest is in one of the chats mapping equivalence classes. That is,

A= {([Up]' [‘pp])' (Uq"/)q)} (92)
Similarly, for mapping manifolds in derivatives of s, we get the atlases
AD = ([0, [W5]), (Vg ) (93)

3.2.1 Transmission mapping

The mapping from (RN,]RHWP]), to(]RzN,]th,Uq]) having stepped down from R" to
R, is given by

v (va* (8 (0,D)), (94)

and it is called a transition mapping. Its inverse is:

v (v5" (vo((V])) (95)
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We are interested in the case where [U,] and [U,] overlap, such that there is a point x
in the neighbourhood of both p and g such that

[wx]] = w(o. (96)
The transmission mappings in derivative spaces lead to
d'[y[x]] _ d"Pp() (97)
dx®  dx"

Forn=1,2,3,...

3.2.2 Tangent spaces

As indicated earlier, tangent spaces assist in establishing a function f, which allows for
the results to be projected onto a metric space. A tangent space is a set.

Tp = {V%ph’: R - X}' (98)
such that
Viof = (f ¥y DIy (zo)l, (99)
where eC*(X),V,,:C*(M) - R,y(zo) = p . The tangent space Tp has the basis

vectors {9X'}. Any vector then can be represented in terms of it, so that
— fi 0 100
X=2¢—lp (100)

where XeT,X =T,M.

3.2.3 Cotangent spaces

A tangent space is a vector space, and where there is one there should also be a co-
vector space, hence the cotangent space. It is the set of all the maps in the tangent space
to R. That is,

w:T,X - R, (101)

with w being an element of the cotangent space. The symbol (df), represents a co-
vector acting on mapping fat p. A cotangent space, therefore is

Tp* = {(df),|f € C*(D}, (102)

and it is a vector space and is the dual of Tp. The basis vectors of a cotangent space
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require that

(@), ()b = o "
so that
") = Gl Hod
Therefore, an element w of TP* can be written
w = w;(dxD)|,. (105)
3.3  Quotient spaces
Consider the general ODE:
ooy, "yl ) =0, (106)
where
P:X >y. (107)
A set
S ={xg,x1,%x5, ...} C X, (108)
Such that
xX; = p(xj) = x;j + 2mk; (109)

where kg is an integer, that is called an equivalence class. This leads to an Quotient
space R /-, which is given by

R/-= {[xol, [x1], [x2], - }- (110)

It is a differentiable topological space. In our study, the image of this set, is also an
equivalence class

{xo)l )] [(x2)], - 3 (111)
as such there is a homomorphism, and it extends to the derivative spaces.
([P o)), [w @ )] [W P (x)], -3 (112)

fori=1,2,3,..
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4 Application of the differentiable manifolds method

To use the method of differentiable topological manifolds we first generate equations
in the form of:

q" = w?q. (113)
We then look for
q"*2) = q" = 0. (114)
Differentiating (84) we get
w2 +2v" 4+ 2yv'v" + yv'" = 0. (115)
We again differentiate (116)
2y(v'")? 4+ 30" +v'(4v" + 2yv"") + yv@®) = 0. (116)
When we use (115), we have
v =@ =, (117)
v + 2yv'v"" = 0. (118)
This simplifies to
v""'(3+ 2yv") = 0. (119)
This implies that
v'" =0, (120)
or
3+ 2yv' =0, (121)
v == (122)
2y

Now, when we apply L’Hopital’s Rule

v ™ (123)

- ’
v’ o'

@ _ 1N (124)

p@v) - pUnN"
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It then becomes

4

L@ = Ly,
dy

This gives
Inv® =Inv"” +Ink.
We now end up getting
v =y,
Applying (114), we then have
v = w2y,
From (129), we have

asin(iwy+a)
iw ’

v'(y) =
We then integrate (130)

v = % [sin(iwy) cos(iwy) — sin a cos a] + b;.

Integrating (131) again we obtain

v= lw% [a sin(iwy) cos a + asin a cos(iwy)] + byy + b, .

Now substituting (131) in (122)

1= Sawy?

Now use (121), (131) and (133) in (84) and integrate with respect to y.

3y y*v  a(-2+10%y2w?)cos[p+iwy] | 2aysin[p+iwy]
—+—- - -
4 2 (lw)* (iw)3

[—3(iw)? + 2ay cos a cos(iwy) — 2ay sin a sin(iwy)] .

+C1=O

1859

(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)

(133)
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Now set sin[¢ + iwy] = 0 and cos[¢ + iwy] = 1, so that

3(iw)*y + 2(iw)*y?v + 4(iw)*C; (134)
—a[-2 + (iwy)?] = 0.
4(—2 + (wy)?) al=2+ (wy)"1 =0
We then find a from (135)
a4 = 3(iw)*y+2(iw)*y2v+4(iw)*Cy (135)

4(=2+(iwy)?)

Integrating (134):

3y? n y3v  aycos(iwy+a) . 6asin(iwy+a) ay?sin(iwy+a)

_o  (136)
8 6 (iw)* (iw)5 (iw)3 + ycl + C2 0.

Now setting sin(iwy + @) = 0 and cos(iwy + a) = 1 gives
fi = —45y? — 28y3v — 72yC; — 24C,
and

5 = 9y* + 4ySv + 24y3C, + 24y2%C, .

We then solve for w:

w=Y2IA (137)
T
Substituting (138) in (136) gives
12M*y(f)? | 810*y?v(f1)? | 1610*Ci(f1)? | 210%y%(f1) (138)
= +4(-2+——5).
(f2)? (f2)? (f2)? (=2+ f2 )

Again setting cos(iwy+a) =1 and sin[¢ +iwy] =0 in (133), thereafter
substituting (138) and (139) in (133) to calculate b,.

_ 12y(—45y%-28y3v—72yC; —24C;)?
Also set S; = — 8 2
(9y*+4y>v+24y3C1+24y4Cy)

S = 8y2v(—45y%—28y3v—-72yC;—24C,)?
2= 4 5 3 20,32
(9y*+4y>v+24y3C1+24y2Cy)

_16C;(—45y2-28y3v—72yC1—24C;)?
37T (9y*+4ySv+24y3C,+24y2C,)2

Sl +SZ +S3:S4_

2
and Ss = —2 — ny—fl eventually leads to

2
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b :i(_ N fi%se l(£,%54 _23’2(3’17+3’2f22(54)2)_(fS(S y (139)
L7y 8f1%(Ss) (8f12 +55)2 256f1°(S5)? 2 w4

(i24£,°(S5)?) + y£2(S4)/(8f1(Ss) + C5..

4.1  The solutions
From (132) and setting b, = 0, gives

= (i1 Y S S o Y (40

f2? f2?
2
2i%y%f, 1 f2%(S4) (y_fz (54)) 2
—)) +-(— — -2 v+
fZ )) y ( y 8f22(55) (8f12(55))2 y (y
y2f22(54)?
256£1%(S5)2=(f23(S0)2 | ¥f1(Sa) iy,
i24f,3(Ss)? 8/f1(Ss) 3
where f; = ﬁf;%/ﬁ.

Now setting Z; = 24 — 45y% — 28y3,
Zy = —24y% + 9y* + 4y5 |

_ 2 12y(Z3)* | 8y?*(Z3)*
Z1 - (Z‘l-) ( (24)2 (Z4_)2 )’

2
Z5 — _2 _ 2y (Z3) ’
Zy

Z; = (Z3)*(Zs) ,
4
Zg =

2 1
and Z, = 2= — — +Z leads to
256 124 8

Zy sinh[ﬁz—;{z] ( 141)

1

eyt [y _Ze) Ao,
V= (v IRy F @2 + (v = %)

Now setting hy = (—24t%x? + 9t*x* + 4t°x°)?,
h, = (24 — 45t%x% — 28t3x3)?,

12txh 8t2x2h
h2 = 4 + 2 _ 2,
hy hy
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2t%x2%[hy

NI 2

t2x2h1h2
256h3

h3 = h4(_2 -

hy = =2t%x%(1 + tx +
V2tx ,\/h_‘}

g =
Jhr
then substituting (68) and (141) into (75) to find the value of u, gives the solution

1 hih 142
U= —t—x+—(—tx+——— (142)
tx 8h;
_ hlhz txh1h2 _ _ hlhz 2) hlhz Sinh[hs]
\/h4 i24hs + 8hs (tx 8hs ) + 8h;

It then follows that ifweletv =1, a =1, =1,y = 1;C, =0;C, = —1;C; = 1, the
plot of (143) assumes the form in Figure 1.

u
3.5

3.0
25
2.0
15
1.0:

0.5

-4 -2 ' 2 4

Fig. 1: The solution of u in (143) with t = 1; x € [—5,5]. It compares favourably
with the one in Figure 2, obtained for the same assumed conditions, for the same
equation (1), by Al-Ghafri.
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Fig. 2: The solution of u according to Al-Ghafri

5 Conclusion

When henry Thomas determined the partial differential equation (1), his objective was
to understand the physical law that governs how zeolites release their ions in chemical
solutions. It is unlikely that he could have succeeded, because that understanding
should hinged on being able to obtain the analytical solutions of the equation, given
arbitrary parameters, so far, that has not been possible, before it attracted our attention.
Al-Ghafri’ solution, plotted in Figure 2, is a special case solution. The next step after
this, is to develop a method, aligned with the law, and protect it.
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