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ABSTRACT 

In this contribution, we use differentiable topological manifolds to determine 

solutions of the Thomas equation. First we transform the equation from partial 

differential form to ordinary differential form, using Sophus Lie’ symmetry 

group theoretical methods.  We then apply our differentiable topological 

manifolds approach to it. 
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1 Introduction 

The Thomas equation is a nonlinear second-order partial differential equation (PDE) 

given by 

𝑢𝑥𝑡 + 𝛼𝑢𝑥 +  𝛽𝑢𝑡 + 𝛿𝑢𝑥𝑢𝑡 = 0.     (1) 

Here 𝑢 depends on 𝑡 and 𝑥, while the coefficients 𝛼, 𝛽 and 𝜎 are constant parameters.  

It is a subject in the physical sciences, particularly in the study of chemical processes; 

a model proposed by Henry Thomas [1].  

As indicated in the abstract, we partly use Sophus Lie’ symmetry group theoretical 

methods to simplify the equation.  Several authors have used this technique.  They 

include Sakovich [2]   Stephani [3], Ouheden [4] , Al-Ghafri [5], Yan [6], Wei at al [7], 

and many others The problems most encountered is that they ended up with integrals 

they could not resolve analytically, subsequently resorting to special cases of the 

coefficients, consequently compromising the results.  Our differentiable topological 

methods approach is designed to circumvent this impasse. 
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We introduce Lie’s methods in Section 2, a theory developed by the Norwegian 

Mathematician Sophus Lie (1842-1899), first introduced through his now famous 1881 

paper [8]. It has since snowballed, now followed and practiced by many scholars. The 

Russian Mathematician, Lev Vasilyevich Ovsyannikov (1919-2014) is among those 

who revived the theory in the 1950s.  His work includes [9], [10], [11], [12] and [13].  

Many more followed in his footsteps, that includes Nail Ibragimov and  

Gazizov, see [14].  

The approach as used in Section 2, consists of a systematic procedure for the 

determination of continuous symmetry transformations of a system of the nonlinear 

PDE (1).  This procedure is replicated in many texts, see Olver [15], Bluman and Kumei 

[16], and Ibragimov [17].  

In Section 3, we briefly outline the differentiable topological methods approach, a 

procedure first proposed by the third author [18].   

Section 4 is on the application of the technique discussed in Section 3 to the Thomas 

equation.  That is, the Thomas equation that has been transformed into an ordinary 

differential equation using methods discussed in Section 2. 

  

2 The pure Lie approach 

The application of Lie’s theory to a differential involves first applying a symmetry 

generator to it, resulting in what is known as the determining equation, which in turn 

leads to what are known as Lie symmetries, then to invariants, then the ordinary 

differential equation. 

The infinitesimal symmetry generator for a PDE with one dependent variable and two 

independent variables, is given by 

𝑋 = 𝜉
𝜕

𝜕𝑥
 +  𝜏

𝜕

𝜕𝑡
+  𝜂

𝜕

𝜕𝑢
.                     

( 2) 

The Thomas equation is second-order PDE, for this we require an extension of the 

generator to the second-order form 

𝑋[2]  =  𝑋 +  𝜁1 𝜕

𝜕𝑢𝑥
+  𝜁2 𝜕

𝜕𝑢𝑡
+  𝜁12 𝜕

𝜕𝑢𝑥𝑡
+  𝜁11 𝜕

𝜕𝑢𝑥𝑥
+  𝜁22 𝜕

𝜕𝑢𝑡𝑡
. (3) 

This depends on the operators of total differentiation.  That is, 

𝐷𝑥 =  
𝜕

𝜕𝑥
+  𝑢𝑥

𝜕

𝜕𝑢
+ 𝑢𝑥𝑥

𝜕

𝜕𝑢𝑥
+ 𝑢𝑥𝑡

𝜕

𝜕𝑢𝑡
+ ⋯  

(4) 

𝐷𝑡 =  
𝜕

𝜕𝑡
+  𝑢𝑡

𝜕

𝜕𝑢
+  𝑢𝑡𝑡

𝜕

𝜕𝑢𝑡
+ 𝑢𝑥𝑡

𝜕

𝜕𝑢𝑥
+ ⋯ 

(5) 
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These lead to the prolongations 

𝜁1 =  𝜏𝑥 +  𝑢𝑥(𝜏𝑢 −  𝜉𝑥) −  𝑢𝑡𝜂𝑥 − (𝑢𝑥)2𝜉𝑢 − 𝑢𝑥𝑢𝑡𝜂𝑢, (6) 

𝜁2 =  𝜏𝑡 +  𝑢𝑡(𝜏𝑢 − 𝜂𝑡) −  𝑢𝑥𝜉𝑡 − (𝑢𝑡)2𝜂𝑢 − 𝑢𝑥𝑢𝑡𝜉𝑢, (7) 

𝜁12 =  𝜏𝑥𝑡 +  𝑢𝑥(𝜏𝑡𝑢 −  𝜉𝑥𝑡) + 𝑢𝑡(𝜏𝑥𝑢 −  𝜂𝑥𝑡) − (𝑢𝑥)2𝜉𝑡𝑢 +

𝑢𝑥𝑢𝑡(𝜏𝑢𝑢 −  𝜉𝑢𝑥 − 𝜂𝑡𝑢) − (𝑢𝑡)2𝜂𝑢𝑥 − (𝑢𝑥)2𝑢𝑡𝜉𝑢𝑢 − (𝑢𝑡)2𝑢𝑥𝜂𝑢𝑢 −

2𝑢𝑥𝑢𝑥𝑡𝜉𝑢 − 2𝑢𝑡𝑢𝑥𝑡𝜂𝑢 − 𝑢𝑥𝑥𝜉𝑡 − 𝑢𝑡𝑡𝜂𝑥 − 𝑢𝑡𝑢𝑥𝑥𝜉𝑢 − 𝑢𝑥𝑢𝑡𝑡𝜂𝑢 +

 𝑢𝑥𝑡(𝜏𝑢 −  𝜉𝑥 −  𝜂𝑡).  

(8) 

2.1 Application of the symmetry generator 

The application of the generator, such as the one we just presented above, to an 

expression 𝐹 = 0, leads to the invariance condition 

𝑋[2]𝐹⃒𝐹=0 = 0. (9) 

Here 𝐹 = 𝑢𝑥𝑡 + 𝛼𝑢𝑥 +  𝛽𝑢𝑡 + 𝛿𝑢𝑥𝑢𝑡.  That is, it is equation (1).  Expressing it in the 

following way,will prove usefull:   

𝑢𝑥𝑡 = −𝛼𝑢𝑥 −  𝛽𝑢𝑡 − 𝛿𝑢𝑥𝑢𝑡  .      (10) 

This expression assists in simplifying the invariance condition further. After 

substituting (2) and (3) into (9), we obtain  

(𝛽 + 𝛿𝑢𝑥)𝜁1 + (𝛼 + 𝛽𝑢𝑡)𝜁2 +  𝜁12 = 0.            (11) 

Putting (6), (7), (8) and (10) in (11) we have: 

𝛽𝑔𝑡 + 𝛽𝑢𝑓𝑡 +  𝛽𝑢𝑡(𝑓 −  𝜏𝑡) −  𝛽𝑢𝑥𝜉𝑡 + 𝛿𝑢𝑥𝑔𝑡 + 𝛿𝑢𝑥𝑢𝑓𝑡 +
𝛿𝑢𝑥 𝑢𝑡(𝑓 −  𝜏𝑡) −  𝛿𝑢𝑥𝑢𝑥𝜉𝑡 + 𝛼𝑔𝑥 + 𝛼𝑢𝑓𝑥 +  𝛼𝑢𝑥(𝑓 −  𝜉𝑥) −

 𝛼𝑢𝑡𝜏𝑥 + 𝛽𝑢𝑡𝑔𝑥 + 𝛽𝑢𝑡𝑢𝑓𝑥 +  𝛽𝑢𝑡𝑢𝑥(𝑓 −  𝜉𝑥) −  𝛽𝑢𝑡𝑢𝑡𝜏𝑥 + 𝑔𝑥𝑡 +
𝑢𝑓𝑥𝑡 − 𝛼𝑢𝑥(𝑓 −  𝜉𝑥 −  𝜏𝑡) −  𝛽𝑢𝑡(𝑓 −  𝜉𝑥 −  𝜏𝑡) − 𝛿𝑢𝑥𝑢𝑡(𝑓 −  𝜉𝑥 −

 𝜏𝑡) +  𝑢𝑥(𝑓𝑡 −  𝜉𝑥𝑡) + 𝑢𝑡(𝑓𝑥 − 𝜏𝑥𝑡) − 𝑢𝑡𝑡𝜏𝑥 − 𝑢𝑥𝑥𝜉𝑡 = 0,  

           (11) 

known among Symmetry Analysts as the determining equation. 

 

2.1.1 The monomials 

Simplifying (12), we obtain the following equations.  That is, the monomials.  

(1)0:  𝛼𝜏𝑥 + 𝛽𝜏𝑡 + 𝜏𝑥𝑡 = 0,   ( 12) 
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𝑢𝑥:  𝜏𝑡𝑢 − 𝜉𝑥𝑡 + 𝛿𝜏𝑡 − 𝛽𝜉𝑡 + 𝛼𝜂𝑡 = 0,                                  
(13) 

𝑢𝑡:  𝜏𝑥𝑢 − 𝜂𝑥𝑡 + 𝛿𝜏𝑥 − 𝛼𝜂𝑥 + 𝛽𝜉𝑥 = 0,                                  
(14) 

𝑢𝑥𝑢𝑡:  𝜏𝑢𝑢 − 𝜉𝑢𝑥 − 𝜂𝑡𝑢 + 𝛽𝜉𝑢 + 𝛼𝜂𝑢 + 𝛿𝜏𝑢 = 0,                                     
(15) 

(𝑢𝑥)2 : − 𝜉𝑡𝑢 − 𝛿𝜉𝑡 + 𝛼𝜉𝑢 = 0,                                     
(16) 

(𝑢𝑡)2 : − 𝜂𝑥𝑢 − 𝛿𝜂𝑥 + 𝛽𝜂𝑢 = 0,                                     
(17) 

𝑢𝑥(𝑢𝑡)2:  𝜂𝑢𝑢 = 0,                                    
(18) 

𝑢𝑡(𝑢𝑥)2 : − 𝜉𝑢𝑢 = 0,                                    
(19) 

𝑢𝑥𝑥 : − 𝜉𝑡 = 0,                                    
(20) 

𝑢𝑡𝑡 : − 𝜂𝑥 = 0,                                    
(21) 

𝑢𝑡𝑢𝑥𝑥:  −𝜉𝑢 = 0,                                    
(22) 

   (23 ) 

𝑢𝑥𝑢𝑡𝑡: −𝜂𝑢 = 0.         (24) 

From equation (21) and (23) we have 

𝜉 = 𝜉(𝑥),         (24) 

and equations (22) and (24) give 

𝜂 = 𝜂(𝑡).     (25) 

From equation (16): 

𝜏𝑢𝑢 + 𝛿𝜏𝑢 = 0.     (26) 
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After some calculations on (27), we get 

𝜏 = 𝑁(𝑥, 𝑡) + 𝑀(𝑥, 𝑡)𝑒−𝛿𝑢,     (27) 

where 𝑁 and 𝑀 are arbitrary functions of 𝑥 and 𝑡.  From (28), we get 

𝜏𝑡 = 𝑁𝑡 + 𝑀𝑡𝑒−𝛿𝑢,     (28) 

𝜏𝑥 = 𝑁𝑥 + 𝑀𝑥𝑒−𝛿𝑢,     (29) 

𝜏𝑡𝑢 = −𝛿𝑀𝑡𝑒−𝛿𝑢,     (30) 

𝜏𝑥𝑢 = −𝛿𝑀𝑥𝑒−𝛿𝑢.     (31) 

Using equations (29) and (31) in equation (14), we get 

−𝛿𝑀𝑡𝑒−𝛿𝑢 + 𝛿𝑁𝑡 + 𝛿𝑀𝑡𝑒−𝛿𝑢 + 𝛼𝜂𝑡 = 0.     (32) 

We then calculate the following 

𝛼𝜂𝑡 = −𝛿𝑁𝑡, (33) 

𝜂𝑡 = −
𝛿𝑁𝑡

𝛼
. (34) 

Substituting (30) and (32) in (15), we get 

−𝛿𝑀𝑥𝑒−𝛿𝑢 + 𝛿𝑁𝑥 + 𝛿𝑀𝑥𝑒−𝛿𝑢 + 𝛽𝜉𝑥 = 0. (35) 

This simplifies to  

𝛽𝜉𝑥 = −𝛿𝑁𝑥 , (36) 

𝜉𝑥 = −
𝛿𝑁𝑥

𝛽
. 

(37) 

From (29) and (30), we get 

𝑁𝑥𝑡 = 0, (38) 

𝑁(𝑥, 𝑡) = 𝑝𝑥 + 𝑧𝑡 + 𝐴1, (39) 

where 𝑝, 𝑧 and 𝐴1 are arbitrary constants.  From (40), we obtain  

𝑁𝑥 = 𝑝, (40) 

and 
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𝑁𝑡 = 𝑧.       (41) 

Putting (41) in (38): 

𝜉𝑥 = −
𝛿𝑝

𝛽
, 

(42) 

𝜉 = −
𝛿𝑝

𝛽
𝑥 + 𝐴2, 

(43) 

where 𝐴2 is an arbitrary constant.  Now putting (42) in (35): 

𝜂𝑡 = −
𝛿𝑧

𝛼
. 

(44) 

It integrates into 

𝜂 = −
𝛿𝑧

𝛼
𝑡 + 𝐴3, 

(45) 

where 𝐴3 is an arbitrary constant.  From (13) we have 

𝛼𝑝 + 𝛽𝑧 = 0. (46) 

It then follows then from (47) that  

𝑝

𝛽
= −

𝑧

𝛼
. (47) 

This can be simplified to 

𝑝

𝛽
= 𝐴4, (48) 

where 𝐴4 is an arbitrary constant.  It then implies that                         

𝑧

𝛼
= −𝐴4. (49) 

Substituting (49) in (44) gives 

𝜉 = −𝛿𝐴4𝑡 + 𝐴2. (50) 

Then putting (50) in (46) yields 

𝜂 = 𝛿𝐴4𝑡 + 𝐴3. (51) 
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From (48), we then get  

𝑧 = −
𝛼𝑝

𝛽
. (52) 

Now putting (53) in (40) suggests 

𝑁(𝑥, 𝑡) = 𝑝𝑥 −
𝛼𝑝

𝛽
𝑡 + 𝐴1. (53) 

This can be expressed tersely in the form 

𝑁(𝑥, 𝑡) =
𝑝

𝛽
(𝛽𝑥 − 𝛼𝑡) + 𝐴1. (54) 

We simplify (55) as 

𝑁(𝑥, 𝑡) = 𝐴4(𝛽𝑥 − 𝛼𝑡) + 𝐴1. (55) 

Subsequently, we get the defining equation 

𝜏 = 𝑀(𝑥, 𝑡)𝑒−𝛿𝑢 + 𝐴4(𝛽𝑥 − 𝛼𝑡) + 𝐴1. (56) 

2.1.2 The symmetries  

The defining equations determined in the previous subsection, lead to the symmetries 

𝑋1 =
𝜕

 𝜕𝑡
, 

(57) 

𝑋2 =
𝜕

 𝜕𝑥
, 

(58) 

𝑋3 =
𝜕

 𝜕𝑢
, 

(59) 

𝑋4 = −𝛿𝑥
𝜕

 𝜕𝑥
+ 𝛿𝑡

𝜕

𝜕𝑡
+ (𝛽𝑥 − 𝛼𝑡)

𝜕

𝜕𝑢
. 

(60) 

2.2 Invariant solutions 

Solutions obtained through Lie symmetry group theoretical methods are referred to as 

invariant solutions, or group invariant solutions.  This follows from the invariance 

conditions discussed earlier.  We establish the solutions that follow from the full 



1852 P.T. Malima, S.Y. Jamal, J.M. Manale 

symmetry 𝑋4,  here using the expression 

   
𝑑𝑥

𝜉(𝑥,𝑡,𝑢)
=

𝑑𝑡

𝜏(𝑥,𝑡,𝑢)
=

𝑑𝑢

𝜂(𝑥,𝑡,𝑢)
. (61) 

 

2.2.1 The solutions through the symmetry 𝑿𝟒 

 The symmetry 𝑋4, leads to the characteristic equation 

𝑑𝑥

−𝛿𝑥
=

𝑑𝑡

𝛿𝑡
=

𝑑𝑢

(𝛽𝑥 − 𝛼𝑡)
, 

(62) 

which can be separated into two equations, leading to the result in (66), expressible in 

the form given in (67): 

𝑑𝑥

−𝛿𝑥
=

𝑑𝑡

𝛿𝑡
, 

(63) 

𝑑𝑥

𝑥
= −

𝑑𝑡

𝑡
. 

(64) 

ln 𝑥 =  − ln 𝑡 +  ln 𝑦, (65) 

ln 𝑥 + ln 𝑡 =  ln 𝑦. (66) 

The  first invariant that follows is 

𝑦 = 𝑥𝑡, (67) 

or  

𝑡 =
𝑦

𝑥
. (68) 

Substituting this into (63) gives 

−
𝑑𝑥

𝛿𝑥
=

𝑑𝑢

(𝛽𝑥 − 𝛼
𝑦

𝑥
)

, 
(69) 

1

𝑥
(𝛽𝑥 −

𝛼𝑦

𝑥
) 𝑑𝑥 = −𝛿𝑑𝑢, 

(70) 

𝛽𝑥 +
𝛼𝑦

𝑥
= −𝛿𝑢 + 𝑣(𝑦). (71) 
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The second invariant is  

𝑣(𝑦) = 𝛽𝑥 +
𝛼𝑦

𝑥
+ 𝛿𝑢. (72) 

From (73) we can write 𝑢 in terms of 𝑣.  That is, 

u =
1

𝛿
𝑣 −

𝛽

𝛿
𝑥 −

𝛼𝑦

𝛿𝑥
. 

(73) 

Substituting (69) in (74) 

u =
1

𝛿
𝑣 −

𝛽

𝛿
𝑥 −

𝛼

𝛿
𝑡. 

(74) 

We can now find 𝑢𝑥 , 𝑢𝑡 , and 𝑢𝑥𝑡 from (75): 

𝑢𝑥 =  
𝑡

𝛿
𝑣′ −

𝛽

𝛿
 , 

(75) 

𝑢𝑡 =
𝑥

𝛿
𝑣′ − 

𝛼

𝛿
, (76) 

𝑢𝑥𝑡 =  
𝑥𝑡

𝛿
𝑣′′ +

1

𝛿
𝑣′. 

(77) 

 

Substituting (68) into (78) leads to 

𝑢𝑥𝑡 =  
𝑦

𝛿
𝑣′′ +

1

𝛿
𝑣′. 

(78) 

Substituting (76), (77) and (79) in (1) finally yields the ordinary differential equation 

 
𝑦

𝛿
𝑣′′ +

1

𝛿
𝑣′ +

𝛼𝑡

𝛿
𝑣′ −

𝛼𝛽

𝛿
+

𝛽𝑥

𝛿
𝑣′ −  

𝛼𝛽

𝛿
+ 𝛿 (

𝑡

𝛿
𝑣′ −

𝛽

𝛿
) ( 

𝑥

𝛿
𝑣′ −  

𝛼

𝛿
) = 0, (79) 

  
𝑦

𝛿
𝑣′′ +

1

𝛿
𝑣′ +

𝛼𝑡

𝛿
𝑣′ −

𝛼𝛽

𝛿
+

𝛽𝑥

𝛿
𝑣′ −  

𝛼𝛽

𝛿
+

𝑥𝑡

𝛿
(𝑣′)2 −

𝛼𝑡

𝛿
𝑣′ −

𝛽𝑥

𝛿
𝑣′ +

𝛼𝛽

𝛿
= 0.  (80) 

 

Thus we have taken the original PDE and transformed it to an ODE.  That is, 

 
𝑦

𝛿
𝑣′′ +

1

𝛿
𝑣′ +

𝑥𝑡

𝛿
(𝑣′)2 −  

𝛼𝛽

𝛿
= 0.  

After substituting (68) in (82), we get  

(81) 

𝑦𝑣′′ + 𝑣′ + 𝑦(𝑣′)2 − 𝛼𝛽 = 0. (82) 



1854 P.T. Malima, S.Y. Jamal, J.M. Manale 

Since 𝛼𝛽 is constant we write the ODE in the form 

𝑦𝑣′′ + 𝑣′ + 𝑦(𝑣′)2 − 𝜙 = 0.   (83) 

 

3 The differentiable topological manifolds approach 

The differentiable topological manifolds approach that is briefly discussed here, 

borrows heavily from the method variation of parameters, a technique commonly used 

for solving second-order non-homogeneous linear ODEs 

𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 𝑓(𝑥), (84) 

where the coefficients 𝑎, 𝑏 and 𝑐 are constant parameters, for a given 𝑓(𝑥), with 𝑦 =
𝑦(𝑥). 

3.1 The basics of the variation of parameters method 

  The usual first steps involve solving the homogeneous case.  That is the case 

𝑓(𝑥) = 0, (85) 

so that  

𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0, (86) 

from which it is found  that, 

𝑦𝑐 =  𝐶1𝑦1 +  𝐶2𝑦2 (87) 

known as the complementary solution. The constants 𝐶1 and 𝐶2 are the parameters that 

need to be varied, hence the title the method of variation of parameters.  That is, at 

some stage we will have 

𝑣𝑖 =  𝐶𝑖          𝑖 = 1,2. ( 88) 

Odd as it seems, this is how the method of variation of parameters proceeds. This leads 

to the particular solution 

𝑦𝑝 =  𝑣1𝑦1 +  𝑣2𝑦2 ( 89) 

so that the general solution is given as: 

𝑦 =  𝑦𝐶 +  𝑦𝑝. ( 90) 

We take two assumptions to the next subsection and beyond. The assumption giving 

rise to (87) will be interpreted as describing points within quotient spaces, leading to 
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(124). The second assumption, the one leading to (89), relates this space to the entire 

differentiable topological manifolds, where it is located. It leads to (97) and (98) which 

generate (130).  As indicated earlier, this procedure developed by the third author of 

this contribution.  For ease of references, we rephrase the procedure here. 

 

3.2 Differentiable Topological Manifold 

We start with a topological space 𝑀 = (𝑋, 𝐽𝑋), a Hausdorff topology. That is, a set 𝑋 

with topology 𝐽𝑋. For it to be a differentiable topological manifold, or simply a 

differentiable manifold, we require an atlas 𝐴 in addition.  Then we have 𝐷𝑀 =
 (𝑋, 𝐽𝑋 , 𝐴). 

We now consider two points 𝑝 ∈ 𝑈𝑝 and 𝑞 ∈ 𝑈𝑞, such that the sets 𝑈𝜌 and 𝑈𝑞 are 

elements of the same manifold. We can then build the sub-topologies (𝑈𝜌, 𝐽𝑋|𝑈𝜌
) and 

(𝑈𝑞 , 𝐽𝑋|𝑈𝑞
). That is,  t (the topology of 𝑋) is restricted to  𝑈𝜌 and 𝑈𝑞. A mapping 𝜓𝜌 , if 

it exists, then the space (𝑈𝜌, 𝐽𝑋|𝑈𝜌
) into the Euclidean space (ℝ𝑁 , ℒℝ𝑁|𝜓𝜌

(𝑈𝜌). 

Similarly, 𝜓𝑞 maps (𝑈𝑞 , 𝐽𝑋|𝑈𝑞
) into the Euclidian space  (ℝ𝑁 , ℒℝ𝑁|𝜓𝑞

(𝑈𝑞).  

  If these mapping are homeomorphisms, then a set 𝐴, with 

𝐴 =  {(𝑈𝜌, 𝜓𝜌), (𝑈𝑞, 𝜓𝑞)} (91) 

is called an atlas, with 𝜓𝜌, 𝜓𝑞 called coordinates. 

 Our interest is in one of the chats mapping equivalence classes. That is, 

𝐴 =  {([𝑈𝜌], [𝜓𝜌]), (𝑈𝑞 , 𝜓𝑞)} (92) 

  Similarly, for mapping manifolds in derivatives of ψ, we get the atlases 

𝐴(𝑖) =  ([𝑈𝜌], [ψ𝜌
𝑖 ]), (𝑈𝑞 , ψ𝑞

𝑖 ) (93) 

3.2.1 Transmission mapping 

The mapping from (ℝ𝑁 , 𝐽ℝ|[ψ𝑈𝜌]), to(ℝ𝑁 , 𝐽ℝ|[ψ𝑈𝑞]) having stepped down from  ℝ𝑁 to 

ℝ, is given by 

𝜓𝜌 (𝜓𝑞
−1 (𝜓𝑞([𝑈𝜌]))), (94) 

and it is called a transition mapping.  Its inverse is: 

𝜓𝑞 (𝜓𝜌
−1 (𝜓𝜌([𝑈𝑞]))) (95) 
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We are interested in the case where [𝑈𝜌] and [𝑈𝑞] overlap, such that there is a point 𝑥 

in the neighbourhood of both p and 𝑞 such that 

[𝜓[𝑥]] =  𝜓(𝑥). (96) 

The transmission mappings in derivative spaces lead to  

𝑑𝑛[𝜓[𝑥]]

𝑑𝑥𝑛
=  

𝑑𝑛𝜓(𝑥)

𝑑𝑥𝑛
 

(97) 

For 𝑛 = 1, 2, 3, …. 

 

3.2.2 Tangent spaces 

As indicated earlier, tangent spaces assist in establishing a function 𝑓, which allows for 

the results to be projected onto a metric space. A tangent space is a set. 

𝑇𝜌 = {𝑉𝛾,𝜌|𝛾: ℝ → 𝑋}, (98) 

such that 

𝑉𝛾𝜌𝑓 = (𝑓 . 𝛾−1)[𝛾(𝜏0)], (99) 

where 𝜖𝐶∞(𝑋), 𝑉𝛾𝜌: 𝐶∞(𝑀) → ℝ, 𝛾(𝜏0) =  𝜌 .  The tangent space 𝑇𝜌 has the basis 

vectors {𝜕𝑋𝑖}. Any vector then can be represented in terms of it, so that 

𝑋 =  𝜉𝑖 𝜕

𝜕𝑋𝑖 |𝜌, (100) 

where 𝑋𝜖𝑇𝜌𝑋 = 𝑇𝜌𝑀. 

 

3.2.3 Cotangent spaces 

A tangent space is a vector space, and where there is one there should also be a co-

vector space, hence the cotangent space. It is the set of all the maps in the tangent space 

to ℝ. That is, 

𝑤: 𝑇𝜌𝑋 → ℝ, (101) 

with  𝑤 being an element of the cotangent space. The symbol (𝑑𝑓)𝜌 represents a co-

vector acting on mapping 𝑓at 𝜌. A cotangent space, therefore is  

𝑇𝜌∗ = {(𝑑𝑓)𝜌|𝑓 ∈ 𝐶∞(𝑋)}, (102) 

and it is a vector space and is the dual of 𝑇𝜌.  The basis vectors of a cotangent space 
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require that 

(𝑑𝑤𝑗)
𝜌

(
𝜕

𝜕𝑥𝑖
) |𝜌 =  𝛿𝑖

𝑗
, 

(103) 

so that 

(𝑇𝜌∗) = {
𝜕

𝜕𝑥𝑖
}|𝜌 

(104) 

Therefore, an element 𝑤 of  𝑇𝑃∗ can be written   

𝑤 =  𝑤𝑖(𝑑𝑥𝑖)|𝜌. (105) 

3.3 Quotient spaces 

Consider the general ODE: 

𝑓(𝑥, 𝜓, 𝜓′, 𝜓′′, 𝜓[3], … ) = 0, (106) 

where 

𝜓: 𝑋 → 𝛾. (107) 

A set  

𝑆 = {𝑥0, 𝑥1, 𝑥2, … } ⊂ 𝑋, (108) 

Such that 

𝑥𝑖 =  𝜌(𝑥𝑗) =  𝑥𝑗 + 2𝜋𝑘𝑠 (109) 

where 𝑘𝑠 is an integer, that is called an equivalence class. This leads to an Quotient 

space ℝ/∽, which is given by 

ℝ/∽=  {[𝑥0], [ 𝑥1], [𝑥2], … }. (110) 

It is a differentiable topological space. In our study, the image of this set, is also an 

equivalence class 

{[𝜓(𝑥0)], [𝜓(𝑥1)], [𝜓(𝑥2)], … }, (111) 

as such there is a homomorphism, and it extends to the derivative spaces. 

{[𝜓(𝑖)(𝑥0)], [𝜓(𝑖)(𝑥1)], [𝜓(𝑖)(𝑥2)], … } (112) 

for 𝑖 = 1, 2, 3, … 
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4 Application of the differentiable manifolds method 

To use the method of differentiable topological manifolds we first generate equations 

in the form of: 

𝑞′′ = 𝑤2𝑞. (113) 

We then look for 

𝑞(𝑛+2) = 𝑞𝑛 = 0. (114) 

Differentiating (84) we get 

(𝑣′)2 + 2𝑣′′ + 2𝑦𝑣′𝑣′′ + 𝑦𝑣′′′ = 0. (115) 

We again differentiate (116) 

2y(𝑣′′)2 + 3𝑣′′′ + 𝑣′(4𝑣′′ + 2𝑦𝑣′′′) + 𝑦𝑣(𝑖𝑣) = 0. (116) 

When we use (115), we have 

𝑣′′ = 𝑣(𝑖𝑣) = 0. ( 117) 

3𝑣′′′ + 2𝑦𝑣′𝑣′′′ = 0. (118) 

This simplifies to 

𝑣′′′(3 + 2𝑦𝑣′) = 0. (119) 

This implies that 

𝑣′′′ = 0, (120) 

or 

3 + 2𝑦𝑣′ = 0, ( 121) 

𝑣′ = −
3

2𝑦
. (122) 

Now, when we apply L’Hopital’s Rule  

𝑣(𝑖𝑣)

𝑣′′ =
𝑣(𝑣)

𝑣′′′, 
( 123) 

𝑣(𝑣)

𝑣(𝑖𝑣) =
𝑣(′′′)

𝑣(′′) . (124) 
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It then becomes 

d

dy
ln 𝑣(𝑖𝑣) =

𝑑

𝑑𝑦
ln 𝑣′′. (125) 

This gives 

ln 𝑣(𝑖𝑣) = ln 𝑣′′ + ln 𝑘. (126) 

We now end up getting 

𝑣(𝑖𝑣) = 𝑘𝑣′′. (127) 

Applying (114), we then have 

𝑣(𝑖𝑣) = 𝑤2𝑣′′. (128) 

From (129), we have 

𝑣′′(𝑦) =  
asin(𝑖𝑤𝑦+𝛼)

𝑖𝑤
. (129) 

We then integrate (130) 

𝑣′ =
𝑎

𝑤2 [sin(𝑖𝑤𝑦) cos(𝑖𝑤𝑦) − sin 𝛼 cos 𝛼] + 𝑏1. (130) 

Integrating (131) again we obtain 

𝑣 =
𝑎

𝑖𝑤3
[𝑎 sin(𝑖𝑤𝑦) cos 𝛼 + asin 𝛼 cos(𝑖𝑤𝑦)] + 𝑏1𝑦 + 𝑏2 . (131) 

Now substituting (131) in (122) 

𝑏1 =
1

2(𝑖𝑤)2 [−3(𝑖𝑤)2 + 2𝑎𝑦 cos 𝛼 cos(𝑖𝑤𝑦) − 2𝑎𝑦 sin 𝛼 sin(𝑖𝑤𝑦)] . (132) 

Now use (121), (131) and (133) in (84) and integrate with respect to 𝑦. 

3𝑦

4
+

𝑦2𝜈

2
−

𝑎(−2+I02𝑦2𝜔2)cos[𝜙+𝑖𝜔𝑦]

(𝑖𝜔)4 +
2𝑎𝑦𝑠in[𝜙+𝑖𝜔𝑦]

(𝑖𝜔)3 + 𝐶1 = 0. (133) 
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Now set sin[𝜙 + 𝑖𝜔𝑦] = 0 and cos[𝜙 + 𝑖𝜔𝑦] = 1, so that 

3(𝑖𝑤)4𝑦 + 2(𝑖𝑤)4𝑦2𝑣 + 4(𝑖𝑤)4𝐶1

4(−2 + (𝑖𝑤𝑦)2)
− 𝑎[−2 + (𝑖𝑤𝑦)2] = 0. 

(134) 

We then find 𝑎 from (135) 

𝑎 =
3(𝑖𝑤)4𝑦+2(𝑖𝑤)4𝑦2𝑣+4(𝑖𝑤)4𝐶1

4(−2+(𝑖𝑤𝑦)2)
. (135) 

Integrating (134): 

3𝑦2

8
+

𝑦3𝑣

6
−

𝑎𝑦 cos(𝑖𝑤𝑦+𝛼)

(𝑖𝑤)4 +
6𝑎 sin(𝑖𝑤𝑦+𝛼)

(𝑖𝑤)5 −
𝑎𝑦2 sin(𝑖𝑤𝑦+𝛼)

(𝑖𝑤)3 + 𝑦𝐶1 + 𝐶2 = 0.  (136) 

Now setting sin(𝑖𝑤𝑦 + 𝛼) = 0 and cos(𝑖𝑤𝑦 + 𝛼) = 1  gives 

 𝑓1 = −45𝑦2 − 28𝑦3𝜈 − 72𝑦𝐶1 − 24𝐶2 

 and  

 𝑓2 = 9𝑦4 + 4𝑦5𝜈 + 24𝑦3𝐶1 + 24𝑦2𝐶2 . 

We then solve for 𝑤: 

𝑤 =
√2 √𝑓1

√𝑓2
. 

( 137) 

Substituting (138) in (136) gives 

𝑎 =
12(i)4𝑦(𝑓1)2

(𝑓2)2 +
8I04𝑦2𝜈(𝑓1)2

(𝑓2)2 +
16I04𝐶1(𝑓1)2

(𝑓2)2 ÷ 4(−2 +
2I02𝑦2(𝑓1)

𝑓2
) . (138) 

Again setting cos(𝑖𝑤𝑦 + 𝛼) = 1 and sin[𝜙 + 𝑖𝜔𝑦] = 0 in (133), thereafter 

substituting (138) and (139) in (133) to calculate 𝑏1. 

Also set  𝑆1 =
12𝑦(−45𝑦2−28𝑦3𝜈−72𝑦𝐶1−24𝐶2)2

(9𝑦4+4𝑦5𝜈+24𝑦3𝐶1+24𝑦2𝐶2)2 , 

𝑆2 =
8𝑦2𝜈(−45𝑦2−28𝑦3𝜈−72𝑦𝐶1−24𝐶2)2

(9𝑦4+4𝑦5𝜈+24𝑦3𝐶1+24𝑦2𝐶2)2
, 

𝑆3 =
16𝐶1(−45𝑦2−28𝑦3𝜈−72𝑦𝐶1−24𝐶2)2

(9𝑦4+4𝑦5𝜈+24𝑦3𝐶1+24𝑦2𝐶2)2
, 

𝑆1 + 𝑆2 + 𝑆3 = 𝑆4  

and  𝑆5 = −2 −
2𝑦2𝑓1

𝑓2
, eventually leads to 
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b1 =
1

𝑦2 (−𝑦 +
𝑓1

2𝑆4

8𝑓1
2(𝑆5)

−
√(𝑓2

2𝑆4

(8𝑓1
2 +𝑆5)

2 −
2𝑦2(𝑦𝑣+𝑦2𝑓2

2(𝑆4)2)

256𝑓1
2(𝑆5)2 − (𝑓2

3(𝑆4)/

(𝑖24𝑓1
3(𝑆5)2) + 𝑦𝑓2(𝑆4)/(8𝑓1(𝑆5) + 𝐶3 . 

(139) 

 

4.1 The solutions 

From (132) and setting 𝑏2 = 0, gives 

v = (sinh[𝑓3]𝑓2

3
2⁄ (

12𝑖4𝑦𝑓1
2

𝑓2
2 +

8𝑖4𝑦2𝑣𝑓1
2

𝑓2
2 +

16𝑖4𝐶1𝑓1
2

𝑓2
2 ))/(8√2𝑓1

3
2⁄ (−2 +

2𝑖4𝑦2𝑓1

𝑓2
)) +

1

𝑦
(−𝑦 +

𝑓2
2(𝑆4)

8𝑓2
2(𝑆5)

−
√(𝑦−𝑓2

2(𝑆4))

(8𝑓1
2(𝑆5))

2 − 2𝑦2(𝑦𝑣 +

𝑦2𝑓2
2(𝑆4)2

256𝑓1
2(𝑆5)2−(𝑓2

3(𝑆4)2

𝑖24𝑓1
3(𝑆5)2 +

𝑦𝑓1(𝑆4)

8𝑓1(𝑆5)
+ 𝐶3 , 

 

(140) 

where 𝑓3 =
√2𝑦√𝑓1

√9
. 

Now setting  𝑍3 = 24 − 45𝑦2 − 28𝑦3, 

𝑍4 = −24𝑦2 + 9𝑦4 + 4𝑦5 , 

             𝑍1 = (𝑍4)2(
12𝑦(𝑍3)2

(𝑍4)2 +
8𝑦2(𝑍3)2

(𝑍4)2 ),   

            𝑍5 = −2 −
2𝑦2(𝑍3)

𝑍4
 , 

𝑍2 = (𝑍3)2(𝑍5) , 

                       𝑍6 =
𝑍1

𝑍2
, 

and 𝑍7 =
𝑦2

256
−

1

𝑖24
+

𝑦

8
, leads to 

v =
1

𝑦
(−𝑦 +

𝑍6

8
− √(−2𝑦2(1 + 𝑦 + (𝑍7)𝑍6) + (𝑦 −

𝑍6

8
)

2

+
𝑍1 sinh[

√2𝑦√𝑍3
𝑍4

]

8√2(𝑍3)
3

2⁄ 𝑍5

 . 

 

( 141) 

Now setting ℎ1 = (−24𝑡2𝑥2 + 9𝑡4𝑥4 + 4𝑡5𝑥5)2, 

ℎ4 = (24 − 45𝑡2𝑥2 − 28𝑡3𝑥3)2, 

ℎ2 =
12𝑡𝑥ℎ4

ℎ1
+

8𝑡2𝑥2ℎ4

ℎ1
− 2, 
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ℎ3 = h4(−2 −
2𝑡2𝑥2√ℎ4

√ℎ1
), 

ℎ4 = −2𝑡2𝑥2(1 + 𝑡𝑥 +
𝑡2𝑥2ℎ1ℎ2

256ℎ3
, 

ℎ5 =
√2𝑡𝑥√√ℎ4

√√ℎ1

. 

then substituting (68) and (141) into (75) to find the value of 𝑢, gives the solution 

 

u = −t − x +
1

𝑡𝑥
(−𝑡𝑥 +

ℎ1ℎ2

8ℎ3
− 

√ℎ4 −
ℎ1ℎ2

𝑖24ℎ3
+

𝑡𝑥ℎ1ℎ2

8ℎ3
− (𝑡𝑥 −

ℎ1ℎ2

8ℎ3
)2)  +  

ℎ1ℎ2 sinh [ℎ5]

8ℎ3
  

(142) 

It then follows that if we let 𝜈 = 1; 𝛼 = 1; 𝛽 = 1; 𝛾 = 1; 𝐶1 = 0; 𝐶2 = −1; 𝐶3 = 1, the 

plot of (143) assumes the form in Figure 1.   

 

 

Fig. 1:  The solution of 𝑢 in (143) with 𝑡 = 1; 𝑥 ∈ [−5,5].  It compares favourably 

with the one in Figure 2, obtained for the same assumed conditions, for the same 

equation (1), by Al-Ghafri. 
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Fig. 2: The solution of u according to Al-Ghafri 

 

5 Conclusion 

When henry Thomas determined the partial differential equation (1), his objective was 

to understand the physical law that governs how zeolites release their ions in chemical 

solutions.  It is unlikely that he could have succeeded, because that understanding 

should hinged on being able to obtain the analytical solutions of the equation, given 

arbitrary parameters, so far, that has not been possible, before it attracted our attention.  

Al-Ghafri’ solution, plotted in Figure 2, is a special case solution.  The next step after 

this, is to develop a method, aligned with the law, and protect it. 
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