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Abstract

The paper contains a derivation of an upper bound for second and third-order
Hankel determinants for functions with derivative as positive real part, which is

p—valent in nature.
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1. ORIGINATION
Let A, with p € N = {1,2,3,...} represent group of mappings f of the

f2)=2"+) a2 (1.1)
n=0

inUy; = {z € C:|z| <1}, denotes the open unit disc. Pommerenke [1] characterized
the 7" - Hankel determinant of order n, for f (when p = 1) with 7, n € N namely

G, Apy1 - Qp4r—1

Gp+1 Qpy2 - Qptr

Ho(n)=| A : (1.2)

Up4r—1 Qpir --. Qni2r—2
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The Fekete-Szego functional is obtained for » = 2 and n = 1 in Eq. (1.2), denoted
by Hs(1)). Further, sharp bounds to the functional |asa, — aZ|, obtained for r = 2 and
n = 2 in Eq. (1.2), called as Hankel determinant of order two, given by

_|G2 as| _ 2
= a2a4 — Ag.

a3 a4

In the recent years, the research on the estimation of an upper bound (UB) to
|H>(2)| has been focused by many authors. The exact estimates of |H,(2)| for the
functions namely, bounded turning, starlike and convex functions, symbolized as R, &*
and K, respectively, fulfilling the conditions Ref’(z) > 0, Re{zf /(z)} > 0 and

f(2)
Re{l + Zﬁé’;)} > 0 in the unit disc U, were proved by Janteng et al. [2, 3] and

derived the bounds as g, 1, and %, respectively.

Choosing » = 2 and n = p + 1 in Eq. (1.2), we obtain Hankel determinant of second
order for the p—valent function (see [4]), given by

Qa a
H. _ |Yp+1 Cp+2| 2
2(p+1) = = Ap+2 Ap43 — Apo-

Gpt2  Ap+3

The case r = 3 seems to be more tough than r» = 2. A small number of papers have been
dedicated to H3(1), named as the 3"~order Hankel determinant obtained for r = 3 and
n = 1in Eq (1.2). Babalola [5] is the first one, who tried to estimate an UB for | H3(1)|
for the classes R, S* and K. As a consequence of [5], many papers containing results
associated with the Hankel determinant of order 3 for specific subsets of holomorphic
functions were obtained (see [6, 7, 8, 9, 5]). For our study, in this paper, we chose
Hy(p + 2) and H;(p), called the Hankel determinant of second and third order for the
p—valent function, obtained for » = 24 and n = p+ 2, and r = 3 and n = p in Eq
(1.2), given by

Qa gy -2
H _ %2 “Yp+3| 2
o(p+2) = = Ap+2 Apya — Qp3-

(p+3  Ap+4

and

ap  Apt1 Apt2
Hs(p) = ap+1 Qpt2  Gpy3 (apzl).

Gpt+2  Ap+3  Aptd
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Expanding the determinant in H3(P), we have

H3(P) = ap(ap2ap44 — a123+3) + ap11(Ap2ap13 = Api1pia)

Fap2(Api1aprs — a5 yy). (1.3)

Motivated with the results obtained by authors specified above, in the present paper,
we estimate an UB to H3(p + 2) and |H3(p)| for the bounded turning functions class,
associated with p—valent functions, denoted by R, given below.

Definition 1.1. For f Eq (1.1) to be in R, if

Re{zf/(z>} >0, 2€Uy (1.4)

pzr~!
For the choice of p = 1, we obtain Ry = R, introduced by Alexander [10] and
MacGregor [11] carried a systematic study about the properties of these functions.

In proving our results, the following sharp estimates are needed, which are in the form
of lemmas holds good for functions possessing positive real part. The collection P, of
all functions g, each is called as Caratheodory function [12] of the form,

g(z) =Y @, (1.5)
t=1

holomorphic in U, and Reg(z) > 0 for z € U,.

Lemma 1.2. ([13]) If g € P, then the estimate |c; — ucjc;—;| < 2, holds fori,j € N,
withi > jand p € [0, 1].

Lemma 1.3. ([14]) If g € P, then the estimate |c; — cjc;_;| < 2 holds for i,j € N,
with i > j.
Lemma 1.4. ([15]) If g € P then the estimate |c;| < 2, for each t € N occurs for the

1
function h(z) = . R

,ZEUd.

1 1
Lemma 1.5. ([16]) If g € P, then |cscy — c3| < 4 — 5 lca|” + 1 leo.

In order to procure our results, we adopt the procedure framed through Libera and
Zlotkiewicz [17].
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2. IMPORTANT OUTCOMES
4p? (6p3 + 30p? + 29p + 17)
P+ (p+2)(p+3)*(m+2)]

Theorem 2.1. If f € R, then |H3(p)| <

Proof. For f € R,, as per Definition 1.1

f'(2) = pPlg(2), z € Ua. 2.1)
Substitute the values for f and g in Eq (2.1), it simplifies to
DPCn
n=——>7, N, N. 2.2
Qp+ ptn n,p e (2.2)

Putting the values of a,.,,, forn = 1,2, 3,4 from Eq (2.2) in Eq (1.3), after simplifying,

we get
H (p) . p2 CoCy pcg’ C% pC%C4
L(p) = _ _ _
(p+2)p+4) @+2)?* (P+3)? (@+1)2* (p+4)
2pcicacs

<p+w@+axp+a] &3

On grouping the terms in Eq (2.3), in order to apply lemmas, we have

2 pC4(CZ—C%) _ 1 clc _6—pc C
|Hs(p)| = p [(p+1)2(p+4) (p+ 3)2 3{ S+ D)p+2)" 2}

2p?
p+1)(p+2)(p+3)
N (p% + 6p° + 3p* — 30p® — 36p* + 24p + 36)

v

+L)302(C4 — C%) — ( 202 {04 — 0163}

(p+2

0204] ;24

where v = (p+ 1)*(p +2)°(p + 3)*(p + 4).

By an appeal to the triangle inequality in Eq (2.4), we obtain

p p
|Hs(p)| < p? p+ 1201 4) leal oo — | + TEDE |ca s — 03@
+L les| e — 6—p0102
(p+3%) (p+1(p+2)
2p2

+ —
G+ B ap A

6 5 4 3 2
1 6p° + 3p* — 30p% — 36p% + 24p + 36
+(p p° + 3p 1; P P ) el cal. 2.5)
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Upon using the lemmas given in 1.2, 1.3 and 1.4 in the above inequality, it simplifies to
give the result of Theorem 2.1. Hence Theorem. [

Remark 2.2. For p = 1, the inequality in (2.6) coincides with the result obtained by
Zaprawa [16].

4 2
Theorem 2.3. If f € R, then H3(p +2) < { P }

(p+2)(p+4)

Proof. Substitute the values of a2, a,+3 and a,14 from Eq (2.2) in
Hs(p + 2), it simplifies to

2 2 CoCy Cg
Ho(PH2) = tpatipes = Gyss =0 {(p +2)(p+4) (p+ 3)2}
_ [ Gt Cacy CoCy B s ]
(p+3)3 (@+3)?* @+2)p@+4) (p+3)?
_ 9 {0204 —c2 B CoCy ]
Plo+3  proe+p+37]

Applying the same method as we carried in Theorem 2.1 and then using the lemmas 1.4
and 1.5, we obtain the result of Theorem 2.3. O

Remark 2.4. For p = 1, the inequality under Theorem 2.3, coincides with that of
Zaprawa [6].
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