Hankel Determinant of Second and Third Order for Functions with Derivative as Positive Real Part Associated with Multivalent Analytic Functions

K. Ramanuja Rao*, Rajnesh Lal and Kaushal Singh

Department of Mathematics & Statistics, Fiji National University, Lautoka, Fiji.

* Correspondence: P.O. Box 5529, Lautoka, Fiji.

Abstract

The paper contains a derivation of an upper bound for second and third-order Hankel determinants for functions with derivative as positive real part, which is p-valent in nature.

Keywords: p-valent holomorphic bounded turning function, upper bound, functionals connected with Hankel determinant, positive real part functions.

2010 Mathematics Subject Classification: 30C45; 30C50.

1. ORIGINATION

Let A_p with $p \in \mathbb{N} = \{1, 2, 3, \dots\}$ represent group of mappings f of the

$$f(z) = z^p + \sum_{n=0}^{\infty} a_n z^n \tag{1.1}$$

in $\mathcal{U}_d=\{z\in\mathcal{C}:|z|<1\}$, denotes the open unit disc. Pommerenke [1] characterized the r^{th} - Hankel determinant of order n, for f (when p=1) with $r,n\in\mathbb{N}$ namely

$$H_r(n) = \begin{vmatrix} a_n & a_{n+1} & \dots & a_{n+r-1} \\ a_{n+1} & a_{n+2} & \dots & a_{n+r} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n+r-1} & a_{n+r} & \dots & a_{n+2r-2} \end{vmatrix}$$
(1.2)

The Fekete-Szegö functional is obtained for r=2 and n=1 in Eq. (1.2), denoted by $H_2(1)$). Further, sharp bounds to the functional $|a_2a_4-a_3^2|$, obtained for r=2 and n=2 in Eq. (1.2), called as Hankel determinant of order two, given by

$$H_2(2) = \begin{vmatrix} a_2 & a_3 \\ a_3 & a_4 \end{vmatrix} = a_2 a_4 - a_3^2.$$

In the recent years, the research on the estimation of an upper bound (UB) to $|H_2(2)|$ has been focused by many authors. The exact estimates of $|H_2(2)|$ for the functions namely, bounded turning, starlike and convex functions, symbolized as $\mathcal{R}, \mathcal{S}^*$ and \mathcal{K} , respectively, fulfilling the conditions $\operatorname{Re} f'(z) > 0$, $\operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > 0$ and $\operatorname{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > 0$ in the unit disc \mathcal{U}_d , were proved by Janteng et al. [2, 3] and derived the bounds as $\frac{4}{9}$, 1, and $\frac{1}{8}$, respectively.

Choosing r=2 and n=p+1 in Eq. (1.2), we obtain Hankel determinant of second order for the p-valent function (see [4]), given by

$$H_2(p+1) = \begin{vmatrix} a_{p+1} & a_{p+2} \\ a_{p+2} & a_{p+3} \end{vmatrix} = a_{p+2} a_{p+3} - a_{p+2}^2.$$

The case r=3 seems to be more tough than r=2. A small number of papers have been dedicated to $H_3(1)$, named as the $3^{\rm rd}$ -order Hankel determinant obtained for r=3 and n=1 in Eq (1.2). Babalola [5] is the first one, who tried to estimate an UB for $|H_3(1)|$ for the classes $\mathcal{R}, \mathcal{S}^*$ and \mathcal{K} . As a consequence of [5], many papers containing results associated with the Hankel determinant of order 3 for specific subsets of holomorphic functions were obtained (see [6, 7, 8, 9, 5]). For our study, in this paper, we chose $H_2(p+2)$ and $H_3(p)$, called the Hankel determinant of second and third order for the p-valent function, obtained for r=24 and n=p+2, and r=3 and n=p in Eq (1.2), given by

$$H_2(p+2) = \begin{vmatrix} a_{p+2} & a_{p+3} \\ a_{p+3} & a_{p+4} \end{vmatrix} = a_{p+2} a_{p+4} - a_{p+3}^2.$$

and

$$H_3(p) = \begin{vmatrix} a_p & a_{p+1} & a_{p+2} \\ a_{p+1} & a_{p+2} & a_{p+3} \\ a_{p+2} & a_{p+3} & a_{p+4} \end{vmatrix} (a_p = 1).$$

Expanding the determinant in $H_3(P)$, we have

$$H_3(P) = a_p(a_{p+2}a_{p+4} - a_{p+3}^2) + a_{p+1}(a_{p+2}a_{p+3} - a_{p+1}a_{p+4}) + a_{p+2}(a_{p+1}a_{p+3} - a_{p+2}^2).$$
(1.3)

Motivated with the results obtained by authors specified above, in the present paper, we estimate an UB to $H_3(p+2)$ and $|H_3(p)|$ for the bounded turning functions class, associated with p-valent functions, denoted by \mathcal{R}_p , given below.

Definition 1.1. For f Eq (1.1) to be in \mathcal{R}_p , if

$$\operatorname{Re}\left\{\frac{zf'(z)}{pz^{p-1}}\right\} > 0, \quad z \in \mathcal{U}_d. \tag{1.4}$$

For the choice of p=1, we obtain $\mathcal{R}_1=\mathcal{R}$, introduced by Alexander [10] and MacGregor [11] carried a systematic study about the properties of these functions.

In proving our results, the following sharp estimates are needed, which are in the form of lemmas holds good for functions possessing positive real part. The collection \mathcal{P} , of all functions g, each is called as Caratheodory function [12] of the form,

$$g(z) = \sum_{t=1}^{\infty} c_t z^t, \tag{1.5}$$

holomorphic in \mathcal{U}_d and $\operatorname{Re} g(z) > 0$ for $z \in \mathcal{U}_d$.

Lemma 1.2. ([13]) If $g \in \mathcal{P}$, then the estimate $|c_i - \mu c_j c_{i-j}| \leq 2$, holds for $i, j \in \mathbb{N}$, with i > j and $\mu \in [0, 1]$.

Lemma 1.3. ([14]) If $g \in \mathcal{P}$, then the estimate $|c_i - c_j c_{i-j}| \leq 2$ holds for $i, j \in \mathbb{N}$, with i > j.

Lemma 1.4. ([15]) If $g \in \mathcal{P}$ then the estimate $|c_t| \leq 2$, for each $t \in \mathbb{N}$ occurs for the function $h(z) = \frac{1+z}{1-z}$, $z \in \mathcal{U}_d$.

Lemma 1.5. ([16]) If
$$g \in \mathcal{P}$$
, then $\left|c_2c_4 - c_3^2\right| \le 4 - \frac{1}{2}\left|c_2\right|^2 + \frac{1}{4}\left|c_2\right|^3$.

In order to procure our results, we adopt the procedure framed through Libera and Zlotkiewicz [17].

2. IMPORTANT OUTCOMES

Theorem 2.1. If
$$f \in \mathcal{R}_p$$
 then $|H_3(p)| \leq \left[\frac{4p^2 (6p^3 + 30p^2 + 29p + 17)}{(p+1)(p+2)(p+3)^2 (p+2)} \right]$.

Proof. For $f \in \mathcal{R}_p$, as per Definition 1.1

$$f'(z) = pz^{p-1}g(z), \ z \in \mathcal{U}_d.$$
 (2.1)

Substitute the values for f and g in Eq (2.1), it simplifies to

$$a_{p+n} = \frac{pc_n}{p+n}, \ n, p \in \mathbb{N}. \tag{2.2}$$

Putting the values of a_{p+n} , for n = 1, 2, 3, 4 from Eq (2.2) in Eq (1.3), after simplifying, we get

$$H_3(p) = p^2 \left[\frac{c_2 c_4}{(p+2)(p+4)} - \frac{p c_2^3}{(p+2)^2} - \frac{c_3^2}{(p+3)^2} - \frac{p c_1^2 c_4}{(p+1)^2 (p+4)} + \frac{2p c_1 c_2 c_3}{(p+1)(p+2)(p+3)} \right].$$
 (2.3)

On grouping the terms in Eq (2.3), in order to apply lemmas, we have

$$|H_3(p)| = p^2 \left[\frac{pc_4(c_2 - c_1^2)}{(p+1)^2(p+4)} - \frac{1}{(p+3)^2} c_3 \left\{ c_3 - \frac{6p}{(p+1)(p+2)} c_1 c_2 \right\} \right.$$

$$\left. + \frac{p}{(p+2)^3} c_2(c_4 - c_2^2) - \frac{2p^2}{(p+1)(p+2)(p+3)^2} c_2 \left\{ c_4 - c_1 c_3 \right\} \right.$$

$$\left. + \frac{(p^6 + 6p^5 + 3p^4 - 30p^3 - 36p^2 + 24p + 36)}{v} c_2 c_4 \right], \qquad (2.4)$$

where $v = (p+1)^2(p+2)^3(p+3)^2(p+4)$.

By an appeal to the triangle inequality in Eq (2.4), we obtain

$$|H_{3}(p)| \leq p^{2} \left[\frac{p}{(p+1)^{2}(p+4)} |c_{4}| |c_{2} - c_{1}^{2}| + \frac{p}{(p+2)^{3}} |c_{2}| |c_{4} - c_{2}^{2}| \right]$$

$$+ \frac{p}{(p+3^{2})} |c_{3}| |c_{3} - \frac{6p}{(p+1)(p+2)} c_{1} c_{2}|$$

$$+ \frac{2p^{2}}{(p+1)(p+2)(p+3)^{2}} |c_{2}| |c_{4} - c_{1} c_{3}|$$

$$+ \frac{(p^{6} + 6p^{5} + 3p^{4} - 30p^{3} - 36p^{2} + 24p + 36)}{p^{2}} |c_{2}| |c_{4}|.$$

$$(2.5)$$

Upon using the lemmas given in 1.2, 1.3 and 1.4 in the above inequality, it simplifies to give the result of Theorem 2.1. Hence Theorem. \Box

Remark 2.2. For p = 1, the inequality in (2.6) coincides with the result obtained by Zaprawa [16].

Theorem 2.3. If
$$f \in \mathcal{R}_p$$
, then $H_3(p+2) \leq \left[\frac{4p^2}{(p+2)(p+4)} \right]$.

Proof. Substitute the values of a_{p+2} , a_{p+3} and a_{p+4} from Eq (2.2) in $H_2(p+2)$, it simplifies to

$$H_2(P+2) = a_{p+2}a_{p+4} - a_{p+3}^2 = p^2 \left[\frac{c_2c_4}{(p+2)(p+4)} - \frac{c_3^2}{(p+3)^2} \right]$$

$$= p^2 \left[\frac{c_2c_4}{(p+3)^3} - \frac{c_2c_4}{(p+3)^2} + \frac{c_2c_4}{(p+2)(p+4)} - \frac{c_3^2}{(p+3)^2} \right]$$

$$= p^2 \left[\frac{c_2c_4 - c_3^2}{(p+3)^2} - \frac{c_2c_4}{(p+2)(p+4)(p+3)^2} \right].$$

Applying the same method as we carried in Theorem 2.1 and then using the lemmas 1.4 and 1.5, we obtain the result of Theorem 2.3. \Box

Remark 2.4. For p=1, the inequality under Theorem 2.3, coincides with that of Zaprawa [6].

REFERENCES

- [1] Ch Pommerenke. On the coefficients and Hankel determinants of univalent functions. *Journal of the London Mathematical Society*, 1(1):111–122, 1966.
- [2] Aini Janteng, Suzeini Abdul Halim, and Maslina Darus. Coefficient inequality for a function whose derivative has a positive real part. *J. Inequal. Pure Appl. Math*, 7(2):1–5, 2006.
- [3] Aini Janteng, Suzeini Abdul Halim, and Maslina Darus. Hankel determinant for starlike and convex functions. *Int. J. Math. Anal*, 1(13):619–625, 2007.
- [4] D Vamshee Krishna and T RamReddy. Coefficient inequality for certain *p*—valent analytic function. *The Rocky Mountain Journal of Mathematics*, 44(6):1941–1959, 2014.

- [5] Kunle Oladeji Babalola. On $H_3(1)$ Hankel determinant for some classes of univalent functions. *Inequality Theory and Applications*, 6:1–7, 2010.
- [6] Paweł Zaprawa. On Hankel determinant $h_2(3)$ for univalent functions. *Results in Mathematics*, 73(3):1–12, 2018.
- [7] Mohsan Raza and Sarfraz Nawaz Malik. Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of bernoulli. *Journal of inequalities and Applications*, 2013(1):412, 2013.
- [8] TV Sudharsana, SP Vijayalakshmib, and B Adolf Stephenc. Third Hankel determinant for a subclass of analytic univalent functions. *Malaya Journal of Matematik (MJM)*, 2(4, 2014):438–444, 2014.
- [9] Halit Orhan and Paweł Zaprawa. Third Hankel determinants for starlike and convex functions of order alpha. *Korean Math. Soc*, 55(1):165–173, 2018.
- [10] James Waddell Alexander. Functions which map the interior of the unit circle upon simple regions. *The Annals of Mathematics*, 17(1):12–22, 1915.
- [11] Thomas H Macgregor. Functions whose derivative has a positive real part. *Transactions of the American Mathematical Society*, 104(3):532–537, 1962.
- [12] PL Duren. A series of comprehensive studies in mathematics, 1983.
- [13] Toshio Hayami and Shigeyoshi Owa. Generalized Hankel determinant for certain classes. *Int. J. Math. Anal*, 4(49-52):2573–2585, 2010.
- [14] Albert E Livingston. The coefficients of multivalent close-to-convex functions. *Proceedings of the American Mathematical Society*, 21(3):545–552, 1969.
- [15] Christian Pommerenke. Univalent functions. Vandenhoeck and Ruprecht, 1975.
- [16] Pawel Zaprawa. Third Hankel determinants for subclasses of univalent functions. *Mediterranean Journal of Mathematics*, 14(1):19, 2017.
- [17] Richard J Libera and Eligiusz J Złotkiewicz. Coefficient bounds for the inverse of a function with derivative in \mathcal{P} . *Proceedings of the American Mathematical Society*, 87(2):251–257, 1983.