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Abstract

The paper contains a derivation of an upper bound for second and third-order
Hankel determinants for functions with derivative as positive real part, which is
p−valent in nature.
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1. ORIGINATION

Let Ap with p ∈ N = {1, 2, 3, . . . } represent group of mappings f of the

f(z) = zp +
∞∑
n=0

apz
n (1.1)

in Ud = {z ∈ C : |z| < 1}, denotes the open unit disc. Pommerenke [1] characterized
the rth - Hankel determinant of order n, for f (when p = 1) with r, n ∈ N namely

Hr(n) =

∣∣∣∣∣∣∣∣∣∣
an an+1 . . . an+r−1

an+1 an+2 . . . an+r

...
...

...
...

an+r−1 an+r . . . an+2r−2

∣∣∣∣∣∣∣∣∣∣
(1.2)
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The Fekete-Szegö functional is obtained for r = 2 and n = 1 in Eq. (1.2), denoted
by H2(1)). Further, sharp bounds to the functional |a2a4 − a23|, obtained for r = 2 and
n = 2 in Eq. (1.2), called as Hankel determinant of order two, given by

H2(2) =

∣∣∣∣∣a2 a3
a3 a4

∣∣∣∣∣ = a2a4 − a23.

In the recent years, the research on the estimation of an upper bound (UB) to
|H2(2)| has been focused by many authors. The exact estimates of |H2(2)| for the
functions namely, bounded turning, starlike and convex functions, symbolized asR,S∗

and K, respectively, fulfilling the conditions Ref ′(z) > 0, Re
{

zf ′(z)
f(z)

}
> 0 and

Re
{
1 + zf ′′(z)

f ′(z)

}
> 0 in the unit disc Ud, were proved by Janteng et al. [2, 3] and

derived the bounds as 4
9
, 1, and 1

8
, respectively.

Choosing r = 2 and n = p + 1 in Eq. (1.2), we obtain Hankel determinant of second
order for the p−valent function (see [4]), given by

H2(p+ 1) =

∣∣∣∣∣ap+1 ap+2

ap+2 ap+3

∣∣∣∣∣ = ap+2 ap+3 − a2p+2.

The case r = 3 seems to be more tough than r = 2. A small number of papers have been
dedicated to H3(1), named as the 3rd–order Hankel determinant obtained for r = 3 and
n = 1 in Eq (1.2). Babalola [5] is the first one, who tried to estimate an UB for |H3(1)|
for the classes R,S∗ and K. As a consequence of [5], many papers containing results
associated with the Hankel determinant of order 3 for specific subsets of holomorphic
functions were obtained (see [6, 7, 8, 9, 5]). For our study, in this paper, we chose
H2(p + 2) and H3(p), called the Hankel determinant of second and third order for the
p−valent function, obtained for r = 24 and n = p + 2, and r = 3 and n = p in Eq
(1.2), given by

H2(p+ 2) =

∣∣∣∣∣ap+2 ap+3

ap+3 ap+4

∣∣∣∣∣ = ap+2 ap+4 − a2p+3.

and

H3(p) =

∣∣∣∣∣∣∣
ap ap+1 ap+2

ap+1 ap+2 ap+3

ap+2 ap+3 ap+4

∣∣∣∣∣∣∣ (ap = 1).
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Expanding the determinant in H3(P ), we have

H3(P ) = ap(ap+2ap+4 − a2p+3) + ap+1(ap+2ap+3 − ap+1ap+4)

+ap+2(ap+1ap+3 − a2p+2). (1.3)

Motivated with the results obtained by authors specified above, in the present paper,
we estimate an UB to H3(p + 2) and |H3(p)| for the bounded turning functions class,
associated with p−valent functions, denoted byRp, given below.

Definition 1.1. For f Eq (1.1) to be inRp, if

Re
{
zf ′(z)

pzp−1

}
> 0, z ∈ Ud. (1.4)

For the choice of p = 1, we obtain R1 = R, introduced by Alexander [10] and
MacGregor [11] carried a systematic study about the properties of these functions.

In proving our results, the following sharp estimates are needed, which are in the form
of lemmas holds good for functions possessing positive real part. The collection P , of
all functions g, each is called as Caratheodory function [12] of the form,

g(z) =
∞∑
t=1

ctz
t, (1.5)

holomorphic in Ud and Reg(z) > 0 for z ∈ Ud.

Lemma 1.2. ([13]) If g ∈ P , then the estimate |ci − µcjci−j| ≤ 2, holds for i, j ∈ N,
with i > j and µ ∈ [0, 1].

Lemma 1.3. ([14]) If g ∈ P , then the estimate |ci − cjci−j| ≤ 2 holds for i, j ∈ N,
with i > j.

Lemma 1.4. ([15]) If g ∈ P then the estimate |ct| ≤ 2, for each t ∈ N occurs for the

function h(z) =
1 + z

1− z
, z ∈ Ud.

Lemma 1.5. ([16]) If g ∈ P , then
∣∣c2c4 − c23∣∣ ≤ 4− 1

2
|c2|2 +

1

4
|c2|3.

In order to procure our results, we adopt the procedure framed through Libera and
Zlotkiewicz [17].
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2. IMPORTANT OUTCOMES

Theorem 2.1. If f ∈ Rp then |H3(p)| ≤
[

4p2 (6p3 + 30p2 + 29p+ 17)

(p+ 1) (p+ 2) (p+ 3)2 (p+ 2)

]
.

Proof. For f ∈ Rp, as per Definition 1.1

f ′(z) = pzp−1g(z), z ∈ Ud. (2.1)

Substitute the values for f and g in Eq (2.1), it simplifies to

ap+n =
pcn
p+ n

, n, p ∈ N. (2.2)

Putting the values of ap+n, for n = 1, 2, 3, 4 from Eq (2.2) in Eq (1.3), after simplifying,
we get

H3(p) = p2

[
c2c4

(p+ 2)(p+ 4)
− pc32

(p+ 2)2
− c23

(p+ 3)2
− pc21c4

(p+ 1)2(p+ 4)
+

2pc1c2c3
(p+ 1)(p+ 2)(p+ 3)

]
. (2.3)

On grouping the terms in Eq (2.3), in order to apply lemmas, we have

|H3(p)| = p2
[

pc4(c2 − c21)
(p+ 1)2(p+ 4)

− 1

(p+ 3)2
c3

{
c3 −

6p

(p+ 1)(p+ 2)
c1c2

}
+

p

(p+ 2)3
c2(c4 − c22)−

2p2

(p+ 1)(p+ 2)(p+ 3)2
c2 {c4 − c1c3}

+
(p6 + 6p5 + 3p4 − 30p3 − 36p2 + 24p+ 36)

v
c2c4

]
, (2.4)

where v = (p+ 1)2(p+ 2)3(p+ 3)2(p+ 4).

By an appeal to the triangle inequality in Eq (2.4), we obtain

|H3(p)| ≤ p2
[

p

(p+ 1)2(p+ 4)
|c4|
∣∣c2 − c21∣∣+ p

(p+ 2)3
|c2|
∣∣c4 − c22∣∣ ]

+
p

(p+ 32)
|c3|
∣∣∣∣c3 − 6p

(p+ 1)(p+ 2)
c1c2

∣∣∣∣
+

2p2

(p+ 1)(p+ 2)(p+ 3)2
|c2| |c4 − c1c3|

+
(p6 + 6p5 + 3p4 − 30p3 − 36p2 + 24p+ 36)

v
|c2| |c4| . (2.5)
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Upon using the lemmas given in 1.2, 1.3 and 1.4 in the above inequality, it simplifies to
give the result of Theorem 2.1. Hence Theorem.

Remark 2.2. For p = 1, the inequality in (2.6) coincides with the result obtained by
Zaprawa [16].

Theorem 2.3. If f ∈ Rp, then H3(p+ 2) ≤
[

4p2

(p+ 2)(p+ 4)

]
.

Proof. Substitute the values of ap+2, ap+3 and ap+4 from Eq (2.2) in
H2(p+ 2), it simplifies to

H2(P + 2) = ap+2ap+4 − a2p+3 = p2
[

c2c4
(p+ 2)(p+ 4)

− c23
(p+ 3)2

]
= p2

[
c2c4

(p+ 3)3
− c2c4

(p+ 3)2
+

c2c4
(p+ 2)(p+ 4)

− c23
(p+ 3)2

]
= p2

[
c2c4 − c23
(p+ 3)2

− c2c4
(p+ 2)(p+ 4)(p+ 3)2

]
.

Applying the same method as we carried in Theorem 2.1 and then using the lemmas 1.4
and 1.5, we obtain the result of Theorem 2.3.

Remark 2.4. For p = 1, the inequality under Theorem 2.3, coincides with that of
Zaprawa [6].
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