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Abstract

In this paper, we study the property (Bv) for a bounded linear operator T ∈
L(X) on a Banach space X, through the methods of local spectral theory. This
property is equivalent to a-Browder’s theorem. In particular, we shall give several
conditions, by using the localized SVEP, for guarantee property (Bv) over a proper
closed subspace of X , the Fredholm and upper semi-Fredholm spectrums are
coincident between them, and also with other spectra, and under some topological
conditions the operator T verifies property (Bv).
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1. INTRODUCTION AND PRELIMINARIES

1.1. Introduction
The classical a-Browder’s theorem or equivalently generalized a-Browder’s theorem,
for operators T ∈ L(X), defined on Banach spaces X has a lot of influence on
the development of the spectral theory. This theorem admit several variants, that
are stronger versions than it. Such variants have been studied by different authors,
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using methods of local spectral theory, for instance, the properties (gaz) and (VΠ),
see [4] and [6] respectively. And somehow interest in studying a-Browder’s theorem
has lost momentum. Hence, in this paper, we consider an equivalent property to
a-Browder’s theorem, called the property (Bv), introduced in [10].

First, we set conditions through the property (Bv) so that the Fredholm and upper
semi-Fredholm spectrums are coincident. These two spectra coincide with many others
spectra, if the spectrum does not have isolated points. Next, we establish that there
is a class of operators whose restrictions over a proper closed subspace of X, satisfy
property (Bv) and finally, we present the topological definitions necessary to derive
some necessary conditions involving the property (Bv). In particular, the limit of
a sequence of operators that verify property (Bv) also has property (Bv), under the
condition of commutativity.

1.2. Preliminaries
Let T ∈ L(X). The various spectrums of T are defined as follows [10].

• Spectrum:
σ(T ) = {λ ∈ C : λI − T is not invertible},

• Fredholm spectrum:
σe(T ) = {λ ∈ C : λI − T is not Fredholm},

• Upper semi-Fredholm spectrum:
σusf (T ) = {λ ∈ C : λI − T is not Upper semi-Fredholm},

• Lower semi-Fredholm spectrum:
σlsf (T ) = {λ ∈ C : λI − T is not Lower semi-Fredholm},

• Approximate point spectrum:
σa(T ) = {λ ∈ C : λI − T is not bounded below},

• Weyl spectrum:
σw(T ) = {λ ∈ C : λI − T is not Weyl},

• Upper semi-Weyl spectrum:
σea(T ) = {λ ∈ C : λI − T is not Upper semi-Weyl},

• Lower semi-Weyl spectrum:
σes(T ) = {λ ∈ C : λI − T is not Lower semi-Weyl},

• Browder spectrum:
σb(T ) = {λ ∈ C : λI − T is not Browder},
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• Upper semi-Browder spectrum:
σub(T ) = {λ ∈ C : λI − T is not Upper semi-Browder},

• B-Fredholm spectrum:
σbf (T ) = {λ ∈ C : λI − T is not B-Fredholm},

• Upper semi B-Fredholm spectrum:
σubf (T ) = {λ ∈ C : λI − T is not Upper semi B-Fredholm},

• B-Weyl spectrum:
σBw(T ) = {λ ∈ C : λI − T is not B-Weyl},

• Upper semi B-Weyl spectrum:
σuBw = {λ ∈ C : λI − T is not Upper semi B-Weyl},

• Drazin invertible spectrum:
σd(T ) = {λ ∈ C : λI − T is not Drazin invertible},

• Left Drazin invertible spectrum:
σld(T ) = {λ ∈ C : λI − T is not Left Drazin invertible}.

The subspace hyper-kernel is defined as:

N∞(T ) :=
∞⋃
n=1

ker T n.

The subspace hyper-range is defind as:

T∞(X) :=
∞⋂
n=1

T n(X).

The quasi-nilpotent part of an operator T is :

H0(T ) := {x ∈ X : lim
n→∞

‖T nx‖1/n = 0.}

Also, p(T ) and q(T ) denote the ascent and descent respectively,

α(T ) = dim(ker T ) and β(T ) = codim(T (X)).

The analytical core of T is the set K(T ) of all x ∈ X for which there is a sequence
(un) ⊂ X and a constant δ > 0 such that:

(1) x = u0, and Tun+1 = un for every n ∈ Z+;
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(2) ‖un‖ ≤ δn‖x‖ for every n ∈ N.

For every subset F of C the local spectral subspace of T associated with F is the set

XT (F ) := {x ∈ X : σT (x) ⊆ F}.

The single valued extension property introduced by Finch in [9], plays a relevant role in
local spectral theory. An operator T ∈ L(X) is said to have the single valued extension
property at λ0 ∈ C (abbreviated SVEP at λ0), if for every open disc D with λ0 ∈ D, the
only analytic function f : D → X which satisfies the equation (λI − T )f(λ) = 0 for
all λ ∈ D is the function f ≡ 0. The operator T is said to have SVEP, if it has SVEP at
every point λ ∈ C. It is easy to prove that T ∈ L(X) has SVEP at every isolated point
of σ(T ) and at each point of the resolvent set ρ(T ) := C \ σ(T ). Moreover,

p(λI − T ) <∞⇒ T has SVEP at λ, (1)

and dually
q(λI − T ) <∞⇒ T ∗ has SVEP at λ, (2)

see [1, Theorem 3.8]. From the definition of the localized SVEP it is easily seen that

σa(T ) does not cluster at λ⇒ T has SVEP at λ, (3)

Note that H0(T ) generally is not closed and by [1, Theorem 2.31], we have

H0(λI − T ) closed⇒ T has SVEP at λ. (4)

Remark 1.1. The converse of the implications (1)-(3) holds, whenever λI − T is a
semi-Fredholm operator or a semi B-Fredholm operator, see [3].

Let M , N be two closed linear subspaces of X and define

δ(M,N) := sup{dist (u,N) : u ∈M, ‖u‖ = 1},

in the case M 6= {0}. Otherwise set δ({0}, N) = 0 for any subspace N .
According to [12, §2, Chapter iv], the gap between M and N is defined by

δ̂(M,N) := max{δ(M,N), δ(N,M)}.

The function δ̂ is a metric on the set of all linear closed subspaces of X , the gap metric,
and the convergence Mn →M is obviously defined by δ̂(Mn,M)→ 0 as n→∞.

Remark 1.2. Let M , N be subspaces of a Banach space X . If δ̂(M,N) < 1, then dim
M = dim N . See, [13, Corollary 10.10].
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2. THE PROPERTY (Bv) AND THE FREDHOLM SPECTRUM

In this section, we recall the definition of the property (Bv) and give some conditions
through property (Bv) for that Fredholm spectrum and upper semi-Fredholm spectrum,
are equals, also, for that they coincident with other classical spectra.

For T ∈ L(X), we define the following sets:

∆+(T ) := σ(T ) \ σea(T ), ∆+(T ) := σ(T ) \ σusf (T ), Πv(T ) := σ(T ) \ σub(T ).

In general Πv(T ) ⊆ ∆+(T ), but equality need not hold. Now, ∆+(T ) = Πv(T ) if and
only if σea(T ) = σub(T ) i.e., if T verifies a-Browder’s theorem. Actually,

Definition 2.1. [10] T ∈ L(X) verifies the property (Bv), if ∆+(T ) = Πv(T ).

Example 2.2. Consider the projection operator P ∈ L(`2(N)), defined by

P (x1, x2, . . .) = (0, x2, x3, . . .).

Then σ(P ) = {0, 1}, σea(P ) = σub(P ) = {1}, and ∆+(P ) = Πv(P ) = {0}. Hence P
verifies property (Bv).

We recall that if T or T ∗ has SVEP in each λ /∈ σea(T ), then T verifies a-Browder’s
theorem or equivalently property (Bv). In particular we have the next theorem.

Theorem 2.3. If T ∈ L(X) has SVEP at each λ ∈ ∆+(T ), then T verifies property
(Bv).

Note that ∆+(T ) ⊆ ∆+(T ), thus we have the next corollary.

Corollary 2.4. If T ∈ L(X) has SVEP at each λ ∈ ∆+(T ), then T verifies property
(Bv).

The following theorems assemble some of the various conditions that allow localized
SVEP, thus implying the property (Bv).

Theorem 2.5. T ∈ L(X) verifies property (Bv) if for each λ ∈ ∆+(T ) one of the
following conditions hold:

(i) λI − T has SVEP at 0.

(ii) Dual of λI − T has SVEP at 0.

(iii) N∞(λI − T ) ∩ (λI − T )∞(X) = {0}.
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(iv) N∞(λI − T ) ∩K(λI − T ) = {0}.

(v) N∞(λI − T ) ∩XT (∅) = {0}.

(vi) H0(λI − T ) ∩K(λI − T ) = {0}.

(vii) ker (λI − T ) ∩ (λI − T )(X) = {0}.

(viii) The sum H0(λI − T ) + (λI − T )(X) is norm dense in X .

(ix) λ /∈ acc(σa(T )).

Proof. Assume that for each λ ∈ ∆+(T ), λI − T verifies the condition:

(i)-(ii). Then, clearly T and T ∗ have SVEP at each λ ∈ ∆+(T ).

(iii)-(vii). Then, we get by [1, Corollary 2.26] that T has SVEP at each λ ∈ ∆+(T ).

(viii). Then, by [1, Theorem 2.33], we get T ∗ has SVEP in each λ ∈ ∆+(T ).

(ix). Then σa(T ) does not cluster at λ. Thus T has SVEP at each λ ∈ ∆+(T ).

Hence, the conditions (i)-(ix) ensure that T or T ∗ has SVEP at each λ ∈ ∆+(T ). Thus,
by Theorem 2.3, we have that T verifies property (Bv).

Corollary 2.6. T ∈ L(X) verifies property (Bv) if for each λ ∈ ∆+(T ), λI−T verifies
one of the conditions (i)-(ix) of Theorem 2.5.

Proof. If for each λ ∈ ∆+(T ), λI−T verifies the condition (i)-(ix), then as in the proof
of the Theorem 2.5, we get that T has SVEP at each λ ∈ ∆+(T ), then by Corollary 2.4
we conclude that T verifies property (Bv).

We recall that T ∈ L(X) verifies the property (gaz) if σ(T )\σuBw(T ) = σa(T )\σld(T ),
or equivalently, σ(T ) = σa(T ) and T verifies generalized a-Browder’s theorem ( see [4,
Theorem 3.2]). Thus, the following result allows a relationship between the properties
(gaz) and (Bv).

Theorem 2.7. Let T ∈ L(X). If T ∗ has SVEP at each λ ∈ ∆+(T ), then:

(i) T verifies property (Bv).

(ii) σ(T ) = σa(T ).
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Proof. (i) Clearly, T verifies property (Bv).
(ii) If λ /∈ σa(T ), then λ /∈ σea(T ) and hence T ∗ has SVEP at λ. Then by Remark
1.1, q(λI − T ) < ∞, whereby β(λI − T ) ≤ 0. Consequently λ /∈ σ(T ). Hence
σ(T ) = σa(T ).

Corollary 2.8. Let T ∈ L(X). If T ∗ has SVEP at each λ ∈ ∆+(T ), then T verifies
property (gaz).

Corollary 2.9. Let T ∈ L(X). If T verifies property (Bv) and σ(T ) = σa(T ), then T
verifies property (gaz).

For the remainder of the section, we suppose that σ(T ) = σa(T ) and we are devoted to
studying conditions for obtaining the equality σusf(T ) = σe(T ).

Theorem 2.10. If T ∈ L(X) verifies property (Bv), then σusf(T ) = σe(T ).

Proof. Since T verifies property (Bv) and σ(T ) = σa(T ), by [6, Lemma 2.1],
σea(T ) = σub(T ) = σb(T ).

Let λ /∈ σusf(T ). We consider two cases.

Case 1. λ /∈ σea(T ). In this case λ /∈ σb(T ) and hence λ /∈ σe(T ).

Case 2. λ ∈ σea(T ). In this case ind(λI − T ) > 0. Hence, λ /∈ σlsf(T ) and so
λ /∈ σusf(T ) ∪ σlsf(T ). Therefore λ /∈ σe(T ).

Hence σe(T ) = σusf(T ).

By theorems 2.7 and 2.10, we have the result:

Theorem 2.11. Let T ∈ L(X). If T ∗ has SVEP at each λ ∈ ∆+(T ), then σe(T ) =

σusf(T ).

Theorem 2.12. If T ∈ L(X) has SVEP at each λ ∈ ∆+(T ), then T verifies property
(gaz). Also, σusf (T ) = σe(T ).

Proof. By Theorem 2.3, T verifies property (Bv), or equivalently generalized
a-Browder’s theorem, as σ(T ) = σa(T ), so T verifies property (gaz), and hence by
Theorem 2.10, σusf (T ) = σe(T ).

The properties (gaz) and (VΠ) have been studied in-depth, through SVEP localized in
[4] and [6] respectively, where we do not find any relationship with the Fredholm-type
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spectra, but if T verifies one of these properties, then T verifies the a-Browder’s theorem
or equivalently the property (Bv), and with the use of Theorem 2.12, we present a result
that relates the Fredholm spectrum with other spectra.

Theorem 2.13. If T ∈ L(X) has SVEP at each λ ∈ ∆+(T ), then:

(i) σusf (T ) = σe(T ) = σw(T ) = σea(T ) = σub(T ) = σb(T ).

(ii) σubf (T ) = σbf (T ) = σuBw(T ) = σBw(T ) = σld(T ) = σd(T ).

Proof. (i) Since σ(T ) = σa(T ) and T has SVEP at each λ ∈ ∆+(T ), employing
Theorem 2.12, σusf (T ) = σe(T ) = σub(T ). Also by [6, Lemma 2.1], we get that
σub(T ) = σb(T ), whereby σusf (T ) = σb(T ). But σusf (T ) ⊆ σe(T ) ⊆ σw(T ) ⊆ σb(T )

and σusf (T ) ⊆ σea(T ) ⊆ σub(T ) ⊆ σb(T ) = σusf (T ). Hence (i) holds.

(ii) By Theorem 2.12, T verifies property (gaz) and thus by [4, Theorem 3.3], σld(T ) =

σd(T ) = σuBw(T ) = σBw(T ). Now let λ0 /∈ σubf (T ). Then λ0I − T is upper semi
B-Fredholm and by [4, Theorem 2.1], there exists an open disc D(λ0, ε) such that,
λI−T is upper semi-Fredholm for all λ ∈ D(λ0, ε) \{λ0}. By hypothesis T has SVEP
at every λ ∈ D(λ0, ε)\{λ0}, so that T has SVEP at λ0 (see, [4, Remark 2.5]) and hence
p(λ0I − T ) < ∞. So, by [2, Theorem 1.142] we have that λ0 /∈ σld(T ) equivalently
λ0 /∈ σd(T ). Therefore σubf (T ) = σd(T ). But σubf (T ) ⊆ σbf (T ) ⊆ σBw(T ) ⊆ σd(T ).
Hence σubf (T ) = σbf (T ) = σBw(T ) = σd(T ).

We recall that an operator T ∈ L(X) is Drazin invertible if there exist an operator
S ∈ L(X) (called the Drazin inverse of T ) and an integer n ≥ 0 such that

TS = ST, STS = S, T nST = T n.

As in the conclusion of [5], we deduce the next result.

Theorem 2.14. Let T ∈ L(X) be Drazin invertible with Drazin inverse S. If T verifies
property (Bv), then S verifies property (Bv).

Thus, the property (Bv) is transferred from T to their Drazin inverse S. In this way, the
properties that are consequential to property (Bv) for T are also valid for the operator S,
without the need to know to S. These happen in the case that the operator is algebraic.

Example 2.15. The class of algebraic operators check Theorem 2.13, in particular
verify property (Bv), since if T is an algebraic operator so σa(T ) = σ(T ) =
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{λ1, λ2, λ3, ..., λn}, thus, T have SVEP. Note that by [11, Corollary 2.10] result
σd(T ) = ∅. Nilpotent operators are special cases of algebraic operator. An extensive
class of nilpotent operators is the class of the analytically quasi-T HN operators which
are quasi-nilpotent over L(H), where H is a Hilbert space (see [1, Theorem 6.188]).
Also, idempotent operators are algebraic, likewise operators for which some power has
finite-dimensional range.

Example 2.16. Let V denote the Volterra operator on the Banach space X := C[0, 1]

defined by

(V f)(t) :=

∫ t

0

f(s)ds for all f ∈ C[0, 1] and t ∈ [0, 1].

Then V is injective and quasinilpotent. Note that:

{0} = σa(V ) = σ(V ) = σusf (V ) = σe(V ) = σw(V ) = σea(V ) = σub(V ) = σb(V ) =

σd(V ) = σubf (V ) = σbf (V ) = σuBw(V ) = σBw(V ) = σld(V ).

Example 2.17. Let T ∈ L(`2(N)) be defined by

T (x1, x2, x3, · · · ) =
(x2

2
,
x3

3
, · · ·

)
,where x = (xn) ∈ `2(N).

Note that:

{0} = σa(T ) = σ(T ) = σusf (T ) = σe(T ) = σw(T ) = σea(T ) = σub(T ) = σb(T ) =

σd(T ) = σubf (T ) = σbf (T ) = σuBw(T ) = σBw(T ) = σld(T ).

The following result establishes the conditions by which various spectra coincide.

Corollary 2.18. Let T ∈ L(X). If T has SVEP at each λ ∈ ∆+(T ) and isoσa(T ) = ∅,
then:

σusf (T ) = σe(T ) = σw(T ) = σea(T ) = σub(T ) = σb(T ) = σ(T ) = σa(T ) = σd(T ) =

σubf (T ) = σbf (T ) = σuBw(T ) = σBw(T ) = σld(T ).

Proof. By hypothesis, isoσa(T ) = ∅ whereby σ(T ) = σb(T ) and σ(T ) = σd(T ).
Hence, the result follows by Theorem 2.13.
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3. THE PROPERTY (Bv) AND PROPER SUBSPACES

Let W a proper closed subspace of X . Define :

P(X,W ) = {T ∈ L(X) : T (W ) ⊆ W and T n(X) ⊆ W, for some integer n ≥ 1}.

For T ∈ P(X,W ), TW denotes the restriction of T over the T -invariant subspace W of
X . Note that T is not surjective.

For V the Volterra operator defined in Example 2.16, result that

V ∞(X) = {f ∈ C∞[0, 1] : f (n)(0) = 0, n ∈ Z+},

is a subspace not closed.

Example 3.1. Let T : `2(N)→ `2(N) the operator defined in Example 2.17. It is easily
seen that

‖T k‖ =
1

(k + 1)!
for every k = 0, 1, . . .

So the operator T is quasi-nilpotent or equivalently H0(T ) = `2(N), thus T has SVEP
at 0. But note that p(T ) =∞, whereby T is not semi-Fredholm operator.

Now, following [1, Theorem 1.42], it is possible obtain a closed subspace T∞(X) =

K(T ), when T ∈ L(X) is a semi-Fredholm operator.

Theorem 3.2. Let T ∈ L(X) be a semi-Fredholm operator with ascent or descent not
finite. If for each λ ∈ ∆+(T ), λI − T verifies one of the conditions (i)-(ix) of Theorem
2.5, then there exists a proper closed subspace W of X such that TW verifies property
(Bv).

Proof. Since T is an upper semi-Fredholm operator so for all n ≥ 1, T n is an upper
semi-Fredholm operator, whereby T n(X) is closed. Also T has ascent or descent not
finite so T is not surjective. Hence W = T∞(X) = K(T ) is a proper closed subspace
of X . Clearly T ∈ P(X,W ). Also by [7, Theorem 4.1] and Theorem 2.5, we get
σea(TW ) = σea(T ) = σub(T ) = σub(TW ). Hence TW verifies property (Bv).

Corollary 3.3. Let W be a proper closed subspace of X and T ∈ P(X,W ) such that
q(T ) =∞, or p(T ) =∞. Then,

(i) Πv(T ) = Πv(TW ).

(ii) ∆+(T ) = ∆+(TW ).

Consequently, T verifies property (Bv) if and only if TW verifies property (Bv).



On the Property (Bv) 575

Proof. Since, q(T ) =∞ or p(T ) =∞, [7, Theorem 4.1] result that σ(T ) = σ(TW ) and
also as in Theorem 3.2, σea(T ) = σea(TW ) and σub(T ) = σub(TW ). Therefore (i) and
(ii) hold.

Example 3.4. Let R ∈ `2(N) be the unilateral right shift given by

R(x1, x2, . . . ) := (0, x1, x2, · · · ) for all (xn) ∈ `2(N).

R is an upper semi-Fredholm operator and W = R∞(`2(N)) is a proper closed
subspace of `2(N). Thus, R ∈ P(`2(N),W ). On the other hand q(R) = ∞ and
σea(R) = σub(R) = Γ, where Γ is the unit circle. Hence R verifies property (Bv).
Therefore, by Corollary 3.3, RW verifies property (Bv).

Theorem 3.5. Let W be a proper closed subspace of X and T ∈ P(X,W ) such that
0 ∈ σea(TW ). Then T verifies property (Bv) if and only if TW verifies property (Bv).

Proof. Since 0 ∈ σea(TW ) ⊆ σea(T ), if λ /∈ σea(TW ) or λ /∈ σea(T ), then λ 6= 0.
Note that by [7], the range of λI − T is closed in X if and only if the range of
λI − TW is closed in W , also α(λI − T ) = α(λI − TW ), β(λI − T ) = β(λI − TW )

and p(λI − T ) = p(λI − TW ). Hence we obtain that σea(T ) = σea(TW ) and
σub(T ) = σub(TW ). Therefore, T verifies property (Bv) if and only if TW verifies
property (Bv).

4. THE PROPERTY (Bv) AND TOPOLOGICAL NOTIONS

In metric space C, we denote by Cl(A), int (A) and ∂(A), the closure, interior and
boundary respectively of A ⊆ C. With this notation, we introduce some topological
notions enough for an operator to verify the property (Bv). We also give the conditions
for the limit of a sequence of operators verifying property (Bv) to verify property (Bv).
Note that if T verifies property (Bv), then it is not necessarily int (∆+(T )) = ∅.

Example 4.1. Let R be the unilateral right shift operator defined in Example 3.4 and
let P ∈ L(`2(N)) be the projection operator defined in Example 2.2. Define an
operator T on X = `2(N) ⊕ `2(N) by T = R ⊕ P . Then σ(T ) = D(0, 1) and
σub(T ) = σea(T ) = Γ, where D(0, 1) is the closed unit disc. Hence T verifies property
(Bv), but int (∆+(T )) 6= ∅.

Theorem 4.2. Let T ∈ L(X) such that int (∆+(T )) = ∅. Then:

(i) ∆+(T ) = Πv(T ). Consequently T verifies property (Bv).

(ii) σ(T ) = σa(T ).
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(iii) σusf (T ) = σe(T ).

Proof. Suppose that int (∆+(T )) = ∅.

(i) If λ0 ∈ ∆+(T ), there exists an open disc D(λ0, ε) such that λ /∈ σea(T ) for
all λ ∈ D(λ0, ε), because the set of upper Weyl operators is open. It must
happen that λ0 ∈ ∂(σ(T )). Otherwise there exists an open disc D(λ0, ε1), such
that D(λ0, ε1) ⊆ σ(T ). Then λ0 is an interior point of ∆+(T ), a contradiction.
Hence λ0 ∈ ∂(σ(T )) and so T verifies the SVEP at λ0, as λ0 /∈ σea(T ) then
p(λ0I − T ) <∞. Thus λ0 ∈ Πv(T ). We conclude that ∆+(T ) = Πv(T ).

(ii) Let λ0 /∈ σa(T ). Then λ0 ∈ σ(T ) result that λ0 ∈ ∆+(T ). So if we proceed as
in the previous part (i), we get that λ0 ∈ ∂(σ(T )), which is a contradiction, since
∂(σ(T )) ⊆ σa(T ). Hence σ(T ) = σa(T ).

(iii) It follows from Theorem 2.10.

From parts (i), (ii) of Theorem 4.2 and Corollary 2.9, we get the following result.

Corollary 4.3. Let T ∈ L(X) such that int (∆+(T )) = ∅, then T verifies property
(gaz).

If acc (σ(T )) = ∅, or ∆+(T ) ⊆ isoσa(T ), or ∆+(T ) ⊆ ∂σa(T ), then int (∆+(T )) = ∅,
and hence by Theorem 4.2, we get the following results.

Corollary 4.4. Let T ∈ L(X). If acc (σ(T )) = ∅, or ∆+(T ) ⊆ isoσa(T ), or
∆+(T ) ⊆ ∂σa(T ), then T verify the statements (i)-(iii) of Theorem 4.2. Consequently
T verifies property (gaz).

Example 4.5. Let {an} be any convergent sequence of scalars, say an → a, define
Tn := anI and T = aI. Then Tn → T. Clearly every Tn verifies property (Bv) and so
also T.

Next, we inquire about the conditions for property (Bv) to remain under limit
convergence.

Theorem 4.6. Let T ∈ L(X) and Tn be sequence of operators in L(X) such that
limn→+∞ ‖ Tn − T ‖= 0. Then ∆+(T ) ⊆ ∆+(Tn), for sufficiently large n.

Proof. The set of upper semi-Weyl operators is open. Let λ0 ∈ ∆+(T ), so by
convergence of Tn to T , ∃N0 ∈ N such that λ0 ∈ ∆+(Tn),∀n ≥ N0. Truly if
λ0 /∈ σea(T ), then λI − T has closed range. Thus the hypothesis implies that
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δ̂(ker (Tn), ker (T )) → 0 as n → ∞, and, δ̂(R (Tn),R (T )) → 0 as n → ∞, (see
[13, Theorem 10.17]). Hence, if λ0 ∈ σ(T ) we have by Remark 1.2 that λ0 ∈ σ(Tn),

for sufficiently large n. Hence ∆+(T ) ⊆ ∆+(Tn), for sufficiently large n.

Theorem 4.7. Let Tn be sequence of operators in L(X) verifying property (Bv) and
that commutes with T ∈ L(X). If limn→+∞ ‖ Tn − T ‖= 0, then T verifies property
(Bv).

Proof. By Theorem 4.6, if λ0 ∈ ∆+(T ), then ∃N0 ∈ N such that λ0 ∈ ∆+(Tn)

∀n ≥ N0. In this way ∀n ≥ N0 we have that λ0 /∈ σub(Tn) and p(λ0I − Tn) < ∞.
On another hand, since limn→+∞ ‖ Tn − T ‖= 0, so as Tn and T commutes result
that limn→+∞ ‖ (λ0I − Tn)k − (λ0I − T )k ‖= 0, where k is a natural number. Hence
by Remark 1.2 we deduce that, ∀n ≥ N1, α

(
(λ0I − Tn)k

)
= α

(
(λ0I − T )k

)
and so

ker (λ0I − Tn)k = ker (λ0I − T )k. Now, with k := p(λ0I − TN1) < ∞, result that
p(λ0I − T ) < ∞. Therefore, we get T has SVEP at λ0 /∈ σea(T ), thus, we conclude
that T verifies property (Bv).

Let X and Y be an infinite dimensional Banach spaces. Consider S ∈ L(Y ) and
T ∈ L(X). If λ /∈ (σea(T ) ∪ σea(S)), then λI − T and λI − S are upper semi-Weyl
operators. Hence λ /∈ σusf (T ) and λ /∈ σusf (S). Hence λ /∈ σusf (T

⊕
S), but

α(λ(I
⊕

I)−T
⊕

S) = α(λI−T )+α(λI−S), and β(λ(I
⊕

I)−T
⊕

S) = β(λI−
T ) + β(λI − S), whereby λ /∈ σea(T

⊕
S). Hence, σea(T

⊕
S) ⊆ σea(T ) ∪ σea(S).

However, if T ∈ B(X) and S ∈ B(Y ) satisfy the property (Bv), then, σea(T
⊕

S) =

σea(T ) ∪ σea(S) if and only if T
⊕

S verifies properties (Bv). See [8, Theorem 3.11].

Theorem 4.8. Let T ∈ L(X) and S ∈ L(Y ) be such that σea(T ) ⊆ σes(T ) and
σea(S) ⊆ σes(S). If int (∆+(T ) ∪∆+(S)) = ∅, then T

⊕
S verifies property (Bv).

Proof. If λ ∈ ∆+(T
⊕

S), then λ ∈ σ(T
⊕

S) and λ /∈ σea(T
⊕

S). Thus,
λ ∈ σ(T ), λ ∈ σ(S), but α(λ(I

⊕
I) − T

⊕
S) − β(λ(I

⊕
I) − T

⊕
S) ≤ 0.

Without loss of generality, we assume that λ /∈ σea(T ) and α(λI−S)−β(λI−S) ≥ 0,
whereby λ /∈ σes(S) and as σea(S) ⊆ σes(S), λ /∈ σea(S). Thus, we deduce that
λ ∈ (∆+(T ) ∪∆+(S)) and hence ∆+(T

⊕
S) ⊆ (∆+(T ) ∪∆+(S)). By hypothesis,

we get that int (∆+(T
⊕

S)) = ∅. Hence by Theorem 4.2 , T
⊕

S verifies property
(Bv).
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