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Abstract 

 If x and y are any two real numbers then their Heinz mean is given by 

𝐻𝑡(𝑥, 𝑦) =
𝑥𝑡𝑦1−𝑡+𝑥1−𝑡𝑦𝑡

2
., where 0 ≤ 𝑡 ≤ 1. In the present paper measure of 

fuzzy entropy and fuzzy directed divergence are obtained corresponding to the 

Heinz mean. Ht(x, y) =
xty1-t+x1-tyt

2
. 
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1. INTRODUCTION   

Heinz means introduced in [3], are means that interpolate in a certain way between 

the arithmetic and geometric mean. They are defined over  𝑅+as  

𝐻𝑡(𝑥, 𝑦) =
𝑥𝑡𝑦1−𝑡 + 𝑥1−𝑡𝑦𝑡

2
                                                (1.1) 

 For 0 ≤ 𝑡 ≤ 1  One can easily show that the Heinz means are “in-between” the 

geometric mean and the arithmetic mean:  

√𝑎𝑏 ≤ 𝐻𝑡(𝑥, 𝑦) ≤
𝑎 + 𝑏

2
                                                    (1.2) 
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The uncertainty associated with probability of outcomes, known as probabilistic 

uncertainty, is called entropy, since this is the terminology that is well entrenched in 

the literature. Entropies must correspond to mean values for them to be measurable. 

The Shannon [2] entropy corresponds to the weighted arithmetic mean, whereas the 

Renyi [5] entropy corresponds to the exponential mean. Shannon [2] introduced the 

concept of information theoretic entropy by associating uncertainty with probability 

distribution and found that there is unique function that can measure the uncertainty, 

is given by 

𝐻(𝑃) = − ∑ 𝑝𝑖𝑙𝑜𝑔𝑝𝑖                                                    (1.3)

𝑛

𝑖=1

 

The measure of entropy (1.3) possesses a number of interesting properties 

.Immediately, after Shannon’s [2] gave his measure , research worker’s in many fields 

saw the potential of the application of the application of this  expression and a large 

number of other measures of information – theoretic entropies were derived. Renyi’s 

[5] defined entropy of order α as:  

𝐻𝛼(𝑃) = 𝑙𝑛 (
∑ 𝑝𝑖

∝𝑛
𝑖=1

∑ 𝑝𝑖
𝑛
𝑖=1

) , ∝≠ 1, ∝> 0                         (1.4) 

 which includes Shannon’s entropy as a limiting case as ∝→ 1.  

A new probabilistic measures of entropy, has been deduced by N. sharma et al. [4] 

which is given as follows: 

𝐻(𝑃) =
𝑥 + 𝑦

2
−

1

2
∑(𝑥𝑝𝑖𝑦1−𝑝𝑖 + 𝑥1−𝑝𝑖𝑦𝑝𝑖)                                            (1.5)

𝑛

𝑖=1

 

where  x and y both are non-negative real numbers, and x,y>1. 

It may be recalled that a fuzzy subset A in U (universe of discourse) is characterized 

by a membership function 𝜇𝐴: 𝑈 → [0,1] which represents the grade of membership of 

𝑥 ∈ 𝑈 𝑖𝑛 𝐴 as follows 

 𝜇𝐴(𝑥) = 0 𝑖𝑓 𝑥 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐴,  

𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 

                                       = 1 𝑖𝑓 𝑥  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐴 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 

                                       = 0.5 𝑖𝑓 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦     

In fact 𝜇𝐴(𝑥) associates with each 𝑥 ∈ 𝑈 a grade of membership in the set A. When 

𝜇𝐴(𝑥) is valued in {0,1} it is the characteristic function of a crisp (i.e. nonfuzzy) set. 

Since 𝜇𝐴(𝑥)  and 1 − 𝜇𝐴(𝑥)  gives the same degree of fuzziness, therefore, 
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corresponding to the entropy due to Shannon [12], De Luca and Termini [13] 

suggested the following measure of fuzzy entropy: 

𝐻(𝐴) = − [∑ 𝜇𝐴(𝑥𝑖)𝑙𝑜𝑔𝜇𝐴(𝑥𝑖)  +  ∑(1 − 𝜇𝐴(𝑥𝑖))𝑙𝑜𝑔(1 − 𝜇𝐴(𝑥𝑖))

𝑛

𝑖=1

 

𝑛

𝑖=1

]            (1.6) 

De Luca and Termini [1] introduced a set of properties and these properties are widely 

accepted as a criterion for defining any new fuzzy entropy. In fuzzy set theory, the 

entropy is a measure of fuzziness which expresses the amount of average 

ambiguity/difficulty in making a decision whether an element belongs to a set or not. 

So, a measure of average fuzziness in a fuzzy set should have at least the following 

properties to be valid fuzzy entropy: 

i) 𝐻(𝐴)  = 0 when 𝜇𝐴(𝑥𝑖) = 0 𝑜𝑟 1. 

ii) 𝐻(𝐴)  increases as 𝜇𝐴(𝑥𝑖) increases from 0 to 0.5. 

iii) 𝐻(𝐴)  decreases as 𝜇𝐴(𝑥𝑖) increases from 0.5 to 1. 

iv) 𝐻(𝐴) = 𝐻(𝐴̅), i.e.  𝜇𝐴(𝑥𝑖) = 1 − 𝜇𝐴(𝑥𝑖) 

v) 𝐻(𝐴) is a concave function of  𝜇𝐴(𝑥𝑖). 

A measure 𝐷(𝑃: 𝑄) of divergence or cross entropy or directed divergence is found to 

be very important in Mathematical, Physical and Biological sciences. This measure is 

probabilistic in nature and is defined as the discrepancy in the probability distribution  

𝑃 from another probability distribution 𝑄. In some sense it measures the distance of 𝑃 

from 𝑄. The most important and useful measure of directed divergence is obtained by 

Kullback and Leibler of probability distribution 𝑃 = (𝑝1,𝑝2, … . . , 𝑝𝑛)  from the 

probability distribution 𝑄 = (𝑞1,𝑞2, … . . , 𝑞𝑛) as 

𝐷(𝑃: 𝑄) = ∑ 𝑝𝑖

𝑛

𝑖=1

𝑙𝑜𝑔
𝑝𝑖

𝑞𝑖
                              (1.7) 

Let A and B be two standard fuzzy sets with same supporting points 𝑥1,𝑥2, … . . , 𝑥𝑛 and 

with fuzzy vectors 𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2), … . . , 𝜇𝐴(𝑥𝑛) and 𝜇𝐵(𝑥1), 𝜇𝐵(𝑥2), … . . , 𝜇𝐵(𝑥𝑛). The 

simplest measure of fuzzy directed divergence as suggested by Bhandari and Pal 

(1993), is 

𝐷(𝐴: 𝐵) = ∑ 𝜇𝐴(𝑥𝑖)

𝑛

𝑖=1

𝑙𝑜𝑔
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
+ ∑(1 − 𝜇𝐴(𝑥𝑖))

𝑛

𝑖=1

𝑙𝑜𝑔
(1 − 𝜇𝐴(𝑥𝑖))

(1 − 𝜇𝐵(𝑥𝑖))
   (1.8) 

satisfying the conditions: 

i) 𝐷(𝐴: 𝐵) ≥ 0 
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ii) 𝐷(𝐴: 𝐵) = 0 𝑖𝑓𝑓 𝐴 = 𝐵 

iii) 𝐷(𝐴: 𝐵) = 𝐷(𝐵: 𝐴) 

iv) 𝐷(𝐴: 𝐵) is a convex function of 𝜇𝐴(𝑥𝑖) 

 

2. NEW MEASURE OF FUZZY ENTROPY 

Corresponding to (1.8) we propose new measure of intuitionistic fuzzy entropy as 

𝐻(𝐴) = (𝑥 + 𝑦)

−
1

2
∑(𝑥𝜇𝐴(𝑥i)𝑦1−𝜇𝐴(𝑥i) + 𝑥1−𝜇𝐴(𝑥i)𝑦𝜇𝐴(𝑥i))  

𝑛

𝑖=1

−
1

2
∑(𝑥1−𝜇𝐴(𝑥i)𝑦𝜇𝐴(𝑥i) + 𝑥𝜇𝐴(𝑥i)𝑦1−𝜇𝐴(𝑥i))                                            

𝑛

𝑖=1

  

Or  

𝐻(𝐴) = (𝑥 + 𝑦) − ∑(𝑥𝜇𝐴(𝑥i)𝑦1−𝜇𝐴(𝑥i) + 𝑥1−𝜇𝐴(𝑥i)𝑦𝜇𝐴(𝑥i))                           (2.1) 

𝑛

𝑖=1

 

 

From table 2.1 and figure 2.1 it is clear that 

i)  𝐻(𝐴)  = 0 when 𝜇𝐴(𝑥𝑖) = 0 𝑜𝑟 1. 

ii) 𝐻(𝐴)  increases as 𝜇𝐴(𝑥𝑖) increases from 0 to 0.5. 

iii) 𝐻(𝐴)  decreases as 𝜇𝐴(𝑥𝑖) increases from 0.5 to 1. 

iv) 𝐻(𝐴) = 𝐻(𝐴̅), i.e.  𝜇𝐴(𝑥𝑖) = 1 − 𝜇𝐴(𝑥𝑖) 
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v) To verify 𝐻(𝐴) is a concave function of 𝜇𝐴(𝑥i) let 𝑠 = 𝜇𝐴(𝑥i) then  

𝐻(𝐴) = (𝑥 + 𝑦) − (𝑥s𝑦1−s + 𝑥1−s𝑦s)    we have 

 
𝑑𝐻

𝑑𝑠
= (−𝑥s𝑦1−s + 𝑥1−s𝑦s)(𝑙𝑜𝑔𝑥 − 𝑙𝑜𝑔𝑦) 

and 
𝑑2𝐻

𝑑𝑠2 = −(𝑙𝑜𝑔𝑥 − 𝑙𝑜𝑔𝑦)2(𝑥s𝑦1−s + 𝑥1−s𝑦s) clearly 
𝑑2𝐻

𝑑𝑠2 < 0. So 𝐻(𝐴) 

is a concave function of 𝜇𝐴(𝑥i). 

Hence 𝐻(𝐴) satisfies all the properties of fuzzy entropy so it is a valid measure of 

fuzzy entropy. 

 

3. NEW MEASURE OF FUZZY DIRECTED DIVERGENCE 

Corresponding to (1.8) we propose new measure of fuzzy directed divergence as 

𝐷(𝐴: 𝐵) = (𝑥 + 𝑦) − ∑ (𝑥
(

𝜇𝐴(𝑥i)
𝜇𝐵(𝑥i)

)
𝑦

1−(
𝜇𝐴(𝑥i)
𝜇𝐵(𝑥i)

)
+ 𝑥

1−(
𝜇𝐴(𝑥i)
𝜇𝐵(𝑥i)

)
𝑦

(
𝜇𝐴(𝑥i)
𝜇𝐵(𝑥i)

)
)                (3.1)

𝑛

𝑖=1

 

Clearly 

i)  𝐷(𝐴: 𝐵) ≥ 0 

ii) 𝐷(𝐴: 𝐵) = 0 𝑖𝑓𝑓 𝐴 = 𝐵 

iii) 𝐷(𝐴: 𝐵) = 𝐷(𝐵: 𝐴) 

iv) 𝐷(𝐴: 𝐵) is a convex function of 𝜇𝐴(𝑥𝑖) as 
𝜕2𝐷(𝐴:𝐵)

𝜕𝜇𝐴(𝑥i)2 ≥ 0 

Thus 𝐷(𝐴: 𝐵) is a valid measure of fuzzy directed divergence. 

 

4. CONCLUSION 

This work introduces a Fuzzy Entropy and Fuzzy Divergence measure in the setting 

of fuzzy set theory. Basic properties of proposed measures have been examined. 
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