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Abstract 

The latest video coding standards and techniques are being developed for 

multimedia applications and the immense importance is given to h.26x series 

for video processing. Motion estimation process is being used to decrease the 

amount of data needed for data transmission and storage. Motion estimation 

process is inevitable as it eradicates the temporal redundancy in video 

sequences between successive frames. This paper describes motion estimation 

algorithms, their search procedure, complexity, advantages, and limitations. A 

topical survey conducted on motion estimation algorithms which includes full 

search algorithm, many fast search and full search block-based algorithms is 

given in this paper. A complete assessment on motion estimation algorithms 

based on the empirical results conducted on several test video sequences is 

reported. 

Keywords: Motion estimation, videocoding, minimum block distortion 

measure, temporal / spatial redundancy. 

 

1. INTRODUCTION 

Online videos are the latest trend in present day technology and it has a great scope in 

future. Video coding reduces the raw data in video sequence by eliminating spatial 

and temporal redundancies. Motion estimation technique is used in video coding to 

remove the temporal redundancy in video signal. Block based motion estimation 

technique is commonly used motion estimation technique which is being used in 

several video coding standards for example h.26x series, MPEGX series [1] – [6]. 

The full search (FS) algorithm is an optimal algorithm but requires a greater number 

of computations. In order to overcome this problem, many fast block matching 

algorithms were developed. This paper gives the complete analysis of the algorithms 

from the past 40 years and the comparison is drawn between some known algorithms 

in terms of computational complexity and distortion. The rest of the paper is 

organized as follows.The section 2presents the analysis of fast search block-



592 Kiran Kumar Vemula  and S. Neeraja 

basedmotion estimation algorithms. The section 3 presents the comparison of some 

famous algorithms. Lastly, the conclusions are presented in section 4. 

 

2. BLOCK BASED MOTION ESTIMATION ALGORITHMS 

The block-based motion estimation algorithm is mainly aimed to estimate the motion 

(motion vector) between macro block of current frame and perfectly matched 

candidate block of reference frame. The simple matching criterion is sum of absolute 

difference (SAD). It is used to calculate the distortion between the macro block of 

current frame and candidate block in reference frame. The SADbetween anM × N size 

macroblock withtop-left corner at (p, q) and anM × N size candidate block withtop-

left cornerat (p + x, q + y) is defined in the eq (1). 
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where I (., .) and R (., .) denotecurrent frame and reference frame pixelvalues. The 

co-ordinates of motion vector xand yare defined in the eq (2).  
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where R= {( x̂ , ŷ ) | -s≤ x̂ , ŷ ≤ d} anddrepresents the search range. It is obvious 

from eq (2) that the SADcriterioninvolves (M × N)−1 addition operations,M × 

Nabsolute operations and M × Nsubtraction operations.So, we can calculate that one 

SAD computation with 3 ×M × N operationsroughly. 

The FS algorithms requires huge computational cost. To decrease the cost, several fast 

searchblock-based motion estimation algorithms [7]- [50] are proposed by having a 

small drop in distortion i.e. peak signal- to- noise ratio (PSNR). These algorithms may 

be classified into the five categories: reduction innumber of search points [7]–[27], 

predictive motion estimation [28]–[34], adaptive search pattern switching strategy 

[35]–[38], multi-resolution motion estimation [39]–[45] and fractional-pixel 

interpolation [46]–[50]. The recently used fast search block-based motion estimation 

algorithms fall into any of the above category or may use any combination of them. 

Usually, the fast search block matching algorithms which falls under first category 

i.e., reduction in number of search points category [7]- [27] are given huge 

importance and developed in large number due to the following assumption. The 

presumption is that the error between a macroblock and a candidate block increases 

continuously as the search point moves away from optimal search point.In three step 

search (TSS)algorithm [7], the search processapplies rectangular search pattern 

withnine search points as shown in Fig. 1 (a). The step size at first step is obtained by 

rounding s/2, where s is search range. The step size becomes halves in the following 

steps and if step size becomes one at any step, then the search terminates as shown in 

Fig. 1 (b). and Fig. 1 (c). Totally, this TSS algorithm takeslog2(s + 1)steps and 1 + 

8[log2(s + 1)] checking points.  

The updated version of TSS algorithm, new three step search (NTSS) algorithm [9], 
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proposed by Renxiang Li et al. While taking comparison between NTSS and TSS, 

NTSS has better motion prediction quality and computational complexity although 

NTSS has same regularity and simplicity as those of TSS algorithm. The main reason 

for the success of NTSS algorithm is that the motion vector distribution of real-world 

video sequences is center biased. NTSS algorithm carries at the further checking of 8 

additional search points (total 17) along with the original search point of TSS. NTSS 

algorithm employs half way stop technique to identify stationary and quasi stationary 

blocks.  

In the first search step of NTSS,the minimum BDM point is located at three possible 

locations: (1) the minimum BDM point may be located at the search window centeras 

shown in Fig. 2 (a). In this case, search stops, and block is considered as a stationary 

block with (0,0) motion vector. (2) the minimum BDM point may be locatedat any 

one of the eight search points around the search centeras shown in Fig.2 (b). Here,the 

search stops after checking the 8 search points around the minimum BDM and the 

block is considered as a quasi-stationary block. (3) the minimum BDM point may be 

locatedat any one of the remaining eight search points then the block is neither 

stationary nor quasi stationary.The search undergoes entire TSS procedure. 

The algorithm which searches along only one direction at a time i.e., either horizontal 

or vertical is called one-at-a-time search (OTS) algorithm [12]. It is a one-dimensional 

gradient descent search algorithm. The search procedure of OTS algorithm takes place 

in the following way. In the first step, OTS carries out the search in horizontal 

direction until the minimum BDM value lies between two higher BDM values. In the 

second step, OTS carries out the search in vertical direction until the minimum BDM 

value is found out. The example for illustrating the OTS search procedure to locate 

motion vector (3,3) is shown in Fig. 3 (a). 

 Block based gradient descent search (BBGDS) [14] and directional gradient descent 

search (BGDS) [15] are the examples for OTS based motion estimation algorithms. 

BBGDS is an example for the 2-D gradient descents search motion estimation 

algorithm. In BBGDS the search procedure for the minimum BDM block is carried 

along the block based gradient descent direction. At every search step, square search 

pattern comprising of nine search points is applied. The motion estimation is done by 

surrounding the search center in all the eight directions with eight search points. The 

search terminates when the minimum BDM search point is placed at the search center. 

The example for the illustration of BBGDS search procedure to locate motion vector 

at (-2-2) is shown in Fig.3 (b). 

The search procedure for the DGDS is done in the following way. At first, the eight 

directional minimum search points are found out by using OTS principle in eight 

directions. In the second step, the minimum one among the eight directional search 

points is taken as the search center for the next step. This search is carried out until 

the least one among the eight directional search point is search center. An example for 

the illustrating of DGDS search procedure to locate motion vector (5, 2) is shown in 

Fig. 3 (c). 

One of the most prominent motion-based algorithms is diamond search (DS) 

algorithm [16]-[17]. It searches motion vectors with two search patterns which are of 
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in diamond shape. One is large in size i.e., large diamond search pattern (LDSP) and 

other one is small in size i.e., small diamond search pattern (SDSP). Mainly, LDSP 

spots a small area of global minimum and the SDSP traces the global minimum in that 

specified small area. The search procedure for DS algorithm is as follows. The first 

step is to check a search points of LDSP placed at search window center. The SDSP is 

placed at minimum BDM point if the minimum BDM point is search center. The 

LDSP is placed at minimum BDM point if the minimum BDM point is not a search 

center. At any search step, if the minimum BDM point is search center then the search 

stops and the minimum BDM point of SDSP becomes final motion vector. An 

example to illustrate DS algorithm search procedure to find motion vector at (3, -2) is 

shown in Fig. 4 (a). 

The hexagonal search (HS) algorithm [18] improves the search speed of DS at the 

slight degradation in PSNR. Indeed, the main modification in HS over DS is that the 

coarse search in HS is performed bya large hexagon search pattern. When compared 

to LDSP, the large hexagon search pattern is closer to circle. So, the results obtained 

by HS are more accurate than those of DS. The Fig. 4(b) shows an example of 

searching motion vector by HS algorithm. 

The search speed of HS is further enhanced by some algorithms [19] - [21] which 

mainly speeds up the coarse search procedure of HS. An enhanced HS (EHS)in 

[19]examines only a most probable part of coarse search, an enhanced hexagonal 

search using point-oriented inner search (EHS-POIS)in [20] examines only two most 

probable coarse search points and the algorithm an enhanced hexagonal search using 

direction-oriented inner search (EHS-DOIS) in [21] examines only one most probable 

coarse search point. These algorithms calculate group-sum distortions with a few 

computations and utilize them for selecting these most probable search points. 

  
 

(a) (b) (c) 

Fig. 1. The rectangular search patterns of TSS at (a) first search step (assume s = ±7) 

(b) second search step, a rectangular search pattern is placed around minimum search 

point of first search step and step size is half of the first step (c) third search step, a 

rectangular search pattern is placed around minimum search point of second step and 

step size is half of the second step. The minimum search point is highlighted with red 

color. 



Block Based Motion Estimation Algorithms: Analysis 595 

  

(a) (b) 

Fig.2.  An example of a search procedure of NTSS for (a)a stationary block with (0,0) 

motion vector(b) a quasi-stationary block with motion vector (2, −2). Each search 

point is indicated by its search step number and red colored point is the minimum 

search point. 

 

   

(a) (b) (c) 

Fig. 3. An example of a search procedure of (a) OTS for finding motion vector (3, 3) 

(b) BBGDS for finding motion vector (2, -2) (c) DGDS for finding motion vector (5, 

2). Each search point is indicated by its search step number and red colored point is 

the minimum search point. 
 

  

(a) (b) 

Fig. 4. An example of a search procedure for finding motion vector (3, -2) with (a) 

DS (b) HS. Each search point is indicated by its search step number and red colored 

point is the minimum search point. 
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The temporal and/or spatial correlation among motion vectors are being effectively 

utilized by the algorithms that belong to predictive motion estimation category [28]– 

[34] for reducing the computational cost considerably.In [31], the motion vector of 

any macroblock is obtained effectively with the help of city block lengths of the 

neighboringblocks. These city block lengths predict the motion activity of 

macroblock. An appropriate search strategy and search center are chosen according 

tothe motion activity. The search speed is further enhanced by terminating the search 

initiallythroughinspecting (0, 0) predictor.In [32], the median predictor and the 

motion vectors of collocated blocks are also being used to improve the search 

performance of [31] further. In [32] also,the search speed is further enhanced by an 

adaptivehalfway stop technique. Another motion prediction algorithm [34] which 

improves the search performance of [32] by utilizing most probable predictors and 

efficient threshold calculationseffectively. 

In algorithms [35] – [38], an adaptive switching strategy is employed to speeds up the 

search process. These algorithms dynamicallyapply different search patterns 

according to the motion activity. For example, the algorithm in [38] predicts motion 

activity of a block before finding motion vector to that block. Then, the popular center 

biased search patterns such as NTSS, DS and BBGDS are employed for obtaining 

motion vector if the motion activity is small. If the motion activity is not small then 

the non-center-biased search patterns such as TSS and 4SS are usedfor obtaining 

motion vector.This algorithm calculates an error descent rate for predicting the motion 

activity of a block. 

The multiresolution algorithms [39]– [45] perform motion estimation at various 

resolution levels. A particular level is obtained by sub sampling and spatial low-pass 

filtering of its lower level. The motion vectors found at one level are used as initial 

motion vectors at next level. Since these initial motion vectors are closer to the 

optimal motion vectors, the search range can be reduced as level moves to finest level. 

The algorithms belong to fractional-pixel motion estimation (FPME) techniques [46]– 

[50]achieve further reduction in bit rate i.e., improvement in video quality by applyin 

fractional-pixel interpolation (FPI) algorithms. 

 

3. RESULTS 

This section presents the simulation results to evaluatethe performances of popular 

algorithms. The search performance evaluationsof thesealgorithms are presented with 

parameters PSNR andaverage number of search points (ANSP) per block. The PSNR 

and ANSP measure the motion prediction quality and computational complexity 

respectively.The performance of all the algorithms are analyzed with first 100 frames 

of ten video sequences with the size of HD, CIF and QCIF. These video sequences 

have different motion contents. Kirsten-Sara and Akiyo test video sequences have 

small motion content. The motion contents in suzie, mobile, and flower test video 

sequences are at medium level.Rocket launch, cricket, rhinos, robot boat, foreman test 

videos have large motions.The block size isset to 16 × 16. The search range is set 

to±63for HD test video sequences (rocket launch and kirstensara) and set to ±15 for 
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the remaining (QCIF and CIF) video sequences. 

Table 1 summarizes ANSP of NTSS, DS, HS, EHS-DOIS and DGDS algorithms. The 

PSNR of these algorithms are summarized in table 2. These tables clearly show that 

the fast search algorithms enhance the search speed but lower the PSNR with respect 

to full search algorithm.It can be observed from table 1 that EHS-DOIS requires a 

small number of search points when compared to other algorithms.On an average, 

EHS-DOIS requires 10.59 search points. All the algorithms except NTSS demand 

almost same ANSP if the motion content of the video sequences (Akiyo and Kirsten-

Sara)is small. However, the ANSP is very small in EHS-DOISregardless of motion 

activity in video sequences.  

It can be observed from table 2 thatthe DGDS shows good PSNR when compared to 

other algorithms. Roughly, DGDS shows 0.406dB higher PSNR at the little 

decrement in search speed when compared to DS(refer table 1). With respect to search 

speed, EHS-DOIS is surely best among all the algorithms.With respect to motion 

prediction quality, DGDS is surely better one. In order to observe the performances of 

all the algorithms more visibly, the frame-by-frame comparison of ANSP and PSNR 

of all the algorithmsusing suzie video sequence are shown in Fig. 5 (a) and Fig. 5 (b) 

respectively. Among all the algorithms, DGDS shows good PSNR values and EHS-

DOIS shows higher search speed. 

 

4. CONCLUSION 

The last forty years’ research of multimedia develops many block matching 

algorithms with an intention of enhancement in search speed. This paper has 

presented basic search procedures of well-known fast search block matching 

algorithms.A complete analysis of well-knownand state-of-the-art algorithms in 

respect of their search speed and block distortion measures is presented. 

Table 1. The average number of search points (ANSP) per block in each algorithm. 

Video 

sequence 
FS NTSS DS HS DGDS EHS-DOIS 

Foreman 782.21 29.23 17.16 13.04 18.63 10.63 

Mobile 869.33 26.05 10.73 9.31 11.59 7.73 

Rhinos 869.33 38.46 33.13 33.06 34.47 16.89 

Robot boat 869.33 36.72 34.45 29.98 33.04 16.18 

Suzie 782.21 24.39 12.51 10.44 11.16 8.50 

Akiyo 782.21 18.44 8.22 8.64 8.872 8.03 

Cricket 869.33 27.23 18.08 13.73 16.38 10.85 

Flower 869.33 28.77 13.09 11.89 12.96 8.75 

Kirsten-Sara 14061.54 26.03 8.37 8.05 8.11 7.59 

Rocket launch 14061.54 26.36 17.37 13.23 16.85 10.76 
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Table 2.The degree of motion prediction quality of every algorithm with respect to 

full search algorithm. 

Video sequence FS NTSS DS HS DGDS EHS-DOIS 

Foreman 28.89 25.30 28.15 28.03 28.28 26.70 

Mobile 24.29 21.71 23.52 23.85 23.87 22.71 

Rhinos 30.23 25.03 27.62 27.81 28.40 27.66 

Robot boat 30.62 26.30 29.21 29.10 29.54 28.83 

Suzie 35.90 30.49 35.02 35.10 35.25 33.87 

Akiyo 44.16 43.52 44.16 44.16 44.16 43.25 

Cricket 35.95 31.26 33.66 33.95 34.99 33.19 

Flower 33.69 29.26 33.02 33.19 33.35 31.47 

Kirsten-Sara 44.74 44.05 44.18 44.21 44.39 42.45 

Rocket launch 38.95 33.20 37.53 37.69 37.90 36.20 

 

 

(a) 

 

(b) 

Fig. 5.Comparison among the fast search motion estimation algorithms with respect 

to (a) average number of search points (ANSP) per block and (b) average PSNR per 

frame with respect to full search algorithmfor “Flower” video sequence. 
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