Initial Coefficient Estimates for Certain Subclasses of m-fold Symmetric bi-univalent Functions

T. R. K. Kumar¹, S. Karthikeyan², S. Vijayakumar³ and G. Ganapathy⁴

^{1,2,3}Department of Mathematics, R.M.K. Engineering College,, Kavaraipettai - 601 206, Tamil Nadu, India.

⁴Department of Mathematics, R.M.D. Engineering College,, Kavaraipettai - 601 206, Tamil Nadu. India.

Abstract

This paper provides the two new subclasses of the function class $\mathcal{S}_{\Sigma_m}\left(\alpha,\tau,\lambda\right)$ and $\mathcal{S}_{\Sigma_m}\left(\beta,\tau,\lambda\right)$ of analytic and bi-univalent functions defined in the open unit disk $\mathbb{U}=\{z:|z|<1\}$. Besides, Find estimates on the coefficients $|a_{m+1}|$ and $|a_{2m+1}|$ for functions in these new subclasses. Many interesting new and already existing corollaries are also presented.

Key words and phrases: m-Fold symmetry, bi-univalent functions, coefficient estimates

2010 Mathematics Subject Classification: 30C45, 30C50

1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Let A denote the class of all functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$
 (1.1)

which are univalent in \mathbb{U} and normalized by the conditions f(0) = f'(0) - 1 = 0. Let \mathcal{S} subclass class of function of $f \in \mathcal{A}$ consisting of the form (1.1) which are also univalent in \mathbb{U} .

The Koebe one-quarter theorem [8] ensures that the image of $\mathbb U$ under every univalent function $f\in\mathcal S$ contains a disk of radius $\frac14$. Thus every univalent function f has an inverse f^{-1} satisfying $f^{-1}\left(f(z)\right)=z$, $(z\in\mathbb U)$ and

$$f(f^{-1}(w)) = w, (|w| < r_0(f), r_0(f) \ge \frac{1}{4})$$

where

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2 a_3 + a_4)w^4 + \cdots$$
 (1.2)

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f(z) and $f^{-1}(z)$ are univalent in \mathbb{U} . Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1.1). Lewin [12] investigated the class Σ of bi-univalent functions and showed that $|a_2| < 1.51$ for the functions belonging to Σ . Subsequently, Brannan and Clunie [5] conjectured that $|a_2| \leq \sqrt{2}$. An analytic function f is subordinate to an analytic function g, written $f(z) \prec g(z)$, provided there is a schwarz function f defined on f with f where f is a subordinate to an analytic function f and f and f is a subordinate to a schwarz function f with f and f is subordinate to a subclasses of starlike and convex functions for which either of the quantity f and f is subordinate to a more general superordinate function.

In recent years, the study of bi-univalent functions has gained momentum mainly due to the work of Srivastava et al. [15], which has apparently revived the subject. Motivated by their work [15], many researchers (see, for example, [1, 2, 5, 9, 10, 11, 12]); see also the various closely-related papers on the subject, which are cited in some of these works) have recently investigated several interesting subclasses of the bi-univalent function class Σ and found non-sharp estimates on the first two Taylor-Maclaurin coefficients of functions belonging to these subclasses.

Let $m \in \mathbb{N} = 1, 2, 3, \ldots$ A domain D is said to be m-fold symmetric if a relation of D about the origin through an angle $\frac{2\pi}{n}$ carries D on itself. It fowwos that, a function f(z) analytic in \mathbb{U} is said to be m-fold symmetric $(m \in \mathbb{N})$ if

$$f(e^{\frac{2\pi i}{m}}z) = e^{\frac{2\pi i}{m}}f(z)$$

.

In Particular, every f(z) is 1-fold symmetric and odd f(z) is 2-fold symmetric. We denote by \mathcal{S}_m the class of m-fold symmetric univalent functions in $\mathbb U$ if it has the following normalized form

$$f(z) = z + \sum_{k=1}^{\infty} a_{mk+1} z^{mk+1}, \qquad (z \in \mathbb{U}, m \in \mathbb{N})$$

$$(1.3)$$

Analogous to the concept of m-fold symmetric univalent functions, we here introduced the concept of m-fold symmetric bi-univalent functions. Each function $f \in \Sigma$ generates

an m-fold symmetric bi-univalent function for each integer $m \in \mathbb{N}$. The normalized form of f is given as in (1.3) and the series expansion for f^{-1} is given as follows

$$g(w) = f^{-1}(w) = w - a_{m+1}w^{m+1} + [(m+1)a_{m+1}^2 - a_{2m+1}]w^{2m+1}$$

$$-[\frac{1}{2}(m+1)(3m+2)a_{m+1}^3 - (3m+2)a_{m+1}a_{2m+1} + a_{3m+1}]w^{3m+1} + \cdots$$
(1.4)

where $f^{-1} = g$. We denote by Σ_m the class of m-fold symmetric bi-univalent functions in \mathbb{U} . For m=1, the formula (1.4) coincides with the formula (1.2) of the class Σ .

Some examples of m-fold symmetric bi-univalent functions are given as follows

$$\left(\frac{z^m}{1-z^m}\right)^{\frac{1}{m}}, \quad \left[\frac{1}{2}log\left(\frac{1+z^m}{1-zm}\right)\right]^{\frac{1}{m}} \quad and \quad \left[-log\left(1-z^m\right)\right]^{\frac{1}{m}}$$

with the corresponding inverse functions

$$\left(\frac{w^m}{1+w^m}\right)^{\frac{1}{m}}, \quad \left[\frac{e^{2w^m}-1}{e^{2w^m}+1}\right]^{\frac{1}{m}} \quad and \quad \left(\frac{e^{w^m}-1}{e^{w^m}}\right)^{\frac{1}{m}}$$

respectively. Recently, many authors investigated bounds for various subclasses of m-fold bi-univalent functions (see [3, 15, 16, 17, 18, 19, 20]).

The aim of the present paper is to introdues the certain subclasses $S_{\Sigma_m}(\alpha, \tau, \lambda)$ and $S_{\Sigma_m}(\beta, \tau, \lambda)$. Derive the estimates on initial coefficients $|a_{m+1}|$ and $|a_{2m+1}|$ for functions in these subclasses.

1.1. The class $S_{\Sigma_m}(\alpha, \tau, \lambda)$

Definition 1.1. For $\tau \in \mathbb{C} \setminus \{0\}$, $0 \le \lambda \le 1, 0 < \alpha \le 1, m \in \mathbb{N}$, a function $f \in \Sigma_m$ is said to be in class $\mathcal{S}_{\Sigma_m}(\alpha, \tau, \lambda)$ if the following conditions are satisfied

$$\left| arg \left[1 + \frac{1}{\tau} \left(\frac{zf'(z) + \lambda z^2 f''(z)}{(1 - \lambda) f(z) + \lambda z f'(z)} - 1 \right) \right] \right| < \frac{\alpha \pi}{2}$$
 (1.5)

and

$$\left| arg \left[1 + \frac{1}{\tau} \left(\frac{zg'(z) + \lambda z^2 g''(z)}{(1 - \lambda) g(z) + \lambda z g'(z)} - 1 \right) \right] \right| < \frac{\alpha \pi}{2}$$
 (1.6)

where function $g = f^{-1}$.

Remark 1.2. On specializing the parameter τ , λ , m one can state the various new as well as known subclasses of analytic bi-univalent functions studied earlier in the literature.

(i) For m=1, we obtain new class of bi-univalent function.

$$S_{\Sigma_{m}}(\alpha, \tau, \lambda) = S_{\Sigma}(\alpha, \tau, \lambda)$$
.

(ii) For $\lambda=0$, we obtain new class which consists m-fold symmetric bi starlike function.

$$S_{\Sigma_m}(\alpha, \tau, \lambda) = S_{\Sigma_m}^*(\alpha, \tau)$$
.

(iii) For $\lambda=1$, we obtain new class which consists m-fold symmetric convex bi univalent function.

$$S_{\Sigma_m}(\alpha, \tau, \lambda) = C_{\Sigma_m}(\alpha, \tau)$$
.

(iv) For $\lambda = 0, \tau = 1$, we obtain class which consists m-fold symmetric bi-univalent function by S. Altinkaya, S. Yalcin [3].

$$S_{\Sigma_m}(\alpha, \tau, \lambda) = \delta_{\Sigma_m}^{\alpha}$$

(v) For $\lambda = 0, m = 1, \tau = 1$, we obtain class of bi-univalent function introduced by Brannan and Taha [7].

$$S_{\Sigma_m}(\alpha, \tau, \lambda) = \delta_{\Sigma}^*(\alpha)$$
.

(vi) For $\lambda = 1, \tau = 1$, we obtain class which consists m-fold symmetric convex bi univalent function by A. K. Wanas and A. H. Majeed [20].

$$S_{\Sigma_m}(\alpha, \tau, \lambda) = E_{\Sigma_m}(0, 1, 1, \alpha)$$
.

(vii) For $\lambda = 1, m = 1, \tau = 1$, we obtain class which consists convex bi univalent function introduced by Brannan and Taha [7].

$$S_{\Sigma_m}(\alpha, \tau, \lambda) = \delta_{\Sigma_1}(\alpha)$$
.

1.2. The class $S_{\Sigma_m}(\beta, \tau, \lambda)$

Definition 1.3. For $\tau \in \mathbb{C} \setminus \{0\}$, $0 \le \lambda \le 1, 0 < \beta \le 1, m \in \mathbb{N}$, a function $f \in \Sigma_m$ is said to be in class $S_{\Sigma_m}(\beta, \tau, \lambda)$ if the following conditions are satisfied

$$\mathcal{R}\left[1 + \frac{1}{\tau} \left(\frac{zf'(z) + \lambda z^2 f''(z)}{(1 - \lambda)f(z) + \lambda z f'(z)} - 1\right)\right] > \beta \tag{1.7}$$

and

$$\mathcal{R}\left[1 + \frac{1}{\tau} \left(\frac{zg'(w) + \lambda z^2 g''(w)}{(1 - \lambda)g(w) + \lambda zg'(w)} - 1\right)\right] > \beta \tag{1.8}$$

where function $g = f^{-1}$.

Remark 1.4. On specializing the parameter τ , λ , m one can state the various new as well as known subclasses of analytic bi-univalent functions studied earlier in the literature.

(i) For m = 1, we obtain new class of bi-univalent function.

$$S_{\Sigma_{-}}(\beta, \tau, \lambda) = S_{\Sigma}(\beta, \tau, \lambda).$$

(ii) For $\lambda=0$, we obtain new class which consists m-fold symmetric bi starlike function.

$$S_{\Sigma_m}(\beta, \tau, \lambda) = S_{\Sigma_m}^*(\beta, \tau)$$
.

(iii) For $\lambda=1$, we obtain new class which consists m-fold symmetric convex bi univalent function.

$$S_{\Sigma_m}(\beta, \tau, \lambda) = C_{\Sigma_m}(\beta, \tau)$$
.

(iv) For $\lambda = 0, \tau = 1$, we obtain class which consists m-fold symmetric bi-univalent function by S. Altinkaya, S. Yalcin [3].

$$S_{\Sigma_m}(\beta, \tau, \lambda) = \mathbb{N}^0_{\Sigma, m}(\beta, 1).$$

(v) For $\lambda = 0, m = 1, \tau = 1$, we obtain class of bi-univalent function introduced by Brannan and Taha [7].

$$S_{\Sigma_m}(\beta, \tau, \lambda) = \delta_{\Sigma}^*(\beta)$$
.

(vi) For $\lambda = 1, \tau = 1$, we obtain class which consists m-fold symmetric convex bi univalent function by A. K. Wanas and A. H. Majeed [20].

$$S_{\Sigma_m}(\beta, \tau, \lambda) = E_{\Sigma_m}^*(0, 1, 1, \beta).$$

(vii) For $\lambda=1, m=1, \tau=1$, we obtain class which consists convex bi univalent function introduced by Brannan and Taha [7].

$$S_{\Sigma_m}(\beta, \tau, \lambda) = \delta_{\Sigma_1}(\beta)$$
.

In order to prove our main results, we required the following lemma.

Lemma 1.5. (see [8]) If $\mathcal{P}(z) = 1 + p_1 z + p_2 z^2 + p_2 z^2 + \cdots$ is an analytic function in \mathbb{U} with positive real part, then

$$|p_n| < 2 \quad (n \in \mathbb{N} = 1, 2, 3, \cdots)$$

2. COEFFICIENT ESTIMATES

Theorem 2.1. If $f \in \mathcal{S}_{\Sigma_m}(\alpha, \tau, \lambda)$ $(\tau \in \mathbb{C} \setminus \{0\}, 0 \le \lambda \le 1, 0 < \alpha \le 1, m \in \mathbb{N})$, then

$$|a_{m+1}| \le \frac{2\alpha |\tau|}{\sqrt{2m\alpha\tau \left[(m+1)(1+2\lambda m) - (1+\lambda m)^2 \right] + m^2 (1-\alpha)(1+\lambda m)^2}}$$
(2.9)

$$|a_{2m+1}| \le \frac{\alpha \tau}{m(1+2\lambda m)} + \frac{2\alpha^2 \tau^2 (m+1)}{m^2 (1+\lambda m)^2}.$$
 (2.10)

Proof. Let $f \in \mathcal{S}_{\Sigma_m}(\tau, \lambda, \alpha)$. Then

$$1 + \frac{1}{\tau} \left(\frac{zf'(z) + \lambda z^2 f''(z)}{(1 - \lambda) f(z) + \lambda z f'(z)} - 1 \right) = [p(z)]^{\alpha}$$
 (2.11)

and

$$1 + \frac{1}{\tau} \left(\frac{zg'(z) + \lambda z^2 g''(z)}{(1 - \lambda) g(z) + \lambda z g'(z)} - 1 \right) = [q(w)]^{\alpha}$$
 (2.12)

where p(z) and q(z) are in familiar Caratheodory class \mathcal{P} and following series expansions:

$$p(z) = 1 + p_m z^m + p_{2m} z^{2m} + p_{3m} z^{3m} + \cdots$$
 (2.13)

and

$$q(w) = 1 + q_m w^m + q_{2m} w^{2m} + q_{3m} w^{3m} + \cdots$$
 (2.14)

Now, equating the coefficients of (2.11) and (2.12), we get

$$\frac{m}{\tau} (1 + m\lambda) a_{m+1} = \alpha p_m \tag{2.15}$$

$$\frac{m}{\tau} \left[2\left(1 + 2m\lambda \right) a_{2m+1} - \left(1 + m\lambda \right)^2 a_{m+1}^2 \right] = \alpha p_{2m} + \frac{\alpha (\alpha - 1)}{2} p_m^2 \tag{2.16}$$

and

$$-\frac{m}{\tau}(1+m\lambda)a_{m+1} = \alpha q_m \tag{2.17}$$

$$\frac{m}{\tau} \left[\left\{ 2 \left(m+1 \right) \left(1+2 m \lambda \right) - \left(1+m \lambda \right)^2 \right\} a_{m+1}^2 - 2 \left(1+2 m \lambda \right) a_{2m+1} \right] = \alpha q_{2m} + \frac{\alpha \left(\alpha -1 \right)}{2} q_m^2 \left(2.18 \right)^2 q_m^2 \left(2.18$$

Now considering (2.15) and (2.17), we get

$$p_m = -q_m \tag{2.19}$$

and

$$\frac{2m^2}{\tau^2} \left(1 + m\lambda\right)^2 a_{m+1}^2 = \alpha^2 \left(p_m^2 + q_m^2\right) \tag{2.20}$$

Now from (2.16), (2.18) and (2.20) we get

$$a_{m+1}^{2} = \frac{\alpha^{2} \tau^{2} (p_{2m} + q_{2m})}{\left[2m\tau\alpha \left\{ (m+1) (1 + 2m\lambda) - (1 + m\lambda)^{2} \right\} + m^{2} (1 - \alpha) (1 + m\lambda)^{2} \right]}$$
(2.21)

Now, taking absolute value of (2.21) and applying lemma 1.1 for the coefficients p_{2m} and q_{2m} , we obtain

$$|a_{m+1}| \le \frac{2\alpha |\tau|}{\sqrt{\left[2m\tau\alpha \left\{ (m+1) \left(1 + 2m\lambda\right) - \left(1 + m\lambda\right)^{2} \right\} + m^{2} \left(1 - \alpha\right) \left(1 + m\lambda\right)^{2}\right]}}}$$
(2.22)

This gives the desired estimate for $|a_{m+1}|$ as asserted in (2.9). In order to find the bound on $|a_{2m+1}|$, by subtracting (2.18) from (2.16), we get

$$\frac{m}{\tau} \left[4 \left(1 + 2m\lambda \right) a_{2m+1} - 2 \left(m + 1 \right) \left(1 + 2m\lambda \right) a_{m+1}^2 \right] = \alpha \left(p_{2m} - q_{2m} \right) + \frac{\alpha \left(\alpha - 1 \right)}{2} \left(p_m^2 - q_m^2 \right)$$
(2.23)

It follows from (2.19), (2.20) and (2.23)

$$a_{2m+1} = \frac{\alpha \tau (p_{2m} - q_{2m})}{4m (1 + 2m\lambda)} + \frac{\alpha^2 \tau^2 (m+1) (p_m^2 + q_m^2)}{4m^2 (1 + m\lambda)^2}$$
(2.24)

Taking the absolute value of (2.24) and applying Lemma 1.1 once again for the coefficients p_{2m} and q_{2m} , we obtain

$$|a_{2m+1}| \le \frac{\alpha |\tau|}{m (1 + 2m\lambda)} + \frac{2\alpha^2 \tau^2 (m+1)}{m^2 (1 + m\lambda)^2}$$
 (2.25)

Which completes the proof of Theorem 2.1.

For m = 1, in Theorem 2.1, we have the following Corollary.

Corollary 2.2. Let f given by 1.3 is in the class $S_{\Sigma}(\alpha, \tau, \lambda)$, then

$$|a_2| \le \frac{2\alpha |\tau|}{\sqrt{2\alpha\tau \left[2(1+2\lambda) - (1+\lambda)^2\right] + (1-\alpha)(1+\lambda)^2}}$$

and

$$|a_3| \le \frac{\alpha\tau}{(1+2\lambda)} + \frac{4\alpha^2\tau^2}{(1+\lambda)^2}.$$

For $\lambda = 0$, in Theorem 2.1, we have the following Corollary.

Corollary 2.3. Let f given by 1.3 is in the class $\mathcal{S}_{\Sigma_m}^*(\alpha, \tau)$, then

$$|a_{m+1}| \le \frac{2\alpha |\tau|}{m\sqrt{1 + \alpha (2\tau - 1)}}$$

and

$$|a_{2m+1}| \le \frac{\alpha \tau}{m} + \frac{2\alpha^2 \tau^2 (m+1)}{m^2}.$$

For $\lambda = 1$, in Theorem 2.1, we have the following Corollary.

Corollary 2.4. Let f given by 1.3 is in the class $C_{\Sigma_m}(\alpha, \tau)$, then

$$|a_{m+1}| \le \frac{2\alpha |\tau|}{m\sqrt{2\alpha\tau (m+1) + (1-\alpha)(1+m)^2}}$$

$$|a_{2m+1}| \le \frac{\alpha \tau}{m(1+2m)} + \frac{2\alpha^2 \tau^2}{m^2(1+m)}.$$

For $\lambda = 0, \tau = 1$, in Theorem 2.1, we have the following Corollary.

Corollary 2.5. Let f given by 1.3 is in the class $\delta_{\Sigma,m}^{\alpha}$, then

$$|a_{m+1}| \le \frac{2\alpha}{m\sqrt{1+\alpha}}$$

and

$$|a_{2m+1}| \le \frac{\alpha}{m} + \frac{2\alpha^2(m+1)}{m^2}.$$

For $\lambda = 0, m = 1, \tau = 1$, in Theorem 2.1, we have the following Corollary.

Corollary 2.6. Let f given by 1.3 is in the class $\delta_{\Sigma}^*(\alpha)$, then

$$|a_2| \le \frac{2\alpha}{\sqrt{1+\alpha}}$$

and

$$|a_3| \le \alpha + 4\alpha^2 = \alpha (1 + 4\alpha).$$

For $\lambda = 1, \tau = 1$, in Theorem 2.1, we have the following Corollary.

Corollary 2.7. Let f given by 1.3 is in the class $E_{\Sigma_m}(0,1,1,\alpha)$, then

$$|a_{m+1}| \le \frac{2\alpha}{m\sqrt{2\alpha(m+1) + (1-\alpha)(1+m)^2}}$$

and

$$|a_{2m+1}| \le \frac{\alpha}{m(1+2m)} + \frac{2\alpha^2}{m^2(1+m)}.$$

For $\lambda = 1, m = 1, \tau = 1$, in Theorem 2.1, we have the following Corollary.

Corollary 2.8. Let f given by 1.3 is in the class $\delta_{\Sigma_1}(\alpha)$, then

$$|a_2| \le \alpha$$

and

$$|a_3| \le \frac{\alpha}{3} + \alpha^2.$$

3. COEFFICIENT ESTIMATES

Theorem 3.1. If $f \in \mathcal{S}_{\Sigma_m}(\beta, \tau, \lambda)$ $(\tau \in \mathbb{C} \setminus \{0\}, 0 \le \lambda \le 1, 0 < \alpha \le 1, m \in \mathbb{N})$, then

$$|a_{m+1}| \le \sqrt{\frac{2(1-\beta)\tau}{m[(m+1)(1+2m\lambda)-(1+m\lambda)^2]}}$$
 (3.26)

$$|a_{2m+1}| \le \frac{|\tau| (1-\beta)}{m (1+2m\lambda)} + \frac{2\tau^2 (m+1) (1-\beta)^2}{m^2 (1+m\lambda)^2}.$$
 (3.27)

Proof. Let $f \in \mathcal{S}_{\Sigma_m}(\tau, \lambda, \beta)$. Then

$$1 + \frac{1}{\tau} \left(\frac{zf'(z) + \lambda z^2 f''(z)}{(1 - \lambda) f(z) + \lambda z f'(z)} - 1 \right) = \beta + (1 - \beta) p(z)$$
 (3.28)

and

$$1 + \frac{1}{\tau} \left(\frac{zg'(z) + \lambda z^2 g''(z)}{(1 - \lambda) g(z) + \lambda z g'(z)} - 1 \right) = \beta + (1 - \beta) q(w)$$
 (3.29)

where p(z) and q(z) have the forms (2.13) and (2.14) respectively. Equating the coefficients of (3.28) and (3.29), we get

$$\frac{m}{\tau} (1 + m\lambda) a_{m+1} = (1 - \beta) p_m$$
 (3.30)

$$\frac{m}{\tau} \left[2 \left(1 + 2m\lambda \right) a_{2m+1} - \left(1 + m\lambda \right)^2 a_{m+1}^2 \right] = \left(1 - \beta \right) p_{2m} \tag{3.31}$$

and

$$-\frac{m}{\tau} (1 + m\lambda) a_{m+1} = (1 - \beta) q_m$$
 (3.32)

$$\frac{m}{\tau} \left[\left\{ 2(m+1)(1+2m\lambda) - (1+m\lambda)^2 \right\} a_{m+1}^2 - 2(1+2m\lambda) a_{2m+1} \right] = (1-\beta) q_{2m}$$
(3.33)

Now considering (3.30) and (3.32), we get

$$p_m = -q_m \tag{3.34}$$

and

$$\frac{2m^2}{\tau^2} (1 + m\lambda)^2 a_{m+1}^2 = (1 - \beta)^2 (p_m^2 + q_m^2)$$
(3.35)

Now from (3.31) and (3.33) we get

$$a_{m+1}^{2} = \frac{(1-\beta)\tau(p_{2m} + q_{2m})}{2m\left[(m+1)(1+2m\lambda) - (1+m\lambda)^{2}\right]}$$
(3.36)

Now, taking absolute value of (3.36) and applying lemma 1.1 for the coefficients p_{2m} and q_{2m} , we obtain

$$|a_{m+1}| \le \sqrt{\frac{2(1-\beta)\tau}{m[(m+1)(1+2m\lambda)-(1+m\lambda)^2]}}$$
 (3.37)

This gives the desired estimate for $|a_{m+1}|$ as asserted in (3.26). In order to find the bound on $|a_{2m+1}|$, by subtracting (3.33) from (3.31), we get

$$\frac{m}{\tau} \left[4 \left(1 + 2m\lambda \right) a_{2m+1} - 2 \left(m + 1 \right) \left(1 + 2m\lambda \right) a_{m+1}^{2} \right] = \left(1 - \beta \right) \left(p_{2m} - q_{2m} \right)$$
 (3.38)

It follows from (3.34), (3.35) and (3.38)

$$a_{2m+1} = \frac{(1-\beta)\tau(p_{2m} - q_{2m})}{4m(1+2m\lambda)} + \frac{(1-\beta)^2\tau^2(m+1)(p_m^2 + q_m^2)}{4m^2(1+m\lambda)^2}$$
(3.39)

Taking the absolute value of (3.39) and applying Lemma 1.1 once again for the coefficients p_{2m} and q_{2m} , we obtain

$$|a_{2m+1}| \le \frac{(1-\beta)|\tau|}{m(1+2m\lambda)} + \frac{2\tau^2(1-\beta)^2(m+1)}{m^2(1+m\lambda)^2}$$
(3.40)

Which completes the proof of Theorem 3.1.

For m = 1, in Theorem 3.1, we have the following Corollary.

Corollary 3.2. Let f given by 1.3 is in the class $S_{\Sigma}(\beta, \tau, \lambda)$, then

$$|a_2| \le \sqrt{\frac{2\tau (1-\beta)}{2(1+2\lambda) - (1+\lambda)^2}}$$

and

$$|a_3| \le \frac{|\tau|(1-\beta)}{(1+2\lambda)} + \frac{4\tau^2(1-\beta)^2}{(1+\lambda)^2}.$$

For $\lambda = 0$, in Theorem 3.1, we have the following Corollary.

Corollary 3.3. Let f given by 1.3 is in the class $\mathcal{S}_{\Sigma_m}^*(\beta, \tau)$, then

$$|a_{m+1}| \le \frac{1}{m} \sqrt{2\tau \left(1 - \beta\right)}$$

and

$$|a_{2m+1}| \le \frac{|\tau|(1-\beta)}{m} + \frac{2\tau^2(m+1)(1-\beta)^2}{m^2}.$$

For $\lambda = 1$, in Theorem 3.1, we have the following Corollary.

Corollary 3.4. Let f given by 1.3 is in the class $C_{\Sigma_m}(\beta, \tau)$, then

$$|a_{m+1}| \le \frac{1}{m} \sqrt{\frac{2\tau \left(1-\beta\right)}{m+1}}$$

and

$$|a_{2m+1}| \le \frac{|\tau|(1-\beta)}{m(1+2m)} + \frac{2\tau^2(1-\beta)^2}{m^2(1+m)}.$$

For $\lambda = 0, \tau = 1$, in Theorem 3.1, we have the following Corollary.

Corollary 3.5. Let f given by 1.3 is in the class $\mathbb{N}^{0}_{\Sigma,m}(\beta,1)$, then

$$|a_{m+1}| \le \frac{1}{m} \sqrt{2(1-\beta)}$$

$$|a_{2m+1}| \le \frac{(1-\beta)}{m} + \frac{2(m+1)(1-\beta)^2}{m^2}.$$

For $\lambda = 0, m = 1, \tau = 1$, in Theorem 3.1, we have the following Corollary.

Corollary 3.6. Let f given by 1.3 is in the class $\delta_{\Sigma}^{*}(\beta)$, then

$$|a_2| \le \sqrt{2(1-\beta)}.$$

and

$$|a_3| \le (1-\beta) + 4(1-\beta)^2$$
.

For $\lambda = 1, \tau = 1$, in Theorem 3.1, we have the following Corollary.

Corollary 3.7. Let f given by 1.3 is in the class $E_{\Sigma_m}^*(0,1,1,\beta)$, then

$$|a_{m+1}| \le \frac{1}{m} \sqrt{\frac{2(1-\beta)}{m+1}}$$

and

$$|a_{2m+1}| \le \frac{(1-\beta)}{m(1+2m)} + \frac{2(1-\beta)^2}{m^2(1+m)}.$$

For $\lambda = 1, m = 1, \tau = 1$, in Theorem 3.1, we have the following Corollary.

Corollary 3.8. Let f given by 1.3 is in the class $\delta_{\Sigma_1}(\beta)$, then

$$|a_2| \leq \sqrt{1-\beta}$$
.

and

$$|a_3| \le \frac{1-\beta}{3} + (1-\beta)^2$$
.

REFERENCES

- [1] Ali, R. M., Ravichandran, V., and Seenivasagan, N., 2007, "Coefficient bounds for *p*-valent functions", Appl. Math. Comput. 187 (1), 35–46.
- [2] Ali, R. M., et al., 2012, "Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions", Appl. Math. Lett. 25 (3), 344–351.
- [3] Altinkaya, S., and Yalcin, S., 2015, "Coefficient bounds for certain subclasses of m-fold symmetric bi-univalentf Functions", J. Math., https://doi.org/10.1155/2015/241683
- [4] de Branges, L., 1985, "A proof of the Bieberbach conjecture", Acta Math., 154(1-2), 137–152.
- [5] Brannan, D. A., Clunie, J., and Kirwan, W. E., 1970, "Coefficient estimates for a class of star-like functions", Canad. J. Math. 22, 476–485.
- [6] Brannan, D. A., and Clunie, J. G., 1980, "Aspects of contemporary complex analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979", Academic Press, New York and London.

- [7] Brannan, D. A., and Taha, T. S., 1988, "On some classes of bi-univalent functions", in Mathematical Analysis and Its Applications (S. M. Mazhar, A. Hamoui and N. S. Faour, Editors) (Kuwait; February 18—21, 1985), KFAS Proceedings Series, Vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, pp. 53–60; see als 1986, Studia Univ. Babes, Bolyai Math. 31 (2), 70—77.
- [8] Duren, P. L., 1983, "Univalent functions", Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York.
- [9] Frasin, B. A., and Aouf, M. K., 2011, "New subclasses of bi-univalent functions", Appl. Math. Lett. 24, 1569–1573.
- [10] Kapoor, G. P., and Mishra, A. K., 2007, "Coefficient estimates for inverses of starlike functions of positive order", J. Math. Anal. Appl., 329 (2), 922–934.
- [11] Koepf, W., 1989, "Coefficients of symmetric functions of bounded boundary rotations", Proc. Amer. Math. Soc. 105, 324–329.
- [12] Lewin, M., 2011, "On a coefficient problem for bi-unilvalent functions", Appl. MAth. Lett., 24, 1569–1573.
- [13] Ma, W. C., and Minda, D., 1992, "A unified treatment of some special classes of univalent functions", Proceedings of the Conference on Complex Analysis, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA, 157–169.
- [14] Pommerenke, C., 1962, "On the coefficients of close-to-convex functions", Michigan Math. J. 9, 259–269.
- [15] Srivastava, H. M., Mishra, A.K., and Gochhayat, P., 2010, "Certain subclasses of analytic and bi-univalent functions", Appl. Math. Lett., 23, 1188–1192.
- [16] Srivastava, H. M., Bulut, S., Caglar, M., and Yagmur, N., 2013, "Coefficient estimates for a general subclass of analytic and bi-univalent functions", Filomat, 27 (5), pp. 831–842.
- [17] Srivastava, H. M., Sivasubramanian, S., and Sivakumar, R., 2014, "Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions", Tbilisi Math. J., 7(2), 1–10.
- [18] Sümer-Eker, S., 2016, "Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions".,Turk J. Math., 40, 641—646.
- [19] Tang, H., Srivastava, H. M., Sivasubramanian, S., and Gurusamy, P., 2016, "The Fekete-Szego functional problems for some subclasses of m-fold symmetric bi-univalent functions", J. Math. Inequal., 10, 1063–1092.
- [20] Wanas, A. K., and Majeed, A. H., 2018, "Certain new subclasses of analytic and m-fold symmetric bi-univalent functions", Applied Mathematics E-Notes, 18, 178–188.