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Abstract

This paper provides the two new subclasses of the function class Sy, («, 7, A) and
Sy, (8,7, A) of analytic and bi-univalent functions defined in the open unit disk
U = {z : |z| < 1}. Besides, Find estimates on the coefficients |a,,+1| and |a2;,+1]
for functions in these new subclasses. Many interesting new and already existing
corollaries are also presented.
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1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Let A denote the class of all functions of the form
f(2) :z—i-Zanz”. (1.1)
n=2

which are univalent in U and normalized by the conditions f(0) = f/(0)—1 = 0. Let S
subclass class of function of f € A consisting of the form (1.1) which are also univalent
in U.
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The Koebe one-quarter theorem [8] ensures that the image of U under every univalent
function f € S contains a disk of radius —. Thus every univalent function f has an

inverse f~! satisfying f~! (f(2)) = z,(z € U) and

P ) = w. (lol < nlP)rh) = )

where
g(w) = fHw) = w — ayw? + (245 — az)w® — (5a3 — 5agaz + a))w* +--- . (1.2)

A function f € A is said to be bi-univalent in U if both f(z) and f~!(z) are univalent
in U. Let ¥ denote the class of bi-univalent functions in U given by (1.1). Lewin
[12] investigated the class ¥ of bi-univalent functions and showed that |as| < 1.51 for
the functions belonging to >.. Subsequently, Brannan and Clunie [5] conjectured that
las| < V2. An analytic function f is subordinate to an analytic function g,written
f(2) < g(z), provided there is a schwarz function w defined on U with w(0) = 0 and
lw(z)| < 1 satisfying f (2) = g (w(z)). Ma and Minda [13], unified various subclasses

2f'(2) 2f"(2)

of starlike and convex functions for which either of the quantity ———— or 1 +

f(2) f'(2)

is subordinate to a more general superordinate function.

In recent years, the study of bi-univalent functions has gained momentum mainly due to
the work of Srivastava et al. [15], which has apparently revived the subject. Motivated
by their work [15], many researchers (see, for example, [1, 2, 5, 9, 10, 11, 12]); see
also the various closely-related papers on the subject, which are cited in some of
these works) have recently investigated several interesting subclasses of the bi-univalent
function class X and found non-sharp estimates on the first two Taylor-Maclaurin
coefficients of functions belonging to these subclasses.

Letm e N=1,23,.... Adomain D is said to be m-fold symmetric if a relation of D
about the origin through an angle %" carries D on itself. It fowwos that, a function f(2)
analytic in U is said to be m-fold symmetric (m € N) if

2mi 27

flemz) =em f(2)

In Particular, every f(z) is 1-fold symmatric and odd f(z) is 2-fold symmtric. We
denote by S,, the class of m-fold symmtric univalent functions in U if it has the
following normalized form

f) =2+ amp2™™,  (z€UmeN) (1.3)

k=1

Analogous to the concept of m-fold symmetric univalent functions, we here introduced
the concept of m-fold symmetric bi-univalent functions. Each function f € 3 generates
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an m-fold symmetric bi-univalent function for each integer m € N. The normalized
form of fis given as in (1.3) and the series expansion for f~! is given as follows

g(w) = fHw) =w — ampw™ ™t + [(m + l)afnJrl — Qg Jw*™ T

1 3 _— (1.4)
—[§(m +1)(3m +2)a,, ., — (3m + 2)am4102m41 + Agmi1]W 4

where f~! = g. We denote by X,, the class of m-fold symmetric bi-univalent functions
in U. For m=1, the formula (1.4) coincides with the formula (1.2) of the class >.

Some examples of m-fold symmetric bi-univalent functions are given as follows

1 1
2™\ 1 I4+2m\|™ m
(1 — zm) : {ilog (1 — zm)} and [—log (1 —z™)]

with the corresponding inverse functions

1 m 1 m L
w™ m e2w™ 1 m q ew" —1\™
- an ,
14+ wm ’ e2w™ 4 1 ew™

respectively. Recently, many authors investigated bounds for various subclasses of
m-fold bi-univalent functions (see [3, 15, 16, 17, 18, 19, 20]).

3=

The aim of the present paper is to introdues the certain subclasses Sy, («, 7, A) and
Sy, (8,7, A). Derive the estimates on initial coefficients |a,,;1| and |ag,.q| for
functions in these subclasses.

1.1. Theclass S, (o, 7, \)
Definition 1.1. For 7 € C\ {0},0 < A < 1,0 < a < 1,m € N, a function f € X, is
said to be in class Sy, (o, 7, A) if the following conditions are satisfied

arg {1+1(( 2" () £ A2 () )—1)H<ﬂ (1.5)

T\ =X f(2)+Azf" (= 2
T bl

where function g = 1.

Remark 1.2. On specializing the parameter 7, A, m one can state the various new as well
as known subclasses of analytic bi-univalent functions studied earlier in the literature.

(i) For m = 1, we obtain new class of bi-univalent function.

Sy, (a,7,A) = Ss (a, T, A).
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(ii) For A = 0, we obtain new class which consists m-fold symmetric bi starlike
function.
Sy, (a,7,\) =85 (o, 7).

(iii)) For A = 1, we obtain new class which consists m-fold symmetric convex bi

univalent function.
Sy, (a,7,\) =Cs,, (o, 7).

(iv) For A = 0,7 = 1, we obtain class which consists m-fold symmetric bi-univalent
function by S. Altinkaya, S. Yalcin [3].

Sy, (o, 7,A) = 0% m

m

(v) For A = 0,m = 1,7 = 1, we obtain class of bi-univalent function introduced by
Brannan and Taha [7].
Sy, (o, 7,A) =% (a) .

(vi) For A\ = 1,7 = 1, we obtain class which consists m-fold symmetric convex bi
univalent function by A. K. Wanas and A. H. Majeed [20].

Sy, (a,7,\) = FEs, (0,1,1,q).

(vii) For A = 1,m = 1,7 = 1, we obtain class which consists convex bi univalent
function introduced by Brannan and Taha [7].

Sy, (o, 7, A) =y, (o).

1.2. Theclass Ss, (5,7,))
Definition 1.3. For 7 € C\ {0},0 < A < 1,0 < < 1,m € N, afunction f € ¥, is
said to be in class Sy, (3, 7, A) if the following conditions are satisfied

L( @A)
Rl (e e )] 7 -7
" L (g () + 22 ()
1 z2g (w 29" (w)
Rl 2 (T o e )] >0 (-9

where function g = 1.

Remark 1.4. On specializing the parameter 7, A, m one can state the various new as well
as known subclasses of analytic bi-univalent functions studied earlier in the literature.

(1) For m = 1, we obtain new class of bi-univalent function.

SEm (5,7—, /\) == SZ (577—7 A) .
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(ii) For A = 0, we obtain new class which consists m-fold symmetric bi starlike
function.

SZm (6777 /\) = S;)m (577-) .

(iii)) For A = 1, we obtain new class which consists m-fold symmetric convex bi
univalent function.

Sy, (B,7,X) =Cs,, (B,7).

(iv) For A = 0,7 = 1, we obtain class which consists m-fold symmetric bi-univalent
function by S. Altinkaya, S. Yalcin [3].

SEm (5a7_7 >‘) = NOE,m (57 1) :

(v) For A = 0,m = 1,7 = 1, we obtain class of bi-univalent function introduced by
Brannan and Taha [7].

SZm (577-7)\) :5;) (6)

(vi) For A = 1,7 = 1, we obtain class which consists m-fold symmetric convex bi
univalent function by A. K. Wanas and A. H. Majeed [20].

Szm (/877—7 A) = E;]m (07 ]" ]'7/8) .

(vii)) For A\ = 1,m = 1,7 = 1, we obtain class which consists convex bi univalent
function introduced by Brannan and Taha [7].

Szm (ﬁaTa )‘) = 521 (ﬂ)

In order to prove our main results, we required the following lemma.

Lemma 1.5. (see [8]) If P (2) = 1 + p12 + p22® + p22? + - -+ is an analytic function
in U with positive real part, then

pnl <2 (neN=1,2,3,--)

2. COEFFICIENT ESTIMATES
Theorem 2.1. If f € Sy, (a,7,A) (1€ C\{0},0<A<1,0<a<1meN)

then
20| 7|
|am41| <
\/Zmom' [(m+1)(1+2xm) — (1+ )\m)ﬂ +m?(1—a)(1+Im)’
(2.9)
and
aT 20272 (m + 1) (2.10)

Aom < .
[@2m 1] m(1+2 m) " m2 (1 + \m)’
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Proof. Let f € Sy, (7, A\, ). Then

L( @A) Y
ty ((1 “N G+ A () 1) p ()] 1D
and
V(@26 N
Hy ((1 —Ng() + g (2) 1) 4a(w) (12

where p(z) and ¢(z) are in familiar Caratheodory class P and following series
expansions:
p(2) =14 ppz™ + pom2™™ + p3m2®™ 4 -+ (2.13)

and
q(w) =1+ g™ + g™ + ggw®™ + -+ (2.14)

Now, equating the coefficients of (2.11) and (2.12), we get

= (L4 mA) apss = apy (2.15)
-1
? [2 (14 2mA) agpyr — (1 + m)\)2 afnﬂ] = QP + %pfn (2.16)
and
— ? (1 +mA) apy1 = agm (2.17)
m 2\ .2 ala—1) ,
- [{2(m+1)(1+2mA) — (1 +mA) }al, . —2(1+2mA) agmya | = o+t
(2.18)
Now considering (2.15) and (2.17), we get
and )
2m
— (1+mM\)?a2,, =a (P2, + q2,) (2.20)
Now from (2.16), (2.18) and (2.20) we get
a2 — Oé27'2 (me + q2m>
" Rmra {(m+1) (1+2mA) — (1 +mA)?} +m2 (1 —a) (1 +m))’]
(2.21)

Now, taking absolute value of (2.21) and applying lemma 1.1 for the coefficients ps,,
and ¢»,,, we obtain

2a0 ||

v [2mra{(m+ 1) (1+2mA) = (1+mA)?} +m2 (1 - a) (1+mA)]
(2.22)

’am+1| S
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This gives the desired estimate for |a,, 1| as asserted in (2.9). In order to find the bound
on |ag, 11|, by subtracting (2.18) from (2.16), we get

m ala—1)

— [4 (14+2mA) agmer —2(m+ 1) (1 4+ 2mA) afnﬂ} = (poam — Gam)+ (pil — qi)
(2.23)
It follows from (2.19), (2.20) and (2.23)
o 2.2 1) (p2 2
gy = LT P2m = @om) | 077" (m + )(pmi-qm) (2.24)
4m (1 +2mA) 4m? (1 + mA)

Taking the absolute value of (2.24) and applying Lemma 1.1 once again for the
coefficients p,,, and ¢,,, we obtain

alt| 20272 (m + 1)
Aomart| < 2.25
Which completes the proof of Theorem 2.1. ]

For m = 1, in Theorem 2.1, we have the following Corollary.

Corollary 2.2. Let f given by 1.3 is in the class Ss. (o, T, \) , then

2a|7|

lag| <
V207 [2(1+2)) = (14 X)) + (1 - ) (1+A)?

and

T 40272

+ .
14+2)) (14 A)?

las| <
(

For A = 0, in Theorem 2.1, we have the following Corollary.
Corollary 2.3. Let f given by 1.3 is in the class S5, (o, ), then

PR pEg——1
my/1+a (21 —1)

and
| 21| < i w.
m m
For A = 1, in Theorem 2.1, we have the following Corollary.
Corollary 2.4. Let f given by 1.3 is in the class Cs,, (v, T) , then
200 |7

m\/QaT(m+1)+(1—a)(1+m)2

|am+1| S

and -
aT 2a°T

1+2m)+m2(1—|—m)'

‘a2m+1’ S
m (
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For A = 0,7 = 1, in Theorem 2.1, we have the following Corollary.
Corollary 2.5. Let f given by 1.3 is in the class 05; ,,,, then
2a

Apg1| < —
il < o
and

a  2a%(m+1)

lagmi1] < — + 5 )
m m

For A = 0,m = 1,7 = 1, in Theorem 2.1, we have the following Corollary.

Corollary 2.6. Let f given by 1.3 is in the class 6% («) , then
2a
v+«

|ag| <

and
las| < a+ 40 = a (1 +4a).
For A = 1,7 = 1, in Theorem 2.1, we have the following Corollary.
Corollary 2.7. Let f given by 1.3 is in the class Ex,, (0,1,1,«) , then
2c

m\/Qa(m+1)+(1—a)(1—|—m)2

‘am+1| S

and
a 202

1+2m)+m2(1+m)'

|a2m1] <
m (

For A =1,m = 1,7 = 1, in Theorem 2.1, we have the following Corollary.
Corollary 2.8. Let f given by 1.3 is in the class 0, («) , then
|az| < a

and
o 2
‘(Z3| S §‘|‘Oé .

3. COEFFICIENT ESTIMATES
Theorem 3.1. If f € Sy, (B,7,A) (1€C\{0},0<A<1,0<a<1lmeN)

then
2(1-0)7
| < \/m [(m +1) (1+2mA) — (1 +mA\)?] (3:20)
and , )
|aom+1] < 71~ 5) + 2r"m+1) (1 — f) . (3.27)

m (1 + 2mA) m2 (1 +m\)?
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Proof. Let f € Sy, (7, A, ). Then

1( zf’ +/\22f”()

L7 D+ (2)

) —B(1-Bp(x) (2B

and

Lol (L)
(1—=X)g(2)+ Azg' (2
where p(z) and ¢ (z) have the forms (2.13) and (2.14) respectively. Equating the
coefficients of (3.28) and (3.29), we get

)—1)=B+(1—6)q(w) (3.29)

? (1 +mA) ampr = (1= 5) pm (3.30)
g [2(142mA) agmi1 — (14+mA)? a2 1] = (1= B) pam (3.31)
and m
- (1+m\) amyr = (1= 5) g (3.32)
? [{2(m+ 1) (1+2mA) — 1+ mA)?} a2, — 2(1 +2mA) azma] = (1= B) gam
(3.33)
Now considering (3.30) and (3.32), we get
and o2
S (L mA a2 = (1-8) (b + d2) (3.35)
Now from (3.31) and (3.33) we get
a72n+1 _ (1 - ﬁ) T (p2m + q2m) (336)

2m [(m + 1) (1 +2mA) — (1 + mA)?]

Now, taking absolute value of (3.36) and applying lemma 1.1 for the coefficients ps,,
and ¢s,,,, we obtain

|G| < TS
m1l S [ Km + 1) (1+2mA) — (14 m)\)g}

(3.37)

This gives the desired estimate for |a,,. | as asserted in (3.26). In order to find the
bound on |ay,, 11|, by subtracting (3.33) from (3.31), we get

? [4/(142mA) agmis —2(m+1) (1+2mA) a%,,] = (1= B) (pam — Gom) (3.38)

It follows from (3.34), (3.35) and (3.38)

(1= B)7 (2 — qom) | (1= B)272(m+1) (p% + 2
Am (14 2mM) 4m? (1 +mA)*

(3.39)

A2m+4+1 =
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Taking the absolute value of (3.39) and applying Lemma 1.1 once again for the

coefficients p,,, and ¢,,, we obtain

=)l , 2 (1=p m+1)

m <
|02 +1| = m(1_|_2m)\) m2(1+m)\)2

Which completes the proof of Theorem 3.1.

For m = 1, in Theorem 3.1, we have the following Corollary.

Corollary 3.2. Let f given by 1.3 is in the class Ss, (5, T, \) , then
27 (1 —
|CL2| S ( 5) .
2(1+2\) —(1+ )

7l(1-5) 4 (- By
(1+2X) (1+N)?

and

las| <

For A = 0, in Theorem 3.1, we have the following Corollary.

Corollary 3.3. Let f given by 1.3 is in the class S5, (3,7), then

1
|| < —+/27 (1 = )
m

and
rl(1=5) 2 m+1)(1-5)°

m m?2

|a2m+1’ S

For A = 1, in Theorem 3.1, we have the following Corollary.
Corollary 3.4. Let f given by 1.3 is in the class Cs,, (3, 7) , then

1 27(1—5)
< — ) 7
|am+1|_m m+1

and
f1-8) | 2 0-p)
m(l14+2m) m2(1+m)

laom41] <

For A = 0,7 = 1, in Theorem 3.1, we have the following Corollary.

Corollary 3.5. Let f given by 1.3 is in the class Ny, (5, 1) , then

1
ma1l < —+/2(1 —
’a+1|_m ( B)

and

(1-8) 2m+1)(1-5)°

|a2m+1| S + 2
m m

(3.40)

]
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For A = 0,m = 1,7 = 1, in Theorem 3.1, we have the following Corollary.

Corollary 3.6. Let f given by 1.3 is in the class 6%, (0) , then

|as| < v/2(1—P).
and
jas] < (1—=B)+4(1-p)".

For A = 1,7 =1, in Theorem 3.1, we have the following Corollary.
Corollary 3.7. Let f given by 1.3 is in the class E5, (0,1,1,3), then

2(1-5)

1
<
’amH’_m m+1

and
(1=8) 205"
(1+2m) m2(1+m)

lagm+1| <
m

For A =1,m = 1,7 = 1, in Theorem 3.1, we have the following Corollary.

Corollary 3.8. Let f given by 1.3 is in the class Ox, () , then

az| < /1-5.

and -5
|as| ST—i‘(l—ﬁ)z-
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