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Abstract

This paper provides the two new subclasses of the function class SΣm (α, τ, λ) and
SΣm (β, τ, λ) of analytic and bi-univalent functions defined in the open unit disk
U = {z : |z| < 1}. Besides, Find estimates on the coefficients |am+1| and |a2m+1|
for functions in these new subclasses. Many interesting new and already existing
corollaries are also presented.
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1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Let A denote the class of all functions of the form

f (z) = z +
∞∑
n=2

anz
n. (1.1)

which are univalent in U and normalized by the conditions f(0) = f ′(0)−1 = 0. Let S
subclass class of function of f ∈ A consisting of the form (1.1) which are also univalent
in U.
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The Koebe one-quarter theorem [8] ensures that the image of U under every univalent

function f ∈ S contains a disk of radius
1

4
. Thus every univalent function f has an

inverse f−1 satisfying f−1 (f(z)) = z,(z ∈ U) and

f
(
f−1(w)

)
= w,

(
|w| < r0(f), r0(f) ≥

1

4

)
where

g(w) = f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are univalent
in U. Let Σ denote the class of bi-univalent functions in U given by (1.1). Lewin
[12] investigated the class Σ of bi-univalent functions and showed that |a2| < 1.51 for
the functions belonging to Σ. Subsequently, Brannan and Clunie [5] conjectured that
|a2| ≤

√
2. An analytic function f is subordinate to an analytic function g,written

f(z) ≺ g(z), provided there is a schwarz function w defined on U with w(0) = 0 and
|w(z)| < 1 satisfying f (z) = g (w(z)). Ma and Minda [13], unified various subclasses

of starlike and convex functions for which either of the quantity
zf ′(z)

f(z)
or 1 +

zf ′′(z)

f ′(z)
is subordinate to a more general superordinate function.

In recent years, the study of bi-univalent functions has gained momentum mainly due to
the work of Srivastava et al. [15], which has apparently revived the subject. Motivated
by their work [15], many researchers (see, for example, [1, 2, 5, 9, 10, 11, 12]); see
also the various closely-related papers on the subject, which are cited in some of
these works) have recently investigated several interesting subclasses of the bi-univalent
function class Σ and found non-sharp estimates on the first two Taylor-Maclaurin
coefficients of functions belonging to these subclasses.

Let m ∈ N = 1, 2, 3, .... A domain D is said to be m-fold symmetric if a relation of D
about the origin through an angle 2π

n
carries D on itself. It fowwos that, a function f(z)

analytic in U is said to be m-fold symmetric (m ∈ N) if

f(e
2πi
m z) = e

2πi
m f(z)

.

In Particular, every f(z) is 1-fold symmatric and odd f(z) is 2-fold symmtric. We
denote by Sm the class of m-fold symmtric univalent functions in U if it has the
following normalized form

f (z) = z +
∞∑
k=1

amk+1z
mk+1, (z ∈ U,m ∈ N) (1.3)

Analogous to the concept of m-fold symmetric univalent functions, we here introduced
the concept of m-fold symmetric bi-univalent functions. Each function f ∈ Σ generates
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an m-fold symmetric bi-univalent function for each integer m ∈ N. The normalized
form of f is given as in (1.3) and the series expansion for f−1 is given as follows

g(w) = f−1(w) = w − am+1w
m+1 + [(m+ 1)a2m+1 − a2m+1]w

2m+1

−[
1

2
(m+ 1)(3m+ 2)a3m+1 − (3m+ 2)am+1a2m+1 + a3m+1]w

3m+1 + · · · .
(1.4)

where f−1 = g. We denote by Σm the class of m-fold symmetric bi-univalent functions
in U. For m=1, the formula (1.4) coincides with the formula (1.2) of the class Σ.

Some examples of m-fold symmetric bi-univalent functions are given as follows(
zm

1− zm

) 1
m

,

[
1

2
log

(
1 + zm

1− zm

)] 1
m

and [−log (1− zm)]
1
m

with the corresponding inverse functions(
wm

1 + wm

) 1
m

,

[
e2w

m − 1

e2wm + 1

] 1
m

and

(
ew

m − 1

ewm

) 1
m

respectively. Recently, many authors investigated bounds for various subclasses of
m-fold bi-univalent functions (see [3, 15, 16, 17, 18, 19, 20]).

The aim of the present paper is to introdues the certain subclasses SΣm (α, τ, λ) and
SΣm (β, τ, λ). Derive the estimates on initial coefficients |am+1| and |a2m+1| for
functions in these subclasses.

1.1. The class SΣm (α, τ, λ)
Definition 1.1. For τ ∈ C\ {0} , 0 ≤ λ ≤ 1, 0 < α ≤ 1,m ∈ N, a function f ∈ Σm is
said to be in class SΣm (α, τ, λ) if the following conditions are satisfied∣∣∣∣arg [1 + 1

τ

(
zf ′ (z) + λz2f ′′ (z)

(1− λ) f (z) + λzf ′ (z)
− 1

)]∣∣∣∣ < απ

2
(1.5)

and ∣∣∣∣arg [1 + 1

τ

(
zg′ (z) + λz2g′′ (z)

(1− λ) g (z) + λzg′ (z)
− 1

)]∣∣∣∣ < απ

2
(1.6)

where function g = f−1.

Remark 1.2. On specializing the parameter τ, λ,m one can state the various new as well
as known subclasses of analytic bi-univalent functions studied earlier in the literature.

(i) For m = 1, we obtain new class of bi-univalent function.

SΣm (α, τ, λ) = SΣ (α, τ, λ) .



792 T. R. K. Kumar, S. Karthikeyan, S. Vijayakumar and G. Ganapathy

(ii) For λ = 0, we obtain new class which consists m-fold symmetric bi starlike
function.

SΣm (α, τ, λ) = S∗
Σm

(α, τ) .

(iii) For λ = 1, we obtain new class which consists m-fold symmetric convex bi
univalent function.

SΣm (α, τ, λ) = CΣm (α, τ) .

(iv) For λ = 0, τ = 1, we obtain class which consists m-fold symmetric bi-univalent
function by S. Altinkaya, S. Yalcin [3].

SΣm (α, τ, λ) = δαΣ,m

(v) For λ = 0,m = 1, τ = 1, we obtain class of bi-univalent function introduced by
Brannan and Taha [7].

SΣm (α, τ, λ) = δ∗Σ (α) .

(vi) For λ = 1, τ = 1, we obtain class which consists m-fold symmetric convex bi
univalent function by A. K. Wanas and A. H. Majeed [20].

SΣm (α, τ, λ) = EΣm (0, 1, 1, α) .

(vii) For λ = 1,m = 1, τ = 1, we obtain class which consists convex bi univalent
function introduced by Brannan and Taha [7].

SΣm (α, τ, λ) = δΣ1 (α) .

1.2. The class SΣm (β, τ, λ)
Definition 1.3. For τ ∈ C\ {0} , 0 ≤ λ ≤ 1, 0 < β ≤ 1,m ∈ N, a function f ∈ Σm is
said to be in class SΣm (β, τ, λ) if the following conditions are satisfied

R
[
1 +

1

τ

(
zf ′ (z) + λz2f ′′ (z)

(1− λ) f (z) + λzf ′ (z)
− 1

)]
> β (1.7)

and

R
[
1 +

1

τ

(
zg′ (w) + λz2g′′ (w)

(1− λ) g (w) + λzg′ (w)
− 1

)]
> β (1.8)

where function g = f−1.

Remark 1.4. On specializing the parameter τ, λ,m one can state the various new as well
as known subclasses of analytic bi-univalent functions studied earlier in the literature.

(i) For m = 1, we obtain new class of bi-univalent function.

SΣm (β, τ, λ) = SΣ (β, τ, λ) .
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(ii) For λ = 0, we obtain new class which consists m-fold symmetric bi starlike
function.

SΣm (β, τ, λ) = S∗
Σm

(β, τ) .

(iii) For λ = 1, we obtain new class which consists m-fold symmetric convex bi
univalent function.

SΣm (β, τ, λ) = CΣm (β, τ) .

(iv) For λ = 0, τ = 1, we obtain class which consists m-fold symmetric bi-univalent
function by S. Altinkaya, S. Yalcin [3].

SΣm (β, τ, λ) = N0
Σ,m (β, 1) .

(v) For λ = 0,m = 1, τ = 1, we obtain class of bi-univalent function introduced by
Brannan and Taha [7].

SΣm (β, τ, λ) = δ∗Σ (β) .

(vi) For λ = 1, τ = 1, we obtain class which consists m-fold symmetric convex bi
univalent function by A. K. Wanas and A. H. Majeed [20].

SΣm (β, τ, λ) = E∗
Σm

(0, 1, 1, β) .

(vii) For λ = 1,m = 1, τ = 1, we obtain class which consists convex bi univalent
function introduced by Brannan and Taha [7].

SΣm (β, τ, λ) = δΣ1 (β) .

In order to prove our main results, we required the following lemma.

Lemma 1.5. (see [8]) If P (z) = 1 + p1z + p2z
2 + p2z

2 + · · · is an analytic function
in U with positive real part, then

|pn| ≤ 2 (n ∈ N = 1, 2, 3, · · ·)

2. COEFFICIENT ESTIMATES

Theorem 2.1. If f ∈ SΣm (α, τ, λ) (τ ∈ C\ {0} , 0 ≤ λ ≤ 1, 0 < α ≤ 1,m ∈ N),
then

|am+1| ≤
2α |τ |√

2mατ
[
(m+ 1) (1 + 2λm)− (1 + λm)2

]
+m2 (1− α) (1 + λm)2

(2.9)
and

|a2m+1| ≤
ατ

m (1 + 2λm)
+

2α2τ 2 (m+ 1)

m2 (1 + λm)2
. (2.10)
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Proof. Let f ∈ SΣm (τ, λ, α). Then

1 +
1

τ

(
zf ′ (z) + λz2f ′′ (z)

(1− λ) f (z) + λzf ′ (z)
− 1

)
= [p (z)]α (2.11)

and

1 +
1

τ

(
zg′ (z) + λz2g′′ (z)

(1− λ) g (z) + λzg′ (z)
− 1

)
= [q (w)]α (2.12)

where p (z) and q (z) are in familiar Caratheodory class P and following series
expansions:

p (z) = 1 + pmz
m + p2mz

2m + p3mz
3m + · · · (2.13)

and
q (w) = 1 + qmw

m + q2mw
2m + q3mw

3m + · · · (2.14)

Now, equating the coefficients of (2.11) and (2.12), we get

m

τ
(1 +mλ) am+1 = αpm (2.15)

m

τ

[
2 (1 + 2mλ) a2m+1 − (1 +mλ)2 a2m+1

]
= αp2m +

α (α− 1)

2
p2m (2.16)

and
− m

τ
(1 +mλ) am+1 = αqm (2.17)

m

τ

[{
2 (m+ 1) (1 + 2mλ)− (1 +mλ)2

}
a2m+1 − 2 (1 + 2mλ) a2m+1

]
= αq2m+

α (α− 1)

2
q2m

(2.18)
Now considering (2.15) and (2.17), we get

pm = −qm (2.19)

and
2m2

τ 2
(1 +mλ)2 a2m+1 = α2

(
p2m + q2m

)
(2.20)

Now from (2.16), (2.18) and (2.20) we get

a2m+1 =
α2τ 2 (p2m + q2m)[

2mτα
{
(m+ 1) (1 + 2mλ)− (1 +mλ)2

}
+m2 (1− α) (1 +mλ)2

]
(2.21)

Now, taking absolute value of (2.21) and applying lemma 1.1 for the coefficients p2m
and q2m, we obtain

|am+1| ≤
2α |τ |√[

2mτα
{
(m+ 1) (1 + 2mλ)− (1 +mλ)2

}
+m2 (1− α) (1 +mλ)2

]
(2.22)
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This gives the desired estimate for |am+1| as asserted in (2.9). In order to find the bound
on |a2m+1|, by subtracting (2.18) from (2.16), we get

m

τ

[
4 (1 + 2mλ) a2m+1 − 2 (m+ 1) (1 + 2mλ) a2m+1

]
= α (p2m − q2m)+

α (α− 1)

2

(
p2m − q2m

)
(2.23)

It follows from (2.19), (2.20) and (2.23)

a2m+1 =
ατ (p2m − q2m)

4m (1 + 2mλ)
+

α2τ 2 (m+ 1) (p2m + q2m)

4m2 (1 +mλ)2
(2.24)

Taking the absolute value of (2.24) and applying Lemma 1.1 once again for the
coefficients p2m and q2m, we obtain

|a2m+1| ≤
α |τ |

m (1 + 2mλ)
+

2α2τ 2 (m+ 1)

m2 (1 +mλ)2
(2.25)

Which completes the proof of Theorem 2.1.

For m = 1, in Theorem 2.1, we have the following Corollary.

Corollary 2.2. Let f given by 1.3 is in the class SΣ (α, τ, λ) , then

|a2| ≤
2α |τ |√

2ατ
[
2 (1 + 2λ)− (1 + λ)2

]
+ (1− α) (1 + λ)2

and

|a3| ≤
ατ

(1 + 2λ)
+

4α2τ 2

(1 + λ)2
.

For λ = 0, in Theorem 2.1, we have the following Corollary.

Corollary 2.3. Let f given by 1.3 is in the class S∗
Σm

(α, τ) , then

|am+1| ≤
2α |τ |

m
√

1 + α (2τ − 1)

and

|a2m+1| ≤
ατ

m
+

2α2τ 2 (m+ 1)

m2
.

For λ = 1, in Theorem 2.1, we have the following Corollary.

Corollary 2.4. Let f given by 1.3 is in the class CΣm (α, τ) , then

|am+1| ≤
2α |τ |

m
√

2ατ (m+ 1) + (1− α) (1 +m)2

and

|a2m+1| ≤
ατ

m (1 + 2m)
+

2α2τ 2

m2 (1 +m)
.
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For λ = 0, τ = 1, in Theorem 2.1, we have the following Corollary.

Corollary 2.5. Let f given by 1.3 is in the class δαΣ,m, then

|am+1| ≤
2α

m
√
1 + α

and

|a2m+1| ≤
α

m
+

2α2 (m+ 1)

m2
.

For λ = 0,m = 1, τ = 1, in Theorem 2.1, we have the following Corollary.

Corollary 2.6. Let f given by 1.3 is in the class δ∗Σ (α) , then

|a2| ≤
2α√
1 + α

and
|a3| ≤ α + 4α2 = α (1 + 4α) .

For λ = 1, τ = 1, in Theorem 2.1, we have the following Corollary.

Corollary 2.7. Let f given by 1.3 is in the class EΣm (0, 1, 1, α) , then

|am+1| ≤
2α

m
√

2α (m+ 1) + (1− α) (1 +m)2

and

|a2m+1| ≤
α

m (1 + 2m)
+

2α2

m2 (1 +m)
.

For λ = 1,m = 1, τ = 1, in Theorem 2.1, we have the following Corollary.

Corollary 2.8. Let f given by 1.3 is in the class δΣ1 (α) , then

|a2| ≤ α

and
|a3| ≤

α

3
+ α2.

3. COEFFICIENT ESTIMATES

Theorem 3.1. If f ∈ SΣm (β, τ, λ) (τ ∈ C\ {0} , 0 ≤ λ ≤ 1, 0 < α ≤ 1,m ∈ N),
then

|am+1| ≤
√

2 (1− β) τ

m
[
(m+ 1) (1 + 2mλ)− (1 +mλ)2

] (3.26)

and

|a2m+1| ≤
|τ | (1− β)

m (1 + 2mλ)
+

2τ 2 (m+ 1) (1− β)2

m2 (1 +mλ)2
. (3.27)
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Proof. Let f ∈ SΣm (τ, λ, β). Then

1 +
1

τ

(
zf ′ (z) + λz2f ′′ (z)

(1− λ) f (z) + λzf ′ (z)
− 1

)
= β + (1− β) p (z) (3.28)

and

1 +
1

τ

(
zg′ (z) + λz2g′′ (z)

(1− λ) g (z) + λzg′ (z)
− 1

)
= β + (1− β) q (w) (3.29)

where p (z) and q (z) have the forms (2.13) and (2.14) respectively. Equating the
coefficients of (3.28) and (3.29), we get

m

τ
(1 +mλ) am+1 = (1− β) pm (3.30)

m

τ

[
2 (1 + 2mλ) a2m+1 − (1 +mλ)2 a2m+1

]
= (1− β) p2m (3.31)

and
− m

τ
(1 +mλ) am+1 = (1− β) qm (3.32)

m

τ

[{
2 (m+ 1) (1 + 2mλ)− (1 +mλ)2

}
a2m+1 − 2 (1 + 2mλ) a2m+1

]
= (1− β) q2m

(3.33)
Now considering (3.30) and (3.32), we get

pm = −qm (3.34)

and
2m2

τ 2
(1 +mλ)2 a2m+1 = (1− β)2

(
p2m + q2m

)
(3.35)

Now from (3.31) and (3.33) we get

a2m+1 =
(1− β) τ (p2m + q2m)

2m
[
(m+ 1) (1 + 2mλ)− (1 +mλ)2

] (3.36)

Now, taking absolute value of (3.36) and applying lemma 1.1 for the coefficients p2m
and q2m, we obtain

|am+1| ≤
√

2 (1− β) τ

m
[
(m+ 1) (1 + 2mλ)− (1 +mλ)2

] (3.37)

This gives the desired estimate for |am+1| as asserted in (3.26). In order to find the
bound on |a2m+1|, by subtracting (3.33) from (3.31), we get

m

τ

[
4 (1 + 2mλ) a2m+1 − 2 (m+ 1) (1 + 2mλ) a2m+1

]
= (1− β) (p2m − q2m) (3.38)

It follows from (3.34), (3.35) and (3.38)

a2m+1 =
(1− β) τ (p2m − q2m)

4m (1 + 2mλ)
+

(1− β)2 τ 2 (m+ 1) (p2m + q2m)

4m2 (1 +mλ)2
(3.39)
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Taking the absolute value of (3.39) and applying Lemma 1.1 once again for the
coefficients p2m and q2m, we obtain

|a2m+1| ≤
(1− β) |τ |

m (1 + 2mλ)
+

2τ 2 (1− β)2 (m+ 1)

m2 (1 +mλ)2
(3.40)

Which completes the proof of Theorem 3.1.

For m = 1, in Theorem 3.1, we have the following Corollary.

Corollary 3.2. Let f given by 1.3 is in the class SΣ (β, τ, λ) , then

|a2| ≤

√
2τ (1− β)

2 (1 + 2λ)− (1 + λ)2

and

|a3| ≤
|τ | (1− β)

(1 + 2λ)
+

4τ 2 (1− β)2

(1 + λ)2
.

For λ = 0, in Theorem 3.1, we have the following Corollary.

Corollary 3.3. Let f given by 1.3 is in the class S∗
Σm

(β, τ) , then

|am+1| ≤
1

m

√
2τ (1− β)

and

|a2m+1| ≤
|τ | (1− β)

m
+

2τ 2 (m+ 1) (1− β)2

m2
.

For λ = 1, in Theorem 3.1, we have the following Corollary.

Corollary 3.4. Let f given by 1.3 is in the class CΣm (β, τ) , then

|am+1| ≤
1

m

√
2τ (1− β)

m+ 1

and

|a2m+1| ≤
|τ | (1− β)

m (1 + 2m)
+

2τ 2 (1− β)2

m2 (1 +m)
.

For λ = 0, τ = 1, in Theorem 3.1, we have the following Corollary.

Corollary 3.5. Let f given by 1.3 is in the class N0
Σ,m (β, 1) , then

|am+1| ≤
1

m

√
2 (1− β)

and

|a2m+1| ≤
(1− β)

m
+

2 (m+ 1) (1− β)2

m2
.
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For λ = 0,m = 1, τ = 1, in Theorem 3.1, we have the following Corollary.

Corollary 3.6. Let f given by 1.3 is in the class δ∗Σ (β) , then

|a2| ≤
√

2 (1− β).

and
|a3| ≤ (1− β) + 4 (1− β)2 .

For λ = 1, τ = 1, in Theorem 3.1, we have the following Corollary.

Corollary 3.7. Let f given by 1.3 is in the class E∗
Σm

(0, 1, 1, β) , then

|am+1| ≤
1

m

√
2 (1− β)

m+ 1

and

|a2m+1| ≤
(1− β)

m (1 + 2m)
+

2 (1− β)2

m2 (1 +m)
.

For λ = 1,m = 1, τ = 1, in Theorem 3.1, we have the following Corollary.

Corollary 3.8. Let f given by 1.3 is in the class δΣ1 (β) , then

|a2| ≤
√

1− β.

and
|a3| ≤

1− β

3
+ (1− β)2 .
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