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Abstract

In a random walk {X,P : p(x, y)} with a countable infinite state space X and
P the matrix of transition probabilities, a basic problem is to determine whether
the walk is recurrent or transient. Among different characterisations to solve this
problem, one method uses the Laplace operator ∆. Now the Laplacian ∆ (in
the sense of distributions) plays an important role in classical potential theory
starting with the study of subharmonic functions. In this paper we develop a
parallel theory in the aspect of the random walk {X,P}, using an operator ∆φ on
X , which can be considered as a generalized version of the discrete Schrödinger
operator. In this framework, for a function φ(x) ≥ 0, we develop on X a theory
of φ-superharmonic functions leading to φ-Dirichlet problem, φ-recurrence and
φ-transience.

Keywords : recurrent and transient walk, φ-superharmonic functions, Aϕ

operator.
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1. INTRODUCTION

In a random walk {X,P} with a countable infinite state space X and P = {p(x, y)}
the matrix of transition probabilities p(x, y), let φ(x) be a density function on X .
For a real-valued function u(x) on X , φ(x)u(x) is the weighted value at any state
x ∈ X . The average function of u(x) is defined as Au(x) =

∑
y∼x p(x, y)u(y),

where y ∼ x denotes that y is a neighbour of x; the value Au(x) is well
defined, since we assume that any state x has only a finite number of neighbours
y. We shall be more interested in the operator Aφu(x) = Au(x) − φ(x)u(x).
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Remark that, when φ ≡ 1, Aφ is the laplace operator ∆ on X; when φ ̸≡ 0 and
φ(x) > 1, Aφ is a generalised version of the discrete Schrödinger operator on X;
when φ ̸≡ 0, φ(x) < 1, Aφ represents a generalised version of the discrete Helmholtz
operator on X . In this paper, we consider the case when φ ≥ 0 only.
To study the effect of the operator Aφ on the real-valued functions on X , we adopt
potential-theoretic methods on infinite graphs. Using the positive density function φ(x),
we define φ-harmonic,φ-superharmonic and φ-subharmonic functions and we try to
determine the relationship between weighted value and average value of a real valued
function on a random walk X . Some basic properties of φ-superharmonic functions
are derived which also includes poisson modification of φ-superharmonic function.
Greatest φ-harmonic minorant and Riesz-representation of positive φ-superharmonic
functions are determined. In section 4, solution of Dirichlet problem is obtained by
considering a connected finite subset of X . Potential theoretic concepts like Harnack
property and domination principle are discussed. In section 5, relation between laplace
operator-∆ and Aφ-operator is established.

2. PRELIMINARIES

Let {X,P} be a random walk with a countable infinite number of states X and
P = {p(x, y)} is the probability transition matrix, where p(x, y) denotes the transition
probability from state x to state y. We assume {X,P} is connected (i.e, for any two
distinct states there exists a path connecting them), locally finite (every state in X has
finite neighbours) and without self loops [1]. As usual, we shall take X as an infinite
graph by defining [x, y] as an edge iff p(x, y) > 0. We say two states x and y are
neighbours if there exists an edge between them and it is denoted by x ∼ y and∑

y∼x p(x, y) = 1 for every x ∈ X with p(x, y) ≥ 0 such that p(x, y) > 0 if and
only if x ∼ y ; p(x, y) = 0 if x and y are not neighbours [2].

Suppose F is a subset of an infinite random walk X , we say x is an interior vertex of
F if and only if x and all its neighbours are in F . The set of all interior points of F is
denoted by F̊ and ∂F = F\F̊ , where ∂F is referred to as the boundary of F [3] and [4].
For a positive density function φ(x) > 0 on X , we say that φ(x)u(x) is the weighted
value of u(x) at x and Au(x) =

∑
y∼x p(x, y)u(y) is the average value of u(x) at x.

write Aφu(x) = Au(x)− φ(x)u(x)

Definition: Let u be a real valued function defined on a subset F of X . Then u is
said to be φ-harmonic on F if Aφu(x) = 0 at every state x ∈ F̊ and u is said to
be φ-superharmonic on F and φ-subharmonic on F if and only if Aφu(x) ≤ 0 and
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Aφu(x) ≥ 0 at every state x ∈ F̊ respectively.

If s is φ-superharmonic and v is φ-subharmonic functions on F such that s(x) ≥ v(x),
then h is a φ-harmonic function on F such that s(x) ≥ h(x) ≥ v(x) and suppose there
is another such φ-harmonic function h1 between s(x) and v(x), then h(x) ≥ h1(x) on
F . Here h is called the greatest φ-harmonic minorant (g.h.m.) of s on F . If the
greatest φ-harmonic minorant (g.h.m.) of a non-negative φ-superharmonic function p

on F is 0 then p is called φ-potential.

A random walk is considered to be recurrent if the walk starting at a state z returns to z

infinitely often; where as, the walk starting at a state z returning to state z only finitely
often with probability one is said to be a transient walk [5].

3. SOME BASIC PROPERTIES OF φ- SUPERHARMONIC FUNCTION

Property 3.1. If u1, u2 are φ-superharmonic on a set F , then inf(u1, u2) is also
φ-superharmonic on F .

Proof. Let u = inf(u1, u2)

At a state z, suppose u(z) = u1(z)

Then,
Au(z) =

∑
y∼z

p(z, y)u(y)

≤
∑
y∼z

p(z, y)u1(y) ≤ φ(z)u1(z)

= φ(z)u(z)

This implies inf(u1, u2) is φ-superharmonic on F .

Property 3.2. Let u(x) > −∞ be a function on X such that Au(x) ≤ φ(x)u(x) for
any state x in X . If u(x) is real valued at some state z, then u(x) is real valued on X ,
hence φ-superharmonic on X .

Proof. Since φ(z)u(z) ≥
∑

y∼z p(z, y)u(y), then u(y) is real valued for every y ∼ z.
Since X is connected, this implies that u(x) is a real valued function on X, hence u is
φ-superharmonic on X .
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Property 3.3. Let {un} be a sequence of φ-superharmonic functions on F and if
limn→∞ un(x) = u(x) is finite at every vertex in F , then u is φ-superharmonic on
F [6].

Proof. For x ∈ F̊ ,

Aφun(x) ≤ 0∑
y∼x

p(x, y)un(y)− φ(x)un(x) ≤ 0

∑
y∼x

p(x, y)un(y) ≤ φ(x)un(x)

Taking limit n → ∞ on both the sides,∑
y∼x

p(x, y) lim
n→∞

un(y) ≤ φ(x) lim
n→∞

un(x), since X is locally finite, the sum is finite.

∑
y∼x

p(x, y)u(y)− φ(x)u(x) ≤ 0

Implies u is φ-superharmonic function on F .

Property 3.4. For a real-valued function f(x) on X . Let F be the family of all
φ-superharmonic functions s(x) on X such that s(x) ≥ f(x). If F is non-empty
then u(x) = infs∈F s(x) is φ superharmonic on X .

Proof. If s1, s2 are in F , then inf{s1, s2} also is in F . Thus F is a lower-directed
family; moreover X contains only a countable number of states. Hence there exist
a decreasing sequence {sn} in F , such that infs∈Fs(x) = limsn(x) which is a φ

superharmonic function on X .

Property 3.5. Poisson Modification: Let u(x) be a real-valued function on {X,P},
that is φ-superharmonic at a state z. Then there exists a function uz(x) on X such that
uz(x) ≤ u(x) on X; uz(x) = u(x) if z ̸= x; and uz(x) is φ-harmonic at z.

Proof. At state z, u(x) is a φ-superharmonic function.
⇒ Aφu(z) ≤ 0 at z ∈ F ∑

x∼z

p(z, x)u(x)− φ(z)u(z) ≤ 0
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Au(z)− φ(z)u(z) ≤ 0

Au(z) ≤ φ(z)u(z).............(1)
Define,

uz(x) =


Au(z)
φ(z)

if x = z

u(x) if x ̸= z
on X.

Then, (i) uz(x) ≤ u(x) on X
(ii) Aφuz(z) = 0

For,
Aφuz(z) ⇒

∑
y∼z

p(z, y)uz(y)− φ(z)uz(z)

If x = z, then

⇒
∑
y∼z

p(z, y)u(z)− φ(z)
Au(z)

φ(z)

⇒ Au(z)− Au(z) = 0

⇒ Aφuz(z) = 0

⇒ uz(z) is φ− harmonic.

If x ̸= z, uz(x) = u(x)

If x = z,

uz(z) =
Au(z)

φ(z)
≤ u(z)

uz(z) ≤ u(z)

Hence, uz(x) ≤ u(x).

Property 3.6. Greatest φ-harmonic minorant: Suppose u(x) ≥ v(x) on X where u(x)

is φ-superharmonic and v(x) is φ-subharmonic on a subset F . Then there exists a
φ-harmonic function h(x) on F , u(x) ≥ h(x) ≥ v(x) and if h1 is any other φ-harmonic
function between u(x) and v(x), then h(x) ≥ h1(x) on F [7].

Proof. Consider F to be the family of all φ-subharmonic functions s(x) on F , such
that s(x) ≤ u(x). We know that X is countable and F is an upper- directed family of
φ-subharmonic functions. Consequently, there exists an increasing sequence {sn(x)}
of functions in F such that supFs(x) = supsn(x) = h(x) which is a φ-subharmonic
function on F and h(x) ≤ u(x). Actually, h(x) is a φ-harmonic function. For, if
z ∈ F̊ , then the Poisson modification hz(x) is a φ-subharmonic function on F which
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also belong to F so that hz(x) ≥ h(x); but by construction h(x) is the supremum.
Hence hz(x) = h(x) which leads to the conclusion that h(x) is φ-harmonic on F .
For the maximality of the function h(x), note that if h1(x) is another such φ-harmonic
minorant of u(x), then h1(x) ∈ F so that h1(x) ≤ h(x).

Property 3.7. Riesz representation: Suppose u(x) is a positive φ-superharmonic
function on F . Then u(x) = p(x) + h(x), where p(x) is a non-negative φ-potential
on F and h(x) is a non-negative φ-harmonic function on F . This decomposition is
unique.

Proof. Let h(x) be the greatest φ-harmonic minorant of u(x) on F . Then p(x) =

u(x) − h(x) is a φ-potential on F , hence the decomposition. For the uniqueness,
suppose u(x) = p∗(x) + h∗(x) is another such decomposition, then p(x) ≥
h∗(x)− h(x) should imply that h∗(x)− h(x) ≤ 0; similarly we prove that h(x) ≤
h∗(x). Then follows the uniqueness of decomposition.

4. DIRICHLET PROBLEM

Theorem 4.1. Dirichlet Problem: Let F be a connected finite subset of X on which a
positive φ-superharmonic function exists. If f(a) is a real-valued function on ∂F , then
there exists a φ-harmonic function h(x) on F such that h(a) = f(a) for every a ∈ ∂F .

Proof. Let ξ(x) > 0 be a φ-superharmonic function on X . Since F is a finite set, we
can assume that ξ(x) ≥ 1 on F. For a state z in ∂F , let δz(x) be the Dirac function
on F . Let us consider a function V (x) on F such that V (x) = ξ(x) if x ∈ F̊ and
V (a) = δz(a) if a ∈ ∂F . Note that V (x) is a φ-superharmonic function on F . Let F

be a family of all superharmonic functions on s(x) on F such that s(x) ≥ V (x) on F .

Denote by P (z, x) = infFs(x); Then P (z, x) is φ-harmonic on F , P (z, x) = 1 if
x = z and P (z, x) = 0 on ∂F/{z}.

Define now h(x) =
∑

a∈F P (a, x)f(a) for x ∈ F .

By minimum principle for φ-harmonic functions on finite subsets, the uniqueness of the
solution is proved.

Remark 4.1. In random walks, when φ ≡ 1, P (z, x) represents the probability of a
walker starting at the state x ∈ F reaches the state z ∈ ∂F before reaching any other
state in ∂F .
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Proof. Let ρ(a) be the probability of the walker starting at the state a ∈ F and reaching
z ∈ ∂F before reaching any other state in ∂F . Then ρ(z) = 1 and ρ(a) = 0

for any a ∈ ∂F/{z}; if x ∈ F̊ then P (x) =
∑

y∼x p(x, y)ρ(y). Thus ρ(x) is a
φ-harmonic function on F when φ ≡ 1. By the uniqueness of the Dirichlet solution,
ρ(x) = p(z, x)

Theorem 4.2. Harnack property: Let x and y be two states on a subset F of X , there
exists a constant α > 0, such that u(y) ≤ αu(x) for any non negative φ- superharmonic
function u on F .

Proof. Given a φ-superharmonic function u, Aφ u(x) ≤ 0.

⇒
∑
y∼x

p(x, y)u(y)− φ(x)u(x) ≤ 0

∑
y∼x

p(x, y)u(y) ≤ φ(x)u(x)

Let x, y be two states on X . Then a path {x, x1, x2, x3, ........., xn, y} between x and y

exists.

p(x, x1)u(x1) ≤
∑
y∼x

p(x, y)u(y) ≤ φ(x)u(x)

p(x, x1)u(x1)≤φ(x)u(x)

u(x1) ≤ φ(x)
p(x,x1)

u(x)..............(1)

Aφu(x1) ≤ 0∑
y∼x1

p(x1, y)u(y) ≤ φ(x1)u(x1)

p(x1, x2)u(x2) ≤
∑
y∼x1

p(x1, y)u(y) ≤ φ(x1)u(x1)

u(x2) ≤
φ(x1)φ(x)

p(x, x1)p(x1, x2)
u(x)

Similarly, we get

p(x2, x3)u(x3) ≤ φ(x2)u(x2)
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u(x3) ≤
φ(x2)φ(x1)φ(x)

p(x, x1)p(x1, x2)p(x2, x3)
u(x)

Proceeding this way,

u(y) ≤ φ(xn)φ(xn−1)........φ(x)

p(xn, y)p(xn−1, xn).........p(x, x1)
u(x)

⇒ u(y) ≤ αu(x)

Note: The same can be deduced for two disjoint finite subsets of X .

Theorem 4.3. If there exists a positive φ-superharmonic function on X , then there
exists a positive φ-harmonic function on X .

Proof. For a positive φ-superharmonic function s on X and e is a fixed vertex on X .
Let {kn}n≥1 be an finite increasing sequence then,
e ∈ k̊n ⊂ kn ⊂ k̊n+1 ⊂ kn+1 and X = ∪kn.
Consider a function sn on X .
such that,

sn(x) =

un(x) on kn

s(x) on X\kn

un(x) is the dirichlet solution of kn with boundary s(x).

hn(x) =
sn(x)

sn(e)

hn is φ-superharmonic on X .

Consequently, Aφhn(x) = 0 for x ∈ k̊n and hn(e) = 1

By Harnack property, For any y ∈ X , α(y) > 0 is a constant. Hence u(y) ≤
α(y)u(e) for a positive φ-superharmonic function.
Certainly, for any x ∈ X , hn(x) ≤ α(x)hn(e) and hn(x) ≤ α(x), that is {hn(x)} is a
sequence of real numbers which is bounded. For X being a countable set, let us extract
a subsequence {h′

n} from {hn} so that for each x ∈ X ,



φ-Superharmonic Functions on Infinite Random Walks 847

h(x) = limn→∞ h
′
n(x) exists .

For a finite set F in X , an integer m can be obtained such that h′
n is φ-harmonic at each

vertex of F if n ≥ m. Hence, h is φ-harmonic at each vertex of F . For an arbitrary
finite set F , h(x) is a non-negative φ-harmonic function on X . Since h(z) = 1, by the
Minimum Principle, h > 0 on X . Hence proving the existence of a positive φ-harmonic
function on X .

Theorem 4.4. Domination principle: Let p be a φ-potential with φ-harmonic support
U . If s is a non-negative φ-superharmonic function on X such that s ≥ p on U . Then
s ≥ p on X .

Proof. Suppose p is a φ-potential with φ-harmonic support U and s be a
φ-superharmonic function on X such that s ≥ p on U .
Let u = inf(s, p), then Aφu(x) ≤ 0.
u ≤ p on X (since p is φ-potential)
u = p on U (since U harmonic support of S in X)
Suppose v = p− u on X . Then for a ∈ U ,

Aφv(a) =
∑
y∼a

p(a, y)v(y)− φ(a)u(a)

=
∑

y ̸=z∼a

p(a, y)v(y) + p(a, z)v(z)− φ(a)v(a)

≥
∑

y ̸=z∼a

p(a, y)v(y) + p(a, z)v(z)− φ(a)v(a)

≥
∑
y∼a

p(a, y)v(y)− φ(a)v(a)

≥ 0

Aφv(a) ≥ 0

For x ∈ X\U ,

Aφv(x) = Aφp(x)− Aφu(x) = 0− Aφu(x) ≥ 0

⇒ Aφv(x) ≥ 0

⇒ v is φ-subharmonic on X and v ≤ p on X.
Thus v ≤ 0 on X , such that p ≤ u but, u ≤ p ⇒ p = u.
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Hence, s ≥ p on X [1].

5. WHEN φ(X) ≥ Aξ(X)/ξ(X) FOR SOME REAL VALUED FUNCTION
ξ(X) > 0

When φ(x) ≥ Aξ(x)/ξ(x) for some real valued function ξ(x) > 0. In the following,
assume that a function ξ(x) > 0 on X exists, such that φ(x) ≥ Aξ(x)

ξ(x)
.

Remark that if ξ(x) ≥ 1 for all x in X , then this condition is satisfied with ξ(x) = 1;
also, since ξ(x) is a φ-superharmonic function on X by the assumption, from property
(7) it follows that there is a function µ(x) > 0 such that φ(x) = Aµ(x)\µ(x).
Let t(x, y) = p(x, y)µ(y) for any pair of states x, y. Then {X, t(x, y)} becomes an
infinite network in the sense of Lecture Notes [3]. The Laplace operator ∆ for this
network is given by ∆u(x) =

∑
y∼x t(x, y)[u(y)− u(x)].

Lemma 5.1. For any real-valued function u(x) on X , Aφu(x) = ∆[u(x)
µ(x)

].

Proof. Aφu(x) = Au(x)− φ(x)u(x)

= Au(x)− Aµ(x)

µ(x)
u(x)

=
∑
y∼x

p(x, y)u(y)−
∑
y∼x

p(x, y)µ(y)
u(x)

µ(x)

=
∑
y∼x

t(x, y)
u(y)

µ(y)
−
∑
y∼x

t(x, y)
u(x)

µ(x)

=
∑
y∼x

t(x, y)(
u(y)

µ(y)
− u(x)

µ(x)
)

= ∆[
u(x)

µ(x)
]

.

Consequence: From the above lemma, a real valued function u(x) on X is φ-harmonic
( respectively φ-superharmonic ) at a state x iff u(x)

µ(x)
is ∆-harmonic (respectively

∆-superharmonic) at x in the network {X, t(x, y)}.
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