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Abstract

In a random walk {X, P : p(z,y)} with a countable infinite state space X and
P the matrix of transition probabilities, a basic problem is to determine whether
the walk is recurrent or transient. Among different characterisations to solve this
problem, one method uses the Laplace operator A. Now the Laplacian A (in
the sense of distributions) plays an important role in classical potential theory
starting with the study of subharmonic functions. In this paper we develop a
parallel theory in the aspect of the random walk { X, P}, using an operator A, on
X, which can be considered as a generalized version of the discrete Schrodinger
operator. In this framework, for a function ¢(x) > 0, we develop on X a theory
of p-superharmonic functions leading to ¢-Dirichlet problem, ¢-recurrence and
(p-transience.

Keywords : recurrent and transient walk, @-superharmonic functions, Ay
operator.
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1. INTRODUCTION

In a random walk {X, P} with a countable infinite state space X and P = {p(z,y)}
the matrix of transition probabilities p(z,y), let p(z) be a density function on X.
For a real-valued function u(z) on X, ¢(x)u(x) is the weighted value at any state
z € X. The average function of u(x) is defined as Au(z) = > . p(z,y)u(y),
where y ~ x denotes that y is a neighbour of x; the value Au(x) is well
defined, since we assume that any state x has only a finite number of neighbours
y. We shall be more interested in the operator A,u(z) = Au(x) — p(z)u(x).
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Remark that, when ¢ = 1, A, is the laplace operator A on X; when ¢ # 0 and
p(x) > 1, A, is a generalised version of the discrete Schrodinger operator on X;
when ¢ # 0, p(x) < 1, A, represents a generalised version of the discrete Helmholtz
operator on X. In this paper, we consider the case when ¢ > 0 only.

To study the effect of the operator A, on the real-valued functions on X, we adopt
potential-theoretic methods on infinite graphs. Using the positive density function (),
we define ¢-harmonic,p-superharmonic and ¢-subharmonic functions and we try to
determine the relationship between weighted value and average value of a real valued
function on a random walk X. Some basic properties of -superharmonic functions
are derived which also includes poisson modification of ¢-superharmonic function.
Greatest ¢-harmonic minorant and Riesz-representation of positive -superharmonic
functions are determined. In section 4, solution of Dirichlet problem is obtained by
considering a connected finite subset of X. Potential theoretic concepts like Harnack
property and domination principle are discussed. In section 5, relation between laplace
operator-A and A, -operator is established.

2. PRELIMINARIES

Let {X, P} be a random walk with a countable infinite number of states X and
P = {p(z,y)} is the probability transition matrix, where p(x, y) denotes the transition
probability from state x to state y. We assume {X, P} is connected (i.e, for any two
distinct states there exists a path connecting them), locally finite (every state in X has
finite neighbours) and without self loops [1]. As usual, we shall take X as an infinite
graph by defining [z,y| as an edge iff p(z,y) > 0. We say two states x and y are
neighbours if there exists an edge between them and it is denoted by = ~ y and
> e P(@,y) = 1 for every z € X with p(z,y) > 0 such that p(z,y) > 0 if and
only if z ~ y ; p(x,y) = 0 if x and y are not neighbours [2].

Suppose F' is a subset of an infinite random walk X, we say x is an interior vertex of
Fif and only if x and all its neighbours are in F'. The set of all interior points of F'is
denoted by FanddF = F \F , where OF is referred to as the boundary of F' [3] and [4].
For a positive density function p(z) > 0 on X, we say that p(x)u(x) is the weighted
value of u(z) at z and Au(z) = >, _, p(z,y)u(y) is the average value of u(x) at z.
write Aju(z) = Au(z) — p(x)u(x)

Definition: Let v be a real valued function defined on a subset F' of X. Then u is
said to be ¢-harmonic on F' if A, u(x) = 0 at every state © € F and u is said to
be ¢-superharmonic on F' and ¢-subharmonic on F if and only if A u(x) < 0 and
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A,u(z) > 0 at every state x € [ respectively.

If s is p-superharmonic and v is ¢-subharmonic functions on F' such that s(x) > v(z),
then h is a ¢-harmonic function on F’ such that s(x) > h(x) > v(x) and suppose there
is another such ¢-harmonic function k' between s(x) and v(z), then h(z) > h'(z) on
F. Here h is called the greatest (-harmonic minorant (g.h.m.) of s on F. If the
greatest ¢-harmonic minorant (g.h.m.) of a non-negative p-superharmonic function p
on F'is 0 then p is called (p-potential.

A random walk is considered to be recurrent if the walk starting at a state z returns to 2
infinitely often; where as, the walk starting at a state z returning to state z only finitely
often with probability one is said to be a transient walk [5].

3. SOME BASIC PROPERTIES OF ¢- SUPERHARMONIC FUNCTION

Property 3.1. If uy,us are p-superharmonic on a set F, then inf(uy,us) is also
p-superharmonic on F'.

Proof. Letu = inf(uy,uz)
At a state z, suppose u(z) = uy(2)
Then,

Au(z) = p(z,y)uly)

y~z

<D p(zyu(y) < e(z)u(z)

Y~z

= p(2)u(2)

This implies in f(u1, uz) is @-superharmonic on F.
O]

Property 3.2. Let u(x) > —oo be a function on X such that Au(z) < ¢(z)u(x) for
any state x in X. If u(x) is real valued at some state z, then u(x) is real valued on X,
hence p-superharmonic on X.

Proof. Since p(z)u(z) > >, . p(2z, y)u(y), then u(y) is real valued for every y ~ z.
Since X is connected, this implies that u(x) is a real valued function on X, hence u is
p-superharmonic on X. O]



842 N. Nathiya, M. Surya Priya, P. Swarnambigai

Property 3.3. Let {u,} be a sequence of p-superharmonic functions on F and if
lim,, o un(z) = w(x) is finite at every vertex in F, then u is p-superharmonic on
F[6].

Proof. Forx € Z%,

Ayu,(z) <0
> (@ y)unly) — p(@)un(z) <0

Y~z

> p(@,y)un(y) < o(w)un(z)

Yy~

Taking limit n — oo on both the sides,

Zp(a:,y) lim wu,(y) < ¢(x) im wu,(z), since X islocally finite, the sumis finite.
n—oo

n—oo
Y~z
> pla,y)uly) — plz)ulr) <0
Yy~
Implies w is ¢-superharmonic function on F'. [

Property 3.4. For a real-valued function f(x) on X. Let F be the family of all
p-superharmonic functions s(x) on X such that s(x) > f(z). If F is non-empty

then u(z) = infsc 7 s(x) is @ superharmonic on X.

Proof. 1f s1, s are in Z, then inf{sy, s2} also is in #. Thus .7 is a lower-directed
family; moreover X contains only a countable number of states. Hence there exist
a decreasing sequence {s,} in .#, such that inf,czs(x) = lims,(x) which is a ¢
superharmonic function on X.

]

Property 3.5. Poisson Modification: Let u(x) be a real-valued function on {X, P},
that is p-superharmonic at a state 7. Then there exists a function u,(z) on X such that

u,(z) <wu(x)onX; u,(x) = u(x) if z # x; and u,(x) is p-harmonic at z.

Proof. At state z, u(x) is a p-superharmonic function.
= Ayu(z) <0atz e F

ZP(Z>$)U($) —p(2)u(z) <0

T~z
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Au(z) < @(2)u(2)eereennne. (1)
Define,
Au(z) . o
u,(z) =4 #& if =z on X.

Then, (i) u.(z) < u(z) on X
(ii) Ayu.(z) =0
For,

Apu(2) = ) (2, y)us(y) — p(2)us(2)

Y~z

If x = z, then

= 370z, y)u(z) — 9(2)

Y~z
= Au(z) — Au(z) =0
= Ayu,(2) =0
= u,(2) is ¢ — harmonic.

If v # 2, u,(z) = u(z)
Ifz ==z,

Hence, u.(z) < u(x).

]

Property 3.6. Greatest p-harmonic minorant: Suppose u(x) > v(z) on X where u(x)
is @-superharmonic and v(x) is @-subharmonic on a subset F. Then there exists a
p-harmonic function h(x) on F, u(z) > h(x) > v(x) and if hy is any other p-harmonic
function between u(z) and v(x), then h(x) > hi(x) on F [7].

Proof. Consider F to be the family of all ¢-subharmonic functions s(z) on F, such
that s(z) < u(x). We know that X is countable and F is an upper- directed family of
-subharmonic functions. Consequently, there exists an increasing sequence {s,(x)}
of functions in F such that suprs(x) = sups,(z) = h(xz) which is a ¢-subharmonic
function on F' and h(z) < w(z). Actually, h(z) is a p-harmonic function. For, if
z € F, then the Poisson modification h,(z) is a ¢-subharmonic function on F' which
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also belong to F so that h,(xz) > h(x); but by construction h(z) is the supremum.
Hence h,(z) = h(z) which leads to the conclusion that i(x) is p-harmonic on F.

For the maximality of the function h(x), note that if h;(z) is another such p-harmonic
minorant of u(z), then hy(z) € F so that hy(x) < h(x). O

Property 3.7. Riesz representation: Suppose u(x) is a positive p-superharmonic
function on F. Then u(x) = p(z) + h(x), where p(x) is a non-negative p-potential
on F and h(z) is a non-negative p-harmonic function on F. This decomposition is

unique.

Proof. Let h(x) be the greatest ¢-harmonic minorant of u(x) on F. Then p(z) =
u(z) — h(x) is a p-potential on F', hence the decomposition. For the uniqueness,
suppose u(x) = p*(x) + h*(z) is another such decomposition, then p(z)
h*(z) — h(z) should imply that h*(z) — h(xz) < 0; similarly we prove that h(x)
h*(z). Then follows the uniqueness of decomposition.

LT IN IV

4. DIRICHLET PROBLEM

Theorem 4.1. Dirichlet Problem: Let F' be a connected finite subset of X on which a
positive p-superharmonic function exists. If f(a) is a real-valued function on OF, then

there exists a p-harmonic function h(x) on F such that h(a) = f(a) for every a € OF.

Proof. Let £(x) > 0 be a ¢-superharmonic function on X. Since F is a finite set, we
can assume that {(x) > 1 on F. For a state z in 0F), let 0,(x) be the Dirac function
on F. Let us consider a function V(z) on F such that V(z) = &(z) if z € F and
V(a) = 6.(a) if a € OF. Note that V' (z) is a ¢-superharmonic function on F'. Let .%
be a family of all superharmonic functions on s(x) on F' such that s(z) > V(x) on F.

Denote by P(z,z) = infgzs(z); Then P(z,z) is ¢-harmonic on F, P(z,x) = 1 if
x=zand P(z,z) =0on 0F/{z}.

Define now h(z) = Y . P(a,z)f(a) forz € F.

By minimum principle for ¢-harmonic functions on finite subsets, the uniqueness of the
solution is proved. [

Remark 4.1. In random walks, when ¢ = 1, P(z,x) represents the probability of a
walker starting at the state x € F reaches the state =z € OF before reaching any other
state in OF.
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Proof. Let p(a) be the probability of the walker starting at the state € F' and reaching
z € OF before reaching any other state in OF. Then p(z) = 1 and p(a) = 0
for any a € 9F/{z}; if + € F then P(z) = > yme P(@y)p(y). Thus p(z) is a
p-harmonic function on ' when ¢ = 1. By the uniqueness of the Dirichlet solution,
p(z) = p(z,z) O
Theorem 4.2. Harnack property: Let x and y be two states on a subset F' of X, there
exists a constant o > 0, such that u(y) < au(x) for any non negative p- superharmonic
function v on F.

Proof. Given a p-superharmonic function u, A, u(z) < 0.

= plz,y)uly) — e(x)u(z) <0

Y~

S ple,y)uly) < o))

Y~z

Let z, y be two states on X. Then a path {x, x1, 22, 3, ......... ,Tn,y} between x and y
exists.

plo,z)u(z) < plr, y)uly) < p(r)u()

y~x

u(zy) < pé(’i)l)u(x) .............. (1)
Ayu(zy) <0
> pleny)uly) < pla)u(e)

pler, wa)ulws) < D play,y)uly) < @(wr)u()

Yy~x1

o(x1)e(T)
ulez) < p(x, z1)p(T1, T2)

Similarly, we get

p(x2, x3)u(r3) < @(w2)u(z2)
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p(x, x1)p(x1, 22)p(22, T3)

Proceeding this way,

() (Tp—1) e ()
DT, Y)D(Tp1, Tp) e p(z, x1)

u(y) <

Note: The same can be deduced for two disjoint finite subsets of X.

Theorem 4.3. If there exists a positive p-superharmonic function on X, then there

exists a positive p-harmonic function on X.

Proof. For a positive p-superharmonic function s on X and e is a fixed vertex on X.
Let {k, },>1 be an finite increasing sequence then,

e € kp C kp C kni1 C kpit and X = Uk,

Consider a function s,, on X.

such that,

up(x) on k,

s(x)  on X\k,

sn(z) =

un () is the dirichlet solution of k,, with boundary s(z).

h,, is @-superharmonic on X.
Consequently, A,h,(z) =0 forz € ki and h,(e) = 1

By Harnack property, For any y € X, a(y) > 0 is a constant. Hence u(y) <
a(y)u(e) for a positive p-superharmonic function.
Certainly, for any = € X, h,(z) < a(z)h,(e) and h,(z) < a(z), that is {h,(z)} is a
sequence of real numbers which is bounded. For X being a countable set, let us extract
a subsequence {A,,} from {h,,} so that for each z € X,
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h(z) = lim,_. A, (z) exists .
For a finite set F' in X, an integer m can be obtained such that /,, is p-harmonic at each
vertex of F'if n > m. Hence, h is ¢-harmonic at each vertex of F'. For an arbitrary
finite set F', h(x) is a non-negative p-harmonic function on X. Since h(z) = 1, by the
Minimum Principle, » > 0 on X. Hence proving the existence of a positive p-harmonic
function on X.

]

Theorem 4.4. Domination principle: Let p be a p-potential with p-harmonic support
U. If s is a non-negative p-superharmonic function on X such that s > p on U. Then
s>pon X.

Proof. Suppose p is a -potential with @-harmonic support U and s be a
p-superharmonic function on X such that s > pon U.

Letu = inf(s,p), then A,u(z) <O0.

u < pon X (since p is p-potential)

u = p on U (since U harmonic support of .S in X)

Suppose v = p — w on X. Then for a € U,

Agv(a) =Y pla,y)v(y) — p(a)u(a)

y~a

= > pla,y)o(y) + pla, 2)o(z) — pla)v(a)

y#z~a
> > pla,y)o(y) + pla, 2)v(z) — pla)v(a)
yF#zra
> " pla,y)o(y) — pla)o(a)
>0
Ayv(a) >0

For z € X\U,
Agv(z) = Agp(x) — Apu(z) =0 — Ayu(z) >0

= Ay,u(z) >0

= v 18 -subharmonic on X and v < p on X.
Thus v < 0on X, suchthatp <wubut,u < p=p=u.
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Hence, s > pon X [1]. ]

5. WHEN ¢(X) > A¢(X)/¢(X) FOR SOME REAL VALUED FUNCTION
£(X) > 0

When () > A&(x)/&(z) for some real valued function £(z) > 0. In the following,
assume that a function {(z) > 0 on X exists, such that p(z) > ‘g—gf)).

Remark that if £(x) > 1 for all = in X, then this condition is satisfied with £(x) = 1;
also, since £(x) is a p-superharmonic function on X by the assumption, from property
(7) it follows that there is a function p(z) > 0 such that p(z) = Au(x)\p(z).

Let t(x,y) = p(z,y)u(y) for any pair of states z,y. Then {X,¢(z,y)} becomes an
infinite network in the sense of Lecture Notes [3]. The Laplace operator A for this

network is given by Au(z) = >_, _, t(z,y)[u(y) — u(z)].

Lemma 5.1. For any real-valued function u(x) on X, A u(z) = A[==].

Proof. Aju(x) = Au(z) — p(x)u(z)

= Au(z) — () u(z)
=Y plx,y)uly) = Y plz, y)u(y)%

N ) S )
=2 ’y)u(y) 2t ’y)u(l‘)

Y~ y~z

- Zm,yx% ),

s
=
S

y~z

]

Consequence: From the above lemma, a real valued function u(x) on X is ¢-harmonic

( respectively (-superharmonic ) at a state x iff % is A-harmonic (respectively

A-superharmonic) at  in the network { X, t(x,y)}.
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