φ -Superharmonic Functions on Infinite Random Walks

N. Nathiya¹, M. Surya Priya², P. Swarnambigai³

Division of Mathematics, School of Advanced Sciences, Vellore Institute of Technology Chennai, Chennai-600127, India.

Abstract

In a random walk $\{X,P:p(x,y)\}$ with a countable infinite state space X and P the matrix of transition probabilities, a basic problem is to determine whether the walk is recurrent or transient. Among different characterisations to solve this problem, one method uses the Laplace operator Δ . Now the Laplacian Δ (in the sense of distributions) plays an important role in classical potential theory starting with the study of subharmonic functions. In this paper we develop a parallel theory in the aspect of the random walk $\{X,P\}$, using an operator Δ_{φ} on X, which can be considered as a generalized version of the discrete Schrödinger operator. In this framework, for a function $\varphi(x) \geq 0$, we develop on X a theory of φ -superharmonic functions leading to φ -Dirichlet problem, φ -recurrence and φ -transience.

Keywords : recurrent and transient walk, φ -superharmonic functions, A_{ϕ} operator.

2020 AMS subject classification: 60J45, 31C20.

1. INTRODUCTION

In a random walk $\{X,P\}$ with a countable infinite state space X and $P=\{p(x,y)\}$ the matrix of transition probabilities p(x,y), let $\varphi(x)$ be a density function on X. For a real-valued function u(x) on X, $\varphi(x)u(x)$ is the weighted value at any state $x\in X$. The average function of u(x) is defined as $Au(x)=\sum_{y\sim x}p(x,y)u(y)$, where $y\sim x$ denotes that y is a neighbour of x; the value Au(x) is well defined, since we assume that any state x has only a finite number of neighbours y. We shall be more interested in the operator $A_{\varphi}u(x)=Au(x)-\varphi(x)u(x)$.

Remark that, when $\varphi \equiv 1$, A_{φ} is the laplace operator Δ on X; when $\varphi \not\equiv 0$ and $\varphi(x) > 1$, A_{φ} is a generalised version of the discrete Schrödinger operator on X; when $\varphi \not\equiv 0$, $\varphi(x) < 1$, A_{φ} represents a generalised version of the discrete Helmholtz operator on X. In this paper, we consider the case when $\varphi \geq 0$ only.

To study the effect of the operator A_{φ} on the real-valued functions on X, we adopt potential-theoretic methods on infinite graphs. Using the positive density function $\varphi(x)$, we define φ -harmonic, φ -superharmonic and φ -subharmonic functions and we try to determine the relationship between weighted value and average value of a real valued function on a random walk X. Some basic properties of φ -superharmonic functions are derived which also includes poisson modification of φ -superharmonic function. Greatest φ -harmonic minorant and Riesz-representation of positive φ -superharmonic functions are determined. In section 4, solution of Dirichlet problem is obtained by considering a connected finite subset of X. Potential theoretic concepts like Harnack property and domination principle are discussed. In section 5, relation between laplace operator- Δ and A_{φ} -operator is established.

2. PRELIMINARIES

Let $\{X,P\}$ be a random walk with a countable infinite number of states X and $P=\{p(x,y)\}$ is the probability transition matrix, where p(x,y) denotes the transition probability from state x to state y. We assume $\{X,P\}$ is connected (i.e, for any two distinct states there exists a path connecting them), locally finite (every state in X has finite neighbours) and without self loops [1]. As usual, we shall take X as an infinite graph by defining [x,y] as an edge iff p(x,y)>0. We say two states x and y are neighbours if there exists an edge between them and it is denoted by $x\sim y$ and $\sum_{y\sim x}p(x,y)=1$ for every $x\in X$ with $p(x,y)\geq 0$ such that p(x,y)>0 if and only if $x\sim y$; p(x,y)=0 if x and y are not neighbours [2].

Suppose F is a subset of an infinite random walk X, we say x is an interior vertex of F if and only if x and all its neighbours are in F. The set of all interior points of F is denoted by \mathring{F} and $\partial F = F \backslash \mathring{F}$, where ∂F is referred to as the boundary of F [3] and [4]. For a positive density function $\varphi(x) > 0$ on X, we say that $\varphi(x)u(x)$ is the weighted value of u(x) at x and $Au(x) = \sum_{y \sim x} p(x,y)u(y)$ is the average value of u(x) at x. write $A_{\varphi}u(x) = Au(x) - \varphi(x)u(x)$

Definition: Let u be a real valued function defined on a subset F of X. Then u is said to be φ -harmonic on F if $A_{\varphi}u(x)=0$ at every state $x\in \mathring{F}$ and u is said to be φ -superharmonic on F and φ -subharmonic on F if and only if $A_{\varphi}u(x)\leq 0$ and

 $A_{\varphi}u(x) \geq 0$ at every state $x \in \mathring{F}$ respectively.

If s is φ -superharmonic and v is φ -subharmonic functions on F such that $s(x) \geq v(x)$, then h is a φ -harmonic function on F such that $s(x) \geq h(x) \geq v(x)$ and suppose there is another such φ -harmonic function h^1 between s(x) and v(x), then $h(x) \geq h^1(x)$ on F. Here h is called the **greatest** φ -harmonic **minorant** (g.h.m.) of s on F. If the greatest φ -harmonic minorant (g.h.m.) of a non-negative φ -superharmonic function p on F is s0 then s0 is called s0-potential.

A random walk is considered to be recurrent if the walk starting at a state z returns to z infinitely often; where as, the walk starting at a state z returning to state z only finitely often with probability one is said to be a transient walk [5].

3. SOME BASIC PROPERTIES OF φ - SUPERHARMONIC FUNCTION

Property 3.1. If u_1, u_2 are φ -superharmonic on a set F, then $inf(u_1, u_2)$ is also φ -superharmonic on F.

Proof. Let $u = inf(u_1, u_2)$ At a state z, suppose $u(z) = u_1(z)$ Then,

$$Au(z) = \sum_{y \sim z} p(z, y)u(y)$$

$$\leq \sum_{y \sim z} p(z, y) u_1(y) \leq \varphi(z) u_1(z)$$
$$= \varphi(z) u(z)$$

This implies $inf(u_1, u_2)$ is φ -superharmonic on F.

Property 3.2. Let $u(x) > -\infty$ be a function on X such that $Au(x) \le \varphi(x)u(x)$ for any state x in X. If u(x) is real valued at some state z, then u(x) is real valued on X, hence φ -superharmonic on X.

Proof. Since $\varphi(z)u(z) \geq \sum_{y \sim z} p(z,y)u(y)$, then u(y) is real valued for every $y \sim z$. Since X is connected, this implies that u(x) is a real valued function on X, hence u is φ -superharmonic on X.

Property 3.3. Let $\{u_n\}$ be a sequence of φ -superharmonic functions on F and if $\lim_{n\to\infty} u_n(x) = u(x)$ is finite at every vertex in F, then u is φ -superharmonic on F [6].

Proof. For $x \in \mathring{F}$,

$$A_{\varphi}u_n(x) \le 0$$

$$\sum_{y \sim x} p(x, y)u_n(y) - \varphi(x)u_n(x) \le 0$$

$$\sum_{y \sim x} p(x, y)u_n(y) \le \varphi(x)u_n(x)$$

Taking limit $n \to \infty$ on both the sides,

 $\sum_{y \sim x} p(x,y) \lim_{n \to \infty} u_n(y) \le \varphi(x) \lim_{n \to \infty} u_n(x), \text{ since } X \text{ is locally finite, the sum is finite.}$

$$\sum_{y \sim x} p(x, y)u(y) - \varphi(x)u(x) \le 0$$

Implies u is φ -superharmonic function on F.

Property 3.4. For a real-valued function f(x) on X. Let \mathscr{F} be the family of all φ -superharmonic functions s(x) on X such that $s(x) \geq f(x)$. If \mathscr{F} is non-empty then $u(x) = \inf_{s \in \mathscr{F}} s(x)$ is φ superharmonic on X.

Proof. If s_1 , s_2 are in \mathscr{F} , then $\inf\{s_1,s_2\}$ also is in \mathscr{F} . Thus \mathscr{F} is a lower-directed family; moreover X contains only a countable number of states. Hence there exist a decreasing sequence $\{s_n\}$ in \mathscr{F} , such that $\inf_{s\in\mathscr{F}}s(x)=\lim_{n\to\infty}(x)$ which is a φ superharmonic function on X.

Property 3.5. Poisson Modification: Let u(x) be a real-valued function on $\{X, P\}$, that is φ -superharmonic at a state z. Then there exists a function $u_z(x)$ on X such that $u_z(x) \leq u(x)$ on X; $u_z(x) = u(x)$ if $z \neq x$; and $u_z(x)$ is φ -harmonic at z.

Proof. At state z, u(x) is a φ -superharmonic function. $\Rightarrow A_{\varphi}u(z) \leq 0$ at $z \in F$

$$\sum_{x \sim z} p(z, x)u(x) - \varphi(z)u(z) \le 0$$

$$Au(z) - \varphi(z)u(z) \le 0$$

$$Au(z) \le \varphi(z)u(z)$$
....(1)

Define,

$$u_z(x) = \begin{cases} \frac{Au(z)}{\varphi(z)} & if \quad x = z\\ u(x) & if \quad x \neq z \end{cases}$$
 on X .

Then, (i) $u_z(x) \le u(x)$ on X

(ii)
$$A_{\omega}u_{z}(z)=0$$

For,

$$A_{\varphi}u_z(z) \Rightarrow \sum_{y \sim z} p(z, y)u_z(y) - \varphi(z)u_z(z)$$

If x = z, then

$$\Rightarrow \sum_{y \sim z} p(z, y)u(z) - \varphi(z) \frac{Au(z)}{\varphi(z)}$$

$$\Rightarrow Au(z) - Au(z) = 0$$

$$\Rightarrow A_{\varphi}u_{z}(z) = 0$$

$$\Rightarrow u_{z}(z) \quad is \quad \varphi - harmonic.$$

If $x \neq z$, $u_z(x) = u(x)$

If x = z,

$$u_z(z) = \frac{Au(z)}{\varphi(z)} \le u(z)$$
$$u_z(z) \le u(z)$$

Hence, $u_z(x) \leq u(x)$.

Property 3.6. Greatest φ -harmonic minorant: Suppose $u(x) \geq v(x)$ on X where u(x) is φ -superharmonic and v(x) is φ -subharmonic on a subset F. Then there exists a φ -harmonic function h(x) on F, $u(x) \geq h(x) \geq v(x)$ and if h_1 is any other φ -harmonic function between u(x) and v(x), then $h(x) \geq h_1(x)$ on F [7].

Proof. Consider \mathcal{F} to be the family of all φ -subharmonic functions s(x) on F, such that $s(x) \leq u(x)$. We know that X is countable and \mathcal{F} is an upper-directed family of φ -subharmonic functions. Consequently, there exists an increasing sequence $\{s_n(x)\}$ of functions in \mathcal{F} such that $sup_{\mathcal{F}}s(x) = sups_n(x) = h(x)$ which is a φ -subharmonic function on F and $h(x) \leq u(x)$. Actually, h(x) is a φ -harmonic function. For, if $z \in \mathring{F}$, then the Poisson modification $h_z(x)$ is a φ -subharmonic function on F which

also belong to \mathcal{F} so that $h_z(x) \geq h(x)$; but by construction h(x) is the supremum. Hence $h_z(x) = h(x)$ which leads to the conclusion that h(x) is φ -harmonic on F. For the maximality of the function h(x), note that if $h_1(x)$ is another such φ -harmonic minorant of u(x), then $h_1(x) \in \mathcal{F}$ so that $h_1(x) \leq h(x)$.

Property 3.7. Riesz representation: Suppose u(x) is a positive φ -superharmonic function on F. Then u(x) = p(x) + h(x), where p(x) is a non-negative φ -potential on F and h(x) is a non-negative φ -harmonic function on F. This decomposition is unique.

Proof. Let h(x) be the greatest φ -harmonic minorant of u(x) on F. Then p(x) = u(x) - h(x) is a φ -potential on F, hence the decomposition. For the uniqueness, suppose $u(x) = p^*(x) + h^*(x)$ is another such decomposition, then $p(x) \geq h^*(x) - h(x)$ should imply that $h^*(x) - h(x) \leq 0$; similarly we prove that $h(x) \leq h^*(x)$. Then follows the uniqueness of decomposition.

4. DIRICHLET PROBLEM

Theorem 4.1. Dirichlet Problem: Let F be a connected finite subset of X on which a positive φ -superharmonic function exists. If f(a) is a real-valued function on ∂F , then there exists a φ -harmonic function h(x) on F such that h(a) = f(a) for every $a \in \partial F$.

Proof. Let $\xi(x) > 0$ be a φ -superharmonic function on X. Since F is a finite set, we can assume that $\xi(x) \geq 1$ on F. For a state z in ∂F , let $\delta_z(x)$ be the Dirac function on F. Let us consider a function V(x) on F such that $V(x) = \xi(x)$ if $x \in \mathring{F}$ and $V(a) = \delta_z(a)$ if $a \in \partial F$. Note that V(x) is a φ -superharmonic function on F. Let \mathscr{F} be a family of all superharmonic functions on s(x) on F such that $s(x) \geq V(x)$ on F.

Denote by $P(z,x) = inf_{\mathscr{F}}s(x)$; Then P(z,x) is φ -harmonic on F, P(z,x) = 1 if x = z and P(z,x) = 0 on $\partial F/\{z\}$.

Define now $h(x) = \sum_{a \in F} P(a, x) f(a)$ for $x \in F$.

By minimum principle for φ -harmonic functions on finite subsets, the uniqueness of the solution is proved.

Remark 4.1. In random walks, when $\varphi \equiv 1$, P(z,x) represents the probability of a walker starting at the state $x \in F$ reaches the state $z \in \partial F$ before reaching any other state in ∂F .

Proof. Let $\rho(a)$ be the probability of the walker starting at the state $a \in F$ and reaching $z \in \partial F$ before reaching any other state in ∂F . Then $\rho(z) = 1$ and $\rho(a) = 0$ for any $a \in \partial F/\{z\}$; if $x \in \mathring{F}$ then $P(x) = \sum_{y \sim x} p(x,y)\rho(y)$. Thus $\rho(x)$ is a φ -harmonic function on F when $\varphi \equiv 1$. By the uniqueness of the Dirichlet solution, $\rho(x) = p(z,x)$

Theorem 4.2. Harnack property: Let x and y be two states on a subset F of X, there exists a constant $\alpha > 0$, such that $u(y) \leq \alpha u(x)$ for any non negative φ - superharmonic function u on F.

Proof. Given a φ -superharmonic function $u, A_{\varphi} u(x) \leq 0$.

$$\Rightarrow \sum_{y \sim x} p(x, y)u(y) - \varphi(x)u(x) \le 0$$

$$\sum_{y \sim x} p(x, y)u(y) \le \varphi(x)u(x)$$

Let x, y be two states on X. Then a path $\{x, x_1, x_2, x_3, \dots, x_n, y\}$ between x and y exists.

$$p(x, x_1)u(x_1) \le \sum_{y \sim x} p(x, y)u(y) \le \varphi(x)u(x)$$

$$p(x,x_1)u(x_1) \le \varphi(x)u(x)$$

$$u(x_1) \le \frac{\varphi(x)}{p(x,x_1)} u(x)$$
....(1)

$$A_{\varphi}u(x_1) \leq 0$$

$$\sum_{y \sim x_1} p(x_1, y) u(y) \le \varphi(x_1) u(x_1)$$

$$p(x_1, x_2)u(x_2) \le \sum_{y \sim x_1} p(x_1, y)u(y) \le \varphi(x_1)u(x_1)$$

$$u(x_2) \le \frac{\varphi(x_1)\varphi(x)}{p(x,x_1)p(x_1,x_2)}u(x)$$

Similarly, we get

$$p(x_2, x_3)u(x_3) \le \varphi(x_2)u(x_2)$$

$$u(x_3) \le \frac{\varphi(x_2)\varphi(x_1)\varphi(x)}{p(x_1, x_1)p(x_1, x_2)p(x_2, x_3)}u(x)$$

Proceeding this way,

$$u(y) \le \frac{\varphi(x_n)\varphi(x_{n-1})\dots\varphi(x)}{p(x_n,y)p(x_{n-1},x_n)\dotsp(x,x_1)}u(x)$$

$$\Rightarrow u(y) \le \alpha u(x)$$

Note: The same can be deduced for two disjoint finite subsets of X.

Theorem 4.3. If there exists a positive φ -superharmonic function on X, then there exists a positive φ -harmonic function on X.

Proof. For a positive φ -superharmonic function s on X and e is a fixed vertex on X. Let $\{k_n\}_{n\geq 1}$ be an finite increasing sequence then,

$$e \in \mathring{k}_n \subset k_n \subset \mathring{k}_{n+1} \subset k_{n+1} \text{ and } X = \cup k_n.$$

Consider a function s_n on X.

such that,

$$s_n(x) = \begin{cases} u_n(x) & on \quad k_n \\ s(x) & on \quad X \backslash k_n \end{cases}$$

 $u_n(x)$ is the dirichlet solution of k_n with boundary s(x).

$$h_n(x) = \frac{s_n(x)}{s_n(e)}$$

 h_n is φ -superharmonic on X.

Consequently, $A_{\varphi}h_n(x)=0$ for $x\in \mathring{k_n}$ and $h_n(e)=1$

By Harnack property, For any $y\in X$, $\alpha(y)>0$ is a constant. Hence $u(y)\leq \alpha(y)u(e)$ for a positive φ -superharmonic function.

Certainly, for any $x \in X$, $h_n(x) \le \alpha(x)h_n(e)$ and $h_n(x) \le \alpha(x)$, that is $\{h_n(x)\}$ is a sequence of real numbers which is bounded. For X being a countable set, let us extract a subsequence $\{h'_n\}$ from $\{h_n\}$ so that for each $x \in X$,

$$h(x) = \lim_{n \to \infty} h'_n(x)$$
 exists.

For a finite set F in X, an integer m can be obtained such that h_n' is φ -harmonic at each vertex of F if $n \geq m$. Hence, h is φ -harmonic at each vertex of F. For an arbitrary finite set F, h(x) is a non-negative φ -harmonic function on X. Since h(z)=1, by the Minimum Principle, h>0 on X. Hence proving the existence of a positive φ -harmonic function on X.

Theorem 4.4. Domination principle: Let p be a φ -potential with φ -harmonic support U. If s is a non-negative φ -superharmonic function on X such that $s \geq p$ on U. Then $s \geq p$ on X.

Proof. Suppose p is a φ -potential with φ -harmonic support U and s be a φ -superharmonic function on X such that $s \geq p$ on U.

Let
$$u = inf(s, p)$$
, then $A_{\varphi}u(x) \leq 0$.

 $u \le p$ on X (since p is φ -potential)

u = p on U (since U harmonic support of S in X)

Suppose v = p - u on X. Then for $a \in U$,

$$A_{\varphi}v(a) = \sum_{y \sim a} p(a, y)v(y) - \varphi(a)u(a)$$

$$= \sum_{y \neq z \sim a} p(a, y)v(y) + p(a, z)v(z) - \varphi(a)v(a)$$

$$\geq \sum_{y \neq z \sim a} p(a, y)v(y) + p(a, z)v(z) - \varphi(a)v(a)$$

$$\geq \sum_{y \sim a} p(a, y)v(y) - \varphi(a)v(a)$$

$$\geq 0$$

$$A_{\varphi}v(a) > 0$$

For $x \in X \setminus U$,

$$A_{\varphi}v(x) = A_{\varphi}p(x) - A_{\varphi}u(x) = 0 - A_{\varphi}u(x) \ge 0$$
$$\Rightarrow A_{\varphi}v(x) > 0$$

 $\Rightarrow v$ is φ -subharmonic on X and $v \leq p$ on X.

Thus $v \leq 0$ on X, such that $p \leq u$ but, $u \leq p \Rightarrow p = u$.

Hence,
$$s \ge p$$
 on X [1].

5. WHEN $\varphi(X) \geq A\xi(X)/\xi(X)$ FOR SOME REAL VALUED FUNCTION $\xi(X)>0$

When $\varphi(x) \geq A\xi(x)/\xi(x)$ for some real valued function $\xi(x) > 0$. In the following, assume that a function $\xi(x) > 0$ on X exists, such that $\varphi(x) \geq \frac{A\xi(x)}{\xi(x)}$.

Remark that if $\xi(x) \geq 1$ for all x in X, then this condition is satisfied with $\xi(x) = 1$; also, since $\xi(x)$ is a φ -superharmonic function on X by the assumption, from property (7) it follows that there is a function $\mu(x) > 0$ such that $\varphi(x) = A\mu(x) \setminus \mu(x)$.

Let $t(x,y) = p(x,y)\mu(y)$ for any pair of states x,y. Then $\{X,t(x,y)\}$ becomes an infinite network in the sense of Lecture Notes [3]. The Laplace operator Δ for this network is given by $\Delta u(x) = \sum_{y \sim x} t(x,y)[u(y) - u(x)]$.

Lemma 5.1. For any real-valued function u(x) on X, $A_{\varphi}u(x) = \Delta\left[\frac{u(x)}{\mu(x)}\right]$.

Proof.
$$A_{\varphi}u(x) = Au(x) - \varphi(x)u(x)$$

$$= Au(x) - \frac{A\mu(x)}{\mu(x)}u(x)$$

$$= \sum_{y \sim x} p(x, y)u(y) - \sum_{y \sim x} p(x, y)\mu(y)\frac{u(x)}{\mu(x)}$$

$$= \sum_{y \sim x} t(x, y)\frac{u(y)}{\mu(y)} - \sum_{y \sim x} t(x, y)\frac{u(x)}{\mu(x)}$$

$$= \sum_{y \sim x} t(x, y)(\frac{u(y)}{\mu(y)} - \frac{u(x)}{\mu(x)})$$

$$= \Delta \left[\frac{u(x)}{\mu(x)}\right]$$

Consequence: From the above lemma, a real valued function u(x) on X is φ -harmonic (respectively φ -superharmonic) at a state x iff $\frac{u(x)}{\mu(x)}$ is Δ -harmonic (respectively Δ -superharmonic) at x in the network $\{X, t(x,y)\}$.

REFERENCES

- [1] WOLFGANG WOESS: *Random Walks on Infinite Graphs and Groups*, Cambridge University Press-2000.
- [2] NASH-WILLIAMS, C. ST JA.: *Random walk and electric currents in networks*, In Mathematical Proceedings of the Cambridge Philosophical Society, vol. 55, no. 2, pp. 181-194. Cambridge University Press, 1959.
- [3] ANANDAM.V: Harmonic Functions and potentials on Finite or Infinite Networks, springer science and business media, 2011.
- [4] SOARDI, PAOLO M.: Potential theory on infinite networks, Springer, 2006.
- [5] ANANDAM.V: *Random walks on infinite trees*, Rev. Roumaine Math. Pures Appl 65.1(2020),75-82.
- [6] ANANDAM.V: Some potential-theoretic techniques in non-reversible Markov chains, Rendiconti del Circolo Matematico di Palermo 62.2 (2013): 273-284.
- [7] KAMALELDIN ABODAYEH: *Dirichlet problem in infinite Networks*, International Journal of pure and Applied Mathematics, **72** No.3 2011, 365-374.