
Advances in Dynamical Systems and Applications (ADSA).
ISSN 0973-5321, Volume 16, Number 2, (2021) pp. 873-880
©Research India Publications
http://www.ripublication.com/adsa.htm

Existence of Asymptotically polynomial type solutions
for some 2-dimensional Coupled Nonlinear ODEs using

Banach’s Theorem

B. V. K. bharadwaj1 and Pallav Kumar Baruah2

1,2Department of Mathematics and Computer Science
Sri Sathya Sai Institute of Higher Learning

Prasanthinilayam - 515134, India.
1e-mail: bvkbharadwaj@sssihl.edu.in

2e-mail:pkbaruah@sssihl.edu.in

Abstract

In this paper we have considered the following coupled system of non-linear
ordinary differential equations.

xn1
1 (t) = f1(t, x2(t)),

xn2
2 (t) = f2(t, x1(t)), (0.1)

where f1, f2 are real valued continuous functions on [t0,∞) × R+, t ≥ t0 > 0.
We have given sufficient conditions on the non-linear functions f1, f2, such that
a unique solutions pair x1, x2 exists, which asymptotically behaves like a pair of
real polynomials.
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1. INTRODUCTION

Studying qualitative nature of solutions of differential equations is very useful when
we expect solutions to have certain properties which have practical implications.
Asymptotic representation of solutions of differential equations was extensively studied
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by many authors. Very recently the authors in [1] studied solutions, which are
asymptotic at infinity to real polynomials of degree at most n − 1, for the nth order
(n > 1) non-linear ordinary differential equation

x(n) = f(t, x(t)) t ≥ t0 > 0 (1.1)

where f is a continuous real valued function on [t0,∞) × R. This work in [1] is
essentially motivated by the recent one by Lipovan [2] concerning the special case of
the second order non-linear ordinary differential equation

x
′′
= f(t, x(t)) t ≥ t0 > 0 (1.2)

The application of the main results in [1] to the second order non-linear ordinary
differential equation (mentioned above) leads to improvised versions of the ones given
in [2]. Some closely related results for second order ordinary differential equations
involving the derivative of the unknown function have been given in [9].
Systems of differential equations arise in many areas of science. Particularly systems
of ODEs of second order are encountered while solving elliptic systems. Interested
reader may look in to [6, 7] and references therein. In this paper we investigated the
solutions of the coupled system (0.1), which behave asymptotically at ∞ like real
polynomials in t. We have given sufficient conditions for the solution pair x1, x2

to behave like real polynomial pair of at most degree m1,m2 respectively, where
1 ≤ m1 ≤ n1 − 1, 1 ≤ m2 ≤ n2 − 1. We mention here that the non-linear terms in
the system are explicitly dependent on only one variable, this gives a scope for further
findings where these non-linear terms could be dependent on both the variables.

2. MAIN RESULT

We investigate the solutions of (0.1) which are defined for large t i.e on the interval
[T,∞), where T ≥ t0 may depend on the solution.
Before we prove our main result, we give some preliminaries which we use in the proof.
Let E = B ([0,∞)), where B ([0,∞)) is the Banach space of all continuous and
bounded real valued functions on the interval [0,∞], endowed with the sup-norm ∥.∥:
∥h∥ = supt≥0 |h(t)| for h ∈ B ([0,∞))

Banach’s theorem:
Let E be a Banach Space and let S be a contraction mapping that maps E to itself. Then
S has a unique fixed point in E
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Theorem 2.1. Let K > 0 be given and fixed. Assume that f1 and f2 are are functions
from R+XR+ to R+ and satisfy∫ ∞

t0

tn1−1fi(t, z)dt ≤ K (2.1)

for i = 1, 2 and any z ∈ R. Also let,∣∣∣f1(t, z)− f1(t, z
′
)
∣∣∣ ≤ a (t)

∣∣∣z − z
′
∣∣∣ ,∣∣∣f2(t, z)− f2(t, z

′
)
∣∣∣ ≤ b (t)

∣∣∣z − z
′
∣∣∣ , (2.2)

where a(t), b(t) be continuous functions from R+ to R+ such that for some fixed T > t0,∫ ∞

T

tn2−1b(t)

[∫ ∞

T

sn1−1a(s)ds

]
dt < 1,∫ ∞

T

tn1−1a(t)

[∫ ∞

T

sn2−1b(s)ds

]
dt < 1. (2.3)

Then the system (0.1) has a solution pair {x1, x2} on the interval (T,∞) such that for
1 ≤ m1 ≤ n1 − 1, 1 ≤ m2 ≤ n2 − 1,

x1 (t) = c10 + c11t+ ...+ c1m1t
m1 + o (1) ,

x2 (t) = c20 + c21t+ ...+ c2m2t
m2 + o (1) (2.4)

for t → ∞.

Proof. By substituting

y1(t) = x1(t)− (c10 + c11t+ ...+ c1m1t
m1) ,

y2(t) = x2(t)− (c20 + c21t+ ...+ c2m2t
m2) ,

the system (0.1) gets transformed in to

y
(n1)
1 (t) = f1

(
t, y2(t) +

m2∑
i=0

c2it
i

)
,

y
(n2)
2 (t) = f2

(
t, y1(t) +

m1∑
i=0

c1it
i

)
. (2.5)

Therefore we see that it is sufficient to prove that the system (2.5) has a solution pair
y1, y2 on the interval [T,∞) with

lim
t→∞

y
(ρ1)
1 (t) = 0,

lim
t→∞

y
(ρ2)
2 (t) = 0 (2.6)
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where ρ1 = 0, 1, ..., n1 − 1 and ρ2 = 0, 1, ..., n2 − 1.
Now consider the Banach Space E = B ([T,∞)) with the sup-norm ∥.∥, and define

Y = {y ∈ E : ∥y∥ ≤ K} .

Clearly Y is a non-empty closed convex subset of E. Let y1 and y2 be arbitrary functions
in Y.

We now define mapping S on Y as

(Sy1) (t) = (−1)n1

∫ ∞

t

(s− t)n1−1

(n1 − 1)!
f1

(
s, y2(s) +

m2∑
i=0

c2is
i

)
ds (2.7)

with

y2(s) =

∫ ∞

s

(r − t)n2−1

(n2 − 1)!
f2

(
r, y1(r) +

m1∑
i=0

c1ir
i

)
dr (2.8)

for every t ≥ T .
Clearly we see that S maps Y into itself and is valid on account of (2.1). Now we show
that this mapping has a fixed point using the Banach’s Fixed Point Theorem. To this
end we now need to show that S1 is a contraction.
Consider ∥∥∥Sy1 − Sy

′

1

∥∥∥ = ∥(−1)n1

∫ ∞

t

(s− t)n1−1

(n1 − 1)!
×

f1

(
s,

∫ ∞

s

(r − t)n2−1

(n2 − 1)!
f2

(
r, y1(r) +

m1∑
i=0

c1ir
i

)
dr +

m2∑
i=0

c2is
i

)
ds

−(−1)n1

∫ ∞

t

(s− t)n1−1

(n1 − 1)!
f1

(
s,

∫ ∞

s

(r − T )n2−1

(n2 − 1)!
f2

(
r, y

′

1(r) +

m1∑
i=0

c1ir
i

)
dr +

m2∑
i=0

c2is
i

)
ds∥

≤
∫ ∞

t

(s− t)n1−1

(n1 − 1)!
×

∥f1

(
s,

∫ ∞

s

(r − t)n2−1

(n2 − 1)!
f2

(
r, y1(r) +

m1∑
i=0

c1ir
i

)
dr +

m2∑
i=0

c2is
i

)
ds

−f1

(
s,

∫ ∞

s

(r − t)n2−1

(n2 − 1)!
f2

(
r, y

′

1(r) +

m1∑
i=0

c1ir
i

)
dr +

m2∑
i=0

c2is
i

)
∥ds
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≤
∫ ∞

t

a(s)
(s− t)n1−1

(n1 − 1)!
×∫ ∞

s

(r − t)n2−1

(n2 − 1)!
∥f2

(
r, y1(r) +

m1∑
i=0

c1ir
i

)
ds

−f2

(
r, y

′

1(r) +

m1∑
i=0

c1ir
i

)
∥ds

≤
∫ ∞

t

a(s)
(s− t)n1−1

(n1 − 1)!
×(∫ ∞

s

b(s)
(r − t)n2−1

(n2 − 1)!

∣∣∣y1(r)− y
′

1(r)
∣∣∣ dr) ds.

Taking (2.3) in to consideration, we conclude that S is a contraction, hence by
Contraction Principle S has a unique fixed point y1 ∈ Y such that Sy1 = y1. That
implies

y1(t) = (−1)n1

∫ ∞

t

(s− t)n1−1

(n1 − 1)!
f1

(
s, y2(s) +

m1∑
i=0

c2is
i

)
ds,

where

y2(s) =

∫ ∞

s

(r − t)n2−1

(n2 − 1)!
f2

(
r, y1(r) +

m1∑
i=0

c1ir
i

)
dr.

By applying the Leibnitz’s differentiation of integral rule and differentiating the above
equations we get back the two equations of the transformed system (2.5)

y
(n1)
1 (t) = f1

(
t, y2(t) +

m2∑
i=0

c2it
i

)
,

y
(n2)
2 (t) = f2

(
t, y1(t) +

m1∑
i=0

c1it
i

)
for all t ≥ T .
Therefore we conclude that the y1 is a solution of the first equation of the system (2.5) iff
its a fixed point of the operator S. Now, we can find the other function y2 by substituting
the fixed point y1 in (2.8). Consequently y1, y2 satisfy the transformed system (2.5).
Since,

y
(ρi)
i (t) = (−1)ni−ρi

∫ ∞

t

(s− t)ni−1−ρi

(ni − 1− ρi)!
fi

(
s, y3−i(s) +

mi∑
k=0

c(3−i)ks
k

)
ds

for i = 1, 2. and ρi = 0, 1, .., ni − 1. It is easy to verify that y1, y2 satisfy the condition
(2.6). This completes the proof of the theorem.
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Theorem 2.2. Let K > 0 be given and fixed. Assume that f1 and f2 are two functions
from R+XR+ to R+ and satisfy

fi(t, z) ≤ hi(t)gi(z) (2.9)

for i = 1, 2 and, where hi : R
+ → R+ are continuous functions such that∫ ∞

t0

sni−1hi(s)ds < 1 (2.10)

for i = 1, 2 and assume that gis are non-negative continuous real valued functions
which are not identically zero on R+ such that for any real constants ci0, ci1, ...., cimi

,
i = 1, 2 and for some fixed T ≥ t0 we have

sup

{
gi(z) : 0 < z < K +

mi∑
j=0

∣∣cijT j
∣∣} < K (2.11)

for i = 1, 2 and also assume like in the previous theorem∣∣∣f1(t, z)− f1(t, z
′
)
∣∣∣ ≤ a (t)

∣∣∣z − z
′
∣∣∣ ,∣∣∣f2(t, z)− f2(t, z

′
)
∣∣∣ ≤ b (t)

∣∣∣z − z
′
∣∣∣ , (2.12)

where a(t), b(t) be continuous functions from R+ to R+ such that∫ ∞

t0

tn2−1b(t)

[∫ ∞

t0

sn1−1a(s)ds

]
dt < 1,∫ ∞

t0

tn1−1a(t)

[∫ ∞

t0

sn2−1b(s)ds

]
dt < 1. (2.13)

Then the system (0.1) has a solution pair {x1, x2} on the interval (T,∞) such that for
1 ≤ m1 ≤ n1 − 1, 1 ≤ m2 ≤ n2 − 1,

x1 (t) = c10 + c11t+ ...+ c1m1t
m1 + o (1) ,

x2 (t) = c20 + c21t+ ...+ c2m2t
m2 + o (1) (2.14)

for t → ∞.

Proof. We proceed as in the previous proof, except that for proving that the operator S
is a self map, we use (2.9), (2.10) and (2.11) instead of (2.1)

Example 2.3. Consider the following system of equations

x
(n)
1 (t) = a(t) |x2(t)|2p−1 sgn x2(t),

x
(n)
2 (t) = b(t) |x1(t)|2p−1 sgn x1(t) (2.15)
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for p > 1 is an integer, where a and b are non-negative continuous real valued functions
on [0,∞). and and let c0, c1, c2, ....., cm and d0, d1, d2, ......, dm be real numbers and T

be a point with T > 0 and suppose that there exists a positive constant K such that

sup

{
z2p−1 : 0 ≤ z ≤

(
K +

m∑
i=0

∣∣ciT i
∣∣ )} ≤ K,

sup

{
z2p−1 : 0 ≤ z ≤

(
K +

m∑
i=0

∣∣diT i
∣∣ )} ≤ K. (2.16)

We see that, for p = 2, T = 1 and K = 1
2
, above inequalities are definitely satisfied for

c0 = d0 = 0, c1 = d1 = 0. Note that z2p−1 is Lipschitz with Lipschitz constant 2p− 1,
so consider a(t), b(t) such that∫ ∞

0

tn−1 |a(t)|
[∫ ∞

0

sn−1 |b(s)| ds
]
dt <

1

(2p− 1)2
,∫ ∞

0

tn−1 |b(t)|
[∫ ∞

0

sn−1 |a(s)| ds
]
dt <

1

(2p− 1)2
.

Then by invoking Theorem 2.2, (2.15) has a pair of solutions x1 and x2 which
asymptotically behave like mth degree polynomials with coefficients ci, di respectively
where 1 ≤ m ≤ n− 1.
As a special case when we consider n = 2, m = 1, p = 2, T = 1, a(t) = 2e−t−2,
b(t) = e−t, c0 = d0 = 0, c1 = d1 = 0. We see that∫ ∞

1

t |a(t)|
[∫ ∞

1

s |b(s)| ds
]
dt <

1

9
,∫ ∞

1

t |b(t)|
[∫ ∞

1

s |a(s)| ds
]
dt <

1

9
.

Therefore Theorem 2.2 guarantees a solution such that xi(t) = 0(1), i = 1, 2 as t → ∞.

Acknowledgment and Dedication

We dedicate this work to the Founder Chancellor of Sri Sathya Sai University,
BHAGAWAN SRI SATHYA SAI BABA without whose grace this would have been
incomplete.
This work is funded by National Board of Higher Mathematics, INDIA (Grant No:
2/48(12)/2009-R&D II/2808).



880 B. V. K. bharadwaj and Pallav Kumar Baruah

REFERENCES

[1] Ch.G. Philos, I.K. Purnaras and P.Ch. Tsamatos, Asymptotic to polynomial
solutions for nonlinear differential equations, Nonlinear Analysis. 59(2004),
1157-1179

[2] O Lipovan, On the asymptotic behaviour of the solutions to a class of second order
nonlinear differential equations, Glasg.Math.J.45 (2003), 179-187.

[3] T. Ertem, A. Zafer, Asymptotic integration of second order nonlinear differential
equations via principal and nonprincipal solutions, applied mathematics and
computation 219 (2013), 5876-5886.

[4] R. P. Agarwal, S. Djebali, T. Moussaoui, O. G. Mustafa, On the asymptotic
integration of nonlinear differential equations, Journal of Computational and
Applied Mathematics 202 (2007), 352-376.

[5] B V K Bharadwaj and Pallav Kumar Baruah, Asymptotically Polynomial type
solutions for some 2-dimensional coupled nonlinear ODEs, The Journal of
Mathematics and Computer Science, Vol 14(2015), no 3, 211-221.

[6] R Ma, Existence of positive radial solutions for elliptic systems, J.Math.Anal.App.
201(1996), 375-386.

[7] Xiyou Cheng, Chingkui Zhong, Existence of positive solutions for a second order
ordinary differential system, J.Math.Anal.Appl. 312(2005), 14-23.

[8] Chritos G Philos, Panagiotis Ch Tsamatos, Solutions approaching polynomials at
infinity to nonlinear ordinary differential equations, EJDE, 2005(2005), no. 79,
1-25.

[9] S P Rogovchenko and Y V Rogovchenk, Asymptotic behavior of solutions of
second order nonlinear differential equations, Portugal.Math. 57(2000), 17-33.


