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Abstract

A model for four diemensional multi level multi objective multi item fractional
transportation problem under uncertain conditions whose parameters in both
objectives and constraints are considered as normal uncertain variables has been
presented. The proposed model helps handling real life situations more suitably
as diverse parameters have been taken into consideration for the first time ever.
Applying the properties of expected value and chance constraint models on
uncertainty theory, the equivalent deterministic model is obtained for proposed
uncertain four diemensional multi level multi objective multi item fractional
transportation problem and fuzzy goal programming technique is used to obtain
the proposed model’s compromise solution. An illustrative example is presented
for more clarity about the model proposed.

AMS Subject Classifications: 90C08,90C29,90C32,90C70

Keywords : Multi level transportation problem, Uncertain fractional
programming, Uncertain variable, Fuzzy goal programming

1. INTRODUCTION

A linear transportation problem consisting objective in the form of ratio of two different
linear functions is known as linear fractional transportation problem. The fractional
transportation problem was proposed for the first time by Swarup [32], which was
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then utilised extensively by many authors like Khurana and Arora [15], Joshi and
Gupta [13]. The method to solve linear fractional programming problem was developed
by Charnes and Cooper [5]. To solve a non-linear fractional programming problem,
a parametric iterative method was proposed by Dinkelbach [9]. When two or more
objectives are considered in fractional transportation problem, then it is known as
multi objective fractional transportation problem. Multi level programming problems
are used to make interactive decisions in hierarchical mangagement levels. It works
on the principles of higher level to lower level. The first level decision maker
decides the objectives and preferences and asks his inferiors to individually obtained
solutions. The solutions provided by the lower level decison makers are compared
and the best solution for the general advantage of the organisation is considered.
YafengYin [33] obtained a compromise solution of transportation problem involving
bilevel optimization and multiple objectives by using the genetic alogorithm base
method. Shi and Xia [31] proposed an interactive alogorithm for obtaining solution
for decision making problems involving a couple of levels. If the multi level linear
fractional transportation problem considered, has two or more objectives, it is known as
multi level multi objective fractional linear transportation problem. To solve multi level
non-linear multi objective decision making problem, the technique for order perference
by similarity to ideal solution was proposed by Baky [3]. When we consider the choices
of routes in a solid transportation problem(STP), it becomes a four diemensional
transportation problem(4DTP). Considering two or more items in four diemensional
multi level multi objective fractional transportation problem(4DMLMOFTP) converts
it into four diemensional multi level multi objective multi item fractional transportation
problem(4DMLMOMIFTP). A special class of profit fixed charge multi item four
diemensional transportation problem considering breakable items was proposed by
Halder et al [12].

The data for the parameters such as demand, supply and unit transportation cost are
highly imprecise and not accurate in real life suitations. Zadeh [34] introduced fuzzy
sets to deal with these impreciseness of data. The method of using fuzzy programming
approach for solving MOFTP was proposed by Sadia et al [27]. Later, they have
developed a model for fully fuzzy multi objective fractional transportation problem
[30]. Khalifa et al [14] employed fractional programming under fuzzy environment for
solving solid transportation problem consisting multiple objectives and items. To solve
bi - level linear fractional programming problem(BL-LFPP) with fuzzy parameters, a
method was proposed by Sakawa et al [28]. Since Zadeh’s fuzzy set theory did not
hold good for suitations having imprecise data, we use uncertainty theory proposed by
Liu [18]. The transportation problem consisting uncertain supply and demands was
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solved by Guo [11] in his article. Uncertain linear fractional problem and conversion of
optimization problem into equivalent crisp problem was proposed by Seyyed Mojtaba
[29]. To solve uncertain linear fractional transportation problem, Ali Mahmooderad
[2] proposed a model. The multi objective fractional transportation problem under
uncertain environment was studied by Revathi et. al. [25]. Solution algorithm for
solving a multi level programming problem under uncertain conditions was proposed
by Liu and Yao [19]. Gao and Kar [10] proposed a method to solve uncertain solid
transportation problem involving product blending. To solve fixed charge multi item
STP, few uncertain programming models were proposed by Liu et al [37]. A multi
item STP under uncertain environment was studied by Dalman [8]. Cheng, Rao and
Chen [7] studied about the multi diemensional Knapsack problem which was based
on uncertain measures. The model for uncertain multi objective multi item four
dimensional fractional transportation problems was studied by Revathi et. al. [26].

Hiearcherical decision making of a transportation problem is important in dealing
with complex cases considering conflicting fractional objectives, multiple items and
multiple routes. Till date there has been no studies regarding four diemensional multi
level multi objective multi item fractional transportation problem(4DMLMOMIFTP)
to handle such real life suitations. For the first time, an effort has been made to
create 4DMLMOMIFTP under uncertain environment inspired by the concepts of
uncertainty theory and fractional programming. The primary motive of this paper is
to present a method to solve uncertain 4DMLMOMIFTP. Utilising expected value and
chance constraint models on uncertainty theory, we convert the above said problem into
deterministic problem. Since the problem has multiple objectives, we make use of the
fuzzy goal programming technique as it yields suitable compromise solution.

We have reviwed some definitions and theorems of uncertainty theory which are used
in the model in section 2. Notations are given under section 3. In section 4, the
mathematical model of uncertain four dimension multi level multi objective multi-item
fractional transportation problem (U4DMLMOMIFTP) is introduced. Equivalent
deterministic models by using expected value method and chance constraint method
are given in the sections 5 and 6 respectively. In section 7, fuzzy goal programming
technique for solving multi level fractional programming is presented. Section 8
contains the procedure for solving the U4DMLMOMIFTP, followed by section 9
consisting of a numerical example and section 10 containing conclusion.

2. PRELIMINARIES

Here, we review some basic definitions and the concepts of uncertainty theory, which
will be applied in the subsequent sections.
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Definition 2.1. [18,20] Let L be a σ - algebra of collection of events Λ of a universal set
Γ. A set function M is said to be uncertain measure defined on the σ - algebra where
M{Λ} indicate the belief degree with which we believe that the event will happens and
satisfies the following axioms:

1. Normality Axiom: For the universal set Γ, we have M(Γ) = 1.

2. Duality Axiom: For any event Λ, we have M{Λ}+M{ΛC} = 1.

3. Subadditivity Axiom: For every countable sequence of events Λ1,Λ2, · · · , we

have M{∪∞
i=1Λi} ≤

∞∑
i=1

M{Λi} = 1

4. Product Axiom: Let (Γi,Li,Mi) be uncertainty spaces for i = 1, 2, 3, · · ·
The product uncertain measure is an uncertain measure holds M{Π∞

i=1Λi} ≤
Λ∞

i=1M{Λi} where Λi ∈ Li for i = 1, 2, 3, · · · ,∞.

Definition 2.2. [18] A function ξ : (Γ,L,M) → R is said to be an uncertain variable
such that {ξ ∈ B} = {γ ∈ Γ/ξ(γ) ∈ B} is an event for any Borel set B of real
numbers.

Definition 2.3. [18] An uncertain variable ξ defined on the uncertainty space (Γ,L,M)

is said to be non- negative if M{ξ < 0} = 0 and positive if M{ξ ≤ 0} = 0.

Definition 2.4. [18] The uncertainty distribution φ(x) of an uncertain variable ξ for any
real number x is defined by φ(x) = M{ξ ≤ x}.

Definition 2.5. Let φ(x) be the regular uncertainty distribution of an uncertain variable
ξ. Then φ−1(α) is called inverse uncertainty distribution of ξ and it exists on (0, 1).

Definition 2.6. [18] The uncertain variable ξi (i = 1, 2, · · ·n) are said to be
independent if

M

{
n⋂

i=1

(ξn ∈ Bn)

}
= Λn

i=1M(ξn ∈ Bn) (2.1)

where Bi (i = 1, 2, · · ·n) are called Borel sets of real numbers.

Theorem 2.7. Let ξ be an uncertain variable with regular uncertain distribution
function ψ. Then its α-optimistic value and α-pessimistic values are

ξsup(α) = ψ−1(1− α), ξinf(α) = ψ−1(α) (2.2)
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Theorem 2.8. [21] The regular uncertainty distributions of independent uncertain
variables ξi (i = 1, 2, · · ·n) are ϕi (i = 1, 2, · · ·n) respectively. If the function
f(x1, x2, · · · , xn) is strictly increasing and strictly decreasing with respect to
x1, x2, · · · , xm and xm+1, xm+2, · · · , xn respectively then the uncertain variable ξ =

f(ξ1, ξ2, · · · , ξm, · · · , ξn) has an inverse uncertainty distribution

ψ−1(α) = f(ϕ−1
1 (α), ϕ−1

2 (α), · · · , ϕ−1
m (α), ϕ−1

m+1(1−α), ϕ−1
m+2(1−α), · · · , ϕ−1

n (1−α))
(2.3)

Definition 2.9. [18] The expected value of uncertain variable ξ is given by

E(ξ) =

∞∫
0

M{ξ ≥ x}dx−
0∫

−∞

M{ξ ≤ x}dx (2.4)

This is valid only if at least one of the integral is finite.

Theorem 2.10. [22] Let ϕi (i = 1, 2, · · ·n) be regular uncertainty distributions
of independent ξi (i = 1, 2, · · ·n) with respectively. If the function
f(x1, x2, · · · , xn) is strictly increasing and strictly decreasing w.r.to x1, x2, · · · , xm and
xm+1, xm+2, · · · , xn respectively, then

E(ξ) =

1∫
0

f(ϕ−1
1 (α), · · · , ϕ−1

m (α), ϕ−1
m+1(1− α), · · · , ϕ−1

n (1− α))dα (2.5)

From the above theorem, we know that

E(ξ) =

1∫
0

ϕ−1(α)dα (2.6)

where ξ is an uncertain variable with regular uncertainty distribution ϕ.

Definition 2.11. [18] A linear uncertain variable ξ is defined as

ϕ(x) =


0 if x ≤ l
x− l

m− l
if 1 ≤ x ≤ m

1 if x ≥ m

(2.7)

represented by L(1,m), where 1 and m ∈ R with 1 < m.
The inverse distribution function of a linear uncertain variable L(1,m) is given by

ϕ−1(α) = (1− α)l + αm (2.8)

and its expected value is given by

E(ξ) =
l +m

2
(2.9)
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Definition 2.12. [18] The distribution function of a normal uncertain variable is

ϕ(x) =

(
1 + exp

(
π(µ−x)

σ
√
3

))−1

, x ≥ 0 (2.10)

and it is denoted as N(µ, σ);µ, σ ∈ R with σ > 0.
The inverse uncertainty distribution and the expected value of N(µ, σ) is defined as
follows

ϕ−1(α) = µ+
σ
√
3

π
ln

α

1− α
(2.11)

E(ξ) = µ (2.12)

3. NOMENCLATURE

The following notations have been introduced for constructing the proposed
U4DMLMOMIFTP model.
i − index for sources
j − index for destinations
(tn) − index for nth objective function of tth level
k − index of conveyance
r − index of route of transportation
g − index of product
Z̃(tn) − nth uncertain objective function at tth level, where n=1,2,. . . N and t=1,2....T.

C̃
(tn)
ijkrg

D̃
(tn)
ijkrg

−
ratio of unit transportation actual cost and standard cost of gth good from ith origin
to jth destination by kth transport over rth road per unit distance in nth objective of
tth level.

Ã
(tn)
ijkrg

S̃
(tn)
ijkrg

− ratio of actual transportation time to the standard transportation time.

ãig − quantity of gth good available at ith origin
b̃jg − the demand of the gth good at the jth destination.
ẽk − capacity of a single kth type transport

d
(tn)

N+ , d
(tn)

D+ − positive deviational variable of the nth objective’s numerator and
denominator at tth level respectively.

d
(tn)

N− , d
(tn)

D− − negative deviational variable of the nth objective’s numerator and
denominator at tth level respectively.

d
(t)
+ , d

(t)
− − positive and negative deviational variables for tth level decision vectors.

4. MATHEMATICAL FORMULATION OF U4DMLMOMIFTP

The general model for an uncertain four dimensional multi level multi-objective
multi-item fractional transportation problem is presented below.
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The general form of U4DMLMOMIFTP is given by

[Level1]

MinZ̃(1n)

X̄1 =

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

C̃
(1n)
ijkrgxijkrg

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

D̃
(1n)
ijkrgxijkrg

, n = 1, 2, · · · , N

[Level2]

MinZ̃(2n)

X̄2 =

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

C̃
(2n)
ijkrgxijkrg

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

D̃
(2n)
ijkrgxijkrg

, n = 1, 2, · · · , N

...

[Level t]

MinZ̃(tn)

X̄ tn =

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

C̃
(tn)
ijkrgxijkrg

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

D̃
(tn)
ijkrgxijkrg

, n = 1, 2, · · · , N

subject to
J∑

j=1

K∑
k=1

R∑
r=1

xijkrg ≤ ãig, i = 1, 2, · · · , I, g = 1, 2, · · · , G

I∑
i=1

K∑
k=1

R∑
r=1

xijkrg ≥ b̃jg, j = 1, 2, · · · , J, g = 1, 2, · · · , G

I∑
i=1

J∑
j=1

R∑
r=1

G∑
g=1

xijkrg ≤ ẽk, k = 1, 2, · · · , K

xijkrg ≥ 0,∀i, j, k, r, g

(4.1)

where g products can be transported from i origins ãi to j destinations b̃j by means of ẽk
conveyances and n objectives are to be minimized at each level t, where t = 1, 2, · · · , T
and X̄ t = {X t

1, X
t
2, · · · , X t

M}, decision variables under the control of tth level decision
maker. Here, X̄ = X̄1 ∪ X̄2 ∪ X̄3, · · · , X̄T .
The above model (4.1) is created considering all the parameters involved to be known
quantities. Contrastingly, in real life situations, these parameters like supply, demand,
costs and capacities exists with some uncertainty which make the model as the complex
one. Due to the uncertainty that exists in the parameters, it cannot be optimized directly.
Instead we will use expected value and chance constraint model on uncertainty theory
for the above U4DMLMOMIFTP and obtain the equivalent deterministic model.



934 A.N. Revathi and S. Mohanaselvi

5. EXPECTED VALUE MODEL FOR U4DMLMOMIFTP

An equivalent deterministic model for U4DMLMOMIFTP has been presented in this
section.
By using the expected value method and its properties, the equivalent deterministic
model for U4DMLMOMIFTP is given as follows.



[Level1]

MinZ̃(1n)

X̄1 = E


I∑

i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

C̃
(1n)
ijkrgxijkrg

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

D̃
(1n)
ijkrgxijkrg

 , n = 1, 2, · · · , N

[Level2]

MinZ̃(2n)

X̄2 = E


I∑

i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

C̃
(2n)
ijkrgxijkrg

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

D̃
(2n)
ijkrgxijkrg

 , n = 1, 2, · · · , N

...

[Level t]

MinZ̃(tn)

X̄ t = E


I∑

i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

C̃
(tn)
ijkrgxijkrg

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

D̃
(tn)
ijkrgxijkrg

 , n = 1, 2, · · · , N

subject to

E

(
J∑

j=1

K∑
k=1

R∑
r=1

xijkrg − ãig

)
≤ 0, i = 1, 2, · · · , I, g = 1, 2, · · · , G

E

(
b̃jg −

I∑
i=1

K∑
k=1

R∑
r=1

xijkrg

)
≤ 0, j = 1, 2, · · · , J, g = 1, 2, · · · , G

E

(
I∑

i=1

J∑
j=1

R∑
r=1

G∑
g=1

xijkrg − ẽk

)
≤ 0, k = 1, 2, · · · , K

xijkrg ≥ 0,∀i, j, k, r, g

(5.1)
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By using the properties of expected value method in the above model (5.1), we have



[Level1]

MinZ̃(1n)

X̄1 =

∑I
i=1

∑J
j=1

∑K
k=1

∑R
r=1

∑G
g=1E(C̃

(1n)
ijkrg)xijkrg∑I

i=1

∑J
j=1

∑K
k=1

∑R
r=1

∑G
g=1E(D̃

(1n)
ijkrg)xijkrg

, n = 1, 2, · · · , N

[Level2]

MinZ̃(2n)

X̄2 =

∑I
i=1

∑J
j=1

∑K
k=1

∑R
r=1

∑G
g=1E(C̃

(2n)
ijkrg)xijkrg∑I

i=1

∑J
j=1

∑K
k=1

∑R
r=1

∑G
g=1E(D̃

(2n)
ijkrg)xijkrg

, n = 1, 2, · · · , N

...

[Level t]

MinZ̃(tn)

X̄ t =

∑I
i=1

∑J
j=1

∑K
k=1

∑R
r=1

∑G
g=1E(C̃

(tn)
ijkrg)xijkrg∑I

i=1

∑J
j=1

∑K
k=1

∑R
r=1

∑G
g=1E(D̃

(tn)
ijkrg)xijkrg

, n = 1, 2, · · · , N

subject to

J∑
j=1

K∑
k=1

R∑
r=1

xijkrg − E(ãig) ≤ 0, i = 1, 2, · · · , I, g = 1, 2, · · · , G

E(b̃jg)−
I∑

i=1

K∑
k=1

R∑
r=1

xijkrg ≤ 0, j = 1, 2, · · · , J, g = 1, 2, · · · , G

I∑
i=1

J∑
j=1

R∑
r=1

G∑
g=1

xijkrg − E(ẽk) ≤ 0, k = 1, 2, · · · , K

xijkrg ≥ 0,∀i, j, k, r, g
(5.2)



936 A.N. Revathi and S. Mohanaselvi

6. CHANCE CONSTRAINED METHOD FOR U4DMLMOMIFTP

An equivalent deterministic model for an U4DMLMOMIFTP by using chance
constraint method is presented in this section.
Suppose
C̃

(tn)
ijkrg, D̃

(tn)
ijkrg, (t = 1, 2, · · · , T,&n = 1, 2, · · · , N), ãig, b̃jg, ẽk are independent

uncertain variables with regular uncertain distributions χ(tn)
ijkrg, ϕ

(tn)
ijkrg, ψip, θjp, λk(t =

1, 2, · · · , T,&n = 1, 2, · · · , N) respectively. The proposed U4DMLMOMIFTP’s
equivalent deterministic model using the chance constrained method is given as below.

[Level1]

MinZ̃(1n)

X̄1 =

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

(χ(1n))−1
ijkrg(α1n)xijkrg

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

(ϕ(1n))−1
ijkrg(γ1n)xijkrg

, n = 1, 2, · · · , N

[Level2]

MinZ̃(2n)

X̄2 =

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

(χ(2n))−1
ijkrg(α2n)xijkrg

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

(ϕ(2n))−1
ijkrg(γ2n)xijkrg

, n = 1, 2, · · · , N

...

[Level t]

MinZ̃(tn)

X̄ t =

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

(χ(tn))−1
ijkrg(αtn)xijkrg

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

(ϕ(tn))−1
ijkrg(γtn)xijkrg

, n = 1, 2, · · · , N

subject to
J∑

j=1

K∑
k=1

R∑
r=1

xijkrg ≤ ψ−1
ig (1− αig), i = 1, 2, · · · , I, g = 1, 2, · · · , G

I∑
i=1

K∑
k=1

R∑
r=1

xijkrg ≥ θ−1
jg (βjg), j = 1, 2, · · · , J, g = 1, 2, · · · , G

I∑
i=1

J∑
j=1

R∑
r=1

G∑
g=1

xijkrg ≤ λ−1
k (1− βk), k = 1, 2, · · · , K

xijkrp ≥ 0,∀i, j, k, r, g

(6.1)

where αtn, γtn, β1, β2 and β3(t = 1, 2, · · · , T,&n = 1, 2, · · · , N) are predetermined
confidence level and αtn, γtn, β1, β2 and β3 ∈ (0, 1),∀n, t.
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By applying the properties of chance constraint method, (6.1) becomes as follows.

[Level1]

MinZ̃(1n)

X̄1 =

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

(
e
(1n)
ijkrg +

σijkrg
π

∗
√
3 ln

α1n

1− α1n

)
xijkrg

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

(
e1ijkrg +

σ1
ijkrg

π
∗
√
3 ln

γ1n
1− γ1n

)
xijkrg

, n = 1, 2, · · · , N

[Level2]

MinZ̃(2n)

X̄2 =

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

(
e
(2n)
ijkrg +

σijkrg
π

∗
√
3 ln

α2n

1− α2n

)
xijkrg

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

(
e1ijkrg +

σ1
ijkrg

π
∗
√
3 ln

γ2n
1− γ2n

)
xijkrg

, n = 1, 2, · · · , N

...

[Level t]

MinZ̃(tn)

X̄ t =

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

(
e
(tn)
ijkrg +

σijkrg
π

∗
√
3 ln

αtn

1− αtn

)
xijkrg

I∑
i=1

J∑
j=1

K∑
k=1

R∑
r=1

G∑
g=1

(
e1ijkrg +

σ1
ijkrg

π
∗
√
3 ln

γtn
1− γtn

)
xijkrg

, n = 1, 2, · · · , N

subject to
J∑

j=1

K∑
k=1

R∑
r=1

≤ eig +
σig

√
3

π
ln

1− αig

αig

, i = 1, 2, · · · , I, g = 1, 2, · · · , G

I∑
i=1

K∑
k=1

R∑
r=1

≥ ejg +
σjg

√
3

π
ln

βjg
1− βjg

, j = 1, 2, · · · , J, g = 1, 2, · · · , G

I∑
i=1

J∑
j=1

R∑
r=1

G∑
g=1

≤ ek +
σk
√
3

π
ln

1− βk
βk

, k = 1, 2, · · · , K

xijkrp ≥ 0,∀i, j, k, r, g
(6.2)

Where αtn, γtn, β1, β2 and β3,∀t = 1, 2, · · · , T &n = 1, 2, · · · , N are predetermined
confidence level and αtn, γtn, β1, β2 and β3 ∈ (0, 1),∀n, t.

Definition 6.1. A point x0 ∈ X is said to be an efficient solution of U4DMLMOMIFTP
iff there does not exist another x ∈ X s.t. Zn(x) ≤ Zn(x

0) and Zn(x) < Zn(x
0) for at

least one n.

7. FUZZY GOAL PROGRAMMING TECHNIQUE FOR U4DMLMOMIFTP

When more than one goal is present, to obtain the satisfactory solution the goal
programming technique was proposed by Charnes Clan Cooper [6]. The goal
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programming technique was further developed by T.Chang [4], Pal [24] etc. To
solve multi objective transportation problem (MOTP), a new fuzzy goal programming
technique was introduced by Mohammed [23], which was later used by Zangiabadi
[35, 36] to solve MOTP containing linear as well as non-linear membership functions.
The main aim of goal programming (GP) is to minimize the distance between Z and
aspiration (or) target level Z̄. The positive and negative deviational variables are defined
as follows.

D+
n = max(0, Zn − Z̄n)

D−
n = max(0, Z̄n − Zn)

When the aim is to maximize Zn, we obtain the optimal solution by minimizing the
negative deviational variable. Similarly, when the aim is to minimimize Zn, we obtain
the optimal solution by minimizing the positive deviational variable. When we desire
Zn = Z̄n, we obtain the optimal solution by minimizing D+

n +D−
n .

To formulate membership functions the fuzzy goals and their aspiration levels has to
be defined first. Firstly, we maximize and minimize the numerator and denominator
objective functions individually for each level of decision making. After finding the
maximum and minimum values of each objective function, we construct the payoff
matrices as follows.

N̄ (11)(X̄1) N̄ (12)(X̄1) · · · N̄ (1N)(X̄1)

N̄ (21)(X̄2) N̄ (22)(X̄2) · · · N̄ (2N)(X̄2)
...

...
...

...
N̄ (T1)(X̄T ) N̄ (T2)(X̄T ) · · · N̄ (TN)(X̄T )

 (7.1)


N (11)(X̄1) N (12)(X̄1) · · · N (1N)(X̄1)

N (21)(X̄2) N (22)(X̄2) · · · N (2N)(X̄2)
...

...
...

...
N (T1)(X̄T ) N (T2)(X̄T ) · · · N (TN)(X̄T )

 (7.2)


D̄(11)(X̄1) D̄(12)(X̄1) · · · D̄(1N)(X̄1)

D̄(21)(X̄2) D̄(22)(X̄2) · · · D̄(2N)(X̄2)
...

...
...

...
D̄(T1)(X̄T ) D̄(T2)(X̄T ) · · · D̄(TN)(X̄T )

 (7.3)
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
D(11)(X̄1) D(12)(X̄1) · · · D(1N)(X̄1)

D(21)(X̄2) D(22)(X̄2) · · · D(2N)(X̄2)
...

...
...

...
D(T1)(X̄T ) D(T2)(X̄T ) · · · D(TN)(X̄T )

 (7.4)

Each row’s maximum values N̄ (tn) and D̄(tn), ∀n = 1, 2, · · · , N are known as the
aspired level or upper tolerance limit for the membership function of tth level numerator
and denominator objectives respectively. Likewise, the minimum values of each row
N (tn) and D(tn), ∀n = 1, 2, · · · , N are lower tolerance limit for the membership
function of the tth level numerator and denominator respectively.
The linear membership functions for fuzzy goals are defined as follows.

µ(N (tn)(X̄)) =



1 if N (tn)(X̄) ≤ N (tn)

N̄ (tn) −N (tn)(X̄)

N̄ (tn) −N (tn)
if N (tn) ≤ N (tn)(X̄) ≤ N̄ (tn),

∀t = 1, 2, · · · , T &n = 1, 2, · · · , N
0 if N (tn)(X̄) ≥ N̄ (tn)

(7.5)

µ(D(tn)(X̄)) =



0 if D(tn)(X̄) ≤ D(tn)

D(tn)(X̄)−D(tn)

D̄(tn) −D(tn)
if D(tn) ≤ D(tn)(X̄) ≤ D̄(tn),

∀t = 1, 2, · · · , T &n = 1, 2, · · · , N
1 if D(tn)(X̄) ≥ D̄(tn)

(7.6)
Comparably, the decision vector X t’s membership function as follows, where (t =

1, 2, · · · , T ).

µ(X t) =


1 if X t ≤ X t

X̄ −X t

X̄ −X
if X ≤ X t ≤ X̄,∀t = 1, 2, · · · , T &n = 1, 2, · · · , N

0 if X t ≥ X̄

(7.7)
where X̄ t and X t are represents the values of corresponding decision vectors at
each level which yield the maximum and minimum values of the numerator part of
the objective functions (N̄ t(X̄) and N t(X),∀t = 1, 2, · · · , T − 1) at every level
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respectively is given by

X̄ t =
Max

X̄ t ∈ X
{N̄ (tn)(X̄), ∀n = 1, 2, · · · , N}

X t =
Min

X̄ t ∈ X
{N (tn)(X̄), ∀n = 1, 2, · · · , N}

 (7.8)

Since, the objective functions generally conflict each other, the completely satisfactory
optimal solution is very rarely obtained; the highest degree of membership value for
each fuzzy goal can be 1. So, we need to minimize the regret of each decision maker at
all levels and every decision maker should try to maximize the membership function by
reducing the distance between membership value and unity and minimize the positive
deviational value. In this process all objective functions are simultaneously optimized.
The model U4DMLMOMIFTP (5.2) can be written as



min δ =
T∑
t=1

N∑
n=1

d
(tn)

N+ +
T∑
t=1

N∑
n=1

d
(tn)

D+ +
T∑
t=1

dt+

subject to

µ(N (tn) + d
(tn)

N− − d
(tn)

N+ = 1,∀t = 1, 2, · · · , T &n = 1, 2, · · · , N
µ(D(tn) + d

(tn)

N− − d
(tn)

N+ = 1,∀t = 1, 2, · · · , T &n = 1, 2, · · · , N
µ(X t) + d

(t)
− − d

(t)
+ = 1,∀t = 1, 2, · · · , T − 1

J∑
j=1

K∑
k=1

R∑
r=1

xijkrg − E(ãig) ≤ 0, i = 1, 2, · · · , I, g = 1, 2, · · · , G

E(b̃jg)−
I∑

i=1

K∑
k=1

R∑
r=1

xijkrg ≤ 0, j = 1, 2, · · · , J, g = 1, 2, · · · , G

I∑
i=1

J∑
j=1

R∑
r=1

G∑
g=1

xijkrg − E(ẽk) ≤ 0, k = 1, 2, · · · , K

xijkrg ≥ 0,∀i, j, k, r, g

(7.9)

Therefore, we can note that only the sum of over deviational variables has to be
minimized to reach the aspiration level. When the aspired level is reached, the negative
deviational value is zero. When the achievement level is zero, negative deviational value
becomes unity.



A FGP Approach To 4DMLMOMIFTP Under Uncertain Environment 941

The GP model formulation of U4DMLMOMIFTP(7.9) becomes as follows:

min δ =
T∑
t=1

N∑
n=1

d
(tn)

N+ +
T∑
t=1

N∑
n=1

d
(tn)

D+ +
T∑
t=1

dt+

subject to

N (tn) −N (tn)(X̄) + d
(tn)

N− (N̄
(tn) −N (tn)) = 1,∀t = 1, 2, · · · , T &n = 1, 2, · · · , N

−D̄(tn) +D(tn)(X̄) + d
(tn)

N− (D̄
(tn) −D(tn)) = 1,∀t = 1, 2, · · · , T &n = 1, 2, · · · , N

X −X t + d
(t)
− (X̄ −X) = 1, ∀t = 1, 2, · · · , T − 1

J∑
j=1

K∑
k=1

R∑
r=1

xijkrg − E(ãig) ≤ 0, i = 1, 2, · · · , I, g = 1, 2, · · · , G

E(b̃jg)−
I∑

i=1

K∑
k=1

R∑
r=1

xijkrg ≤ 0, j = 1, 2, · · · , J, g = 1, 2, · · · , G

I∑
i=1

J∑
j=1

R∑
r=1

G∑
g=1

xijkrg − E(ẽk) ≤ 0, k = 1, 2, · · · , K

xijkrg ≥ 0,∀i, j, k, r, g
(7.10)

8. SOLUTION PROCEDURE FOR U4DMLMOMIFTP

Step 1: Formulate the decision making model for uncertain four dimensional multi level
multi objective multi item fractional transportation problem as in (4.1).

Step 2: Obtain an equivalent deterministic model for U4DMLMOMIFTP by using
expected value model and chance constraint model on uncertainty theory as in
(5.2) and (6.2).

Step 3: Under the given constraints, for all objectives, calculate the individual max N̄ (tn)

and D̄(tn) and min (N (tn) and D(tn)) values of numerator and denominator for all
levels respectively.

Step 4: For all levels and all objectives, set the fuzzy goals and aspiration levels
N̄ (tn), N (tn) (or) D̄(tn), D(tn) for each and every numerator and denominator parts.

Step 5: Compute the highest and lowest value of numerator part of all objectives
respectively as defined in (7.8).

Step 6: Set corresponding values of decision variables as aspiration levels for
membership functions of decision vector X(t),∀t = 1, 2, · · · , T − 1.
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Step 7: Find the membership functions of numerators µ(N (tn)), denominators µ(D(tn))

and decision variables µ(X(t)).

Step 8: For the proposed U4DMLMOMIFTP, formulate the fuzzy goal programming
model as in equation (7.10).

Step 9: Using generalized reduced gradient technique (LINGO-18.0 Suite Solver) , solve
the fuzzy goal programming model to have the compromise solution of proposed
U4DMLMOMIFTP.

9. NUMERICAL EXAMPLE

Problem A numerical example is considered to illustrate the performance of the
proposed U4DMLMOMIFTP model. In the problem we have taken, we have
considered 2 levels, 2 origins, 2 destinations, 2 possible routes, 2 modes of transports
and 2 types of products. In this problem, we aim to minimize the ratio of the actual and
standard transportation cost and the ratio of the actual and standard time at each level.
The data presented below is based on normal variable N(e, µ).
The table 9.1 contains the data for the availabilites of the origins.

Table 9.1: Availabilities in origins
i g ãig

1
1 (100, 9)
2 (260, 7)

2
1 (125, 5)
2 (350, 10)

The data for the demands in various destinations are presented in table 9.2.

Table 9.2: Demands in destinations
j g b̃jg

1
1 (50, 8)
2 (25, 9)

2
1 (100, 10)
2 (200, 20)

Table 9.3 contains data for the capacities of transports.

Table 9.4 contains the data for ratio between the actual and standard transportation cost
, ratio between the actual and standard transportation time of level 1 and level 2.



A FGP Approach To 4DMLMOMIFTP Under Uncertain Environment 943

Table 9.3: Capacity of Conveyances
k r ẽkr

1
1 (180, 10)
2 (150, 15)

2
1 (190, 20)
2 (280, 30)

Table 9.4: Ratios of actual and standard unit transportation cost, actual and standard
transportation time

i j k r

Level 1 Ratio of actual
unit transportation cost
and standard unit
transportation cost

Level 1 Ratio of actual
transportation and
standard
transportation time

Level 2 Ratio of actual
unit transportation cost
and standard unit
transportation cost

Level 2 Ratio of actual
transportation and
standard
transportation time

C̃11
ijkr1

D̃11
ijkr1

C̃11
ijkr2

D̃11
ijkr2

Ã12
ijkr1

S̃12
ijkr1

Ã12
ijkr2

S̃12
ijkr2

C̃21
ijkr1

D̃21
ijkr1

C̃21
ijkr2

D̃21
ijkr2

Ã22
ijkr1

S̃22
ijkr1

Ã22
ijkr2

S̃22
ijkr2

1

1
1

1
(18, 0.5)

(28, 1)

(22, 1)

(22, 0.5)

(23, 1)

(23, 2)

(22, 0.5)

(22, 1)

(28, 2)

(18, 0.5)

(12, 7)

(27, 5)

(29, 2)

(21, 3)

(29, 2)

(16, 7)

2
(18, 0.5)

(28, 1)

(28, 0.5)

(28, 1)

(23, 2)

(23, 3)

(22, 4)

(23, 5)

(28, 4)

(18, 5)

(12, 7)

(24, 3)

(29, 3)

(36, 4)

(19, 1)

(26, 3)

2 1
(19, 1)

(19, 2)

(29, 3)

(29, 4)

(41, 0.5)

(41, 0.1)

(32, 4)

(32, 3)

(12, 7)

(19, 2)

(21, 0.5)

(24, 1)

(19, 0.5)

(21, 0.8)

(19, 3)

(36, 8)

2
(19, 3)

(19, 4)

(19, 1)

(19, 0.5)

(32, 1)

(22, 0.5)

(32, 1)

(32, 2)

(18, 2)

(19, 1)

(18, 4)

(19, 2)

(39, 3)

(36, 2)

(49, 0.2)

(16, 4)

2 1 1
(17, 4)

(7, 4)

(29, 3)

(29, 2)

(43, 5)

(43, 3)

(32, 1)

(32, 0.5)

(18, 2)

(18, 3)

(21, 4)

(37, 7)

(39, 0.5)

(22, 3)

(59, 2)

(38, 1)

2
(29, 2)

(29, 1)

(29, 3)

(29, 2)

(32, 1)

(42, 7)

(32, 2)

(32, 3)

(16, 4)

(37, 5)

(27, 2)

(37, 8)

(49, 7)

(22, 3)

(49, 3)

(22, 5)

2 1
(19, 2)

(19, 0.5)

(24, 2)

(20, 3)

(29, 3)

(49, 8)

(24, 1)

(24, 0.5)

(16, 2)

(18, 1)

(21, 0.5)

(21, 1)

(49, 3)

(42, 2)

(21, 1)

(31, 0.5)

2
(29, 3)

(39, 7)

(24, 5)

(24, 3)

(29, 3)

(19, 2)

(29, 2)

(19, 4)

(16, 2)

(28, 4)

(21, 3)

(23, 2)

(16, 3)

(41, 5)

(21, 3)

(41, 5)

2 1 1 1
(29, 2)

(29, 3)

(28, 0.5)

(38, 1)

(49, 3)

(39, 2)

(25, 2)

(25, 10)

(21, 3)

(18, 5)

(21, 4)

(28, 7)

(21, 4)

(22, 6)

(21, 3)

(41, 2)

2
(29, 0.7)

(29, 0.5)

(29, 3)

(29, 2)

(25, 2)

(25, 1)

(25, 1)

(25, 2)

(18, 2)

(18, 1)

(18, 0.5)

(18, 1)

(36, 2)

(41, 3)

(36, 2)

(21, 3)

2 1
(21, 1)

(21, 2)

(24, 0.5)

(24, 2)

(49, 0.5)

(59, 2)

(28, 3)

(38, 4)

(18, 4)

(18, 5)

(22, 3)

(25, 7)

(26, 2)

(17, 3)

(41, 5)

(23, 2)

2
(24, 3)

(24, 2)

(24, 0.5)

(24, 0.8)

(28, 3)

(38, 2)

(28, 2)

(28, 3)

(28, 3)

(25, 2)

(22, 4)

(25, 7)

(36, 2)

(17, 5)

(36, 3)

(17, 2)

2 1 1
(28, 3)

(28, 2)

(25, 0.8)

(25, 0.7)

(28, 1)

(28, 2)

(25, 1)

(25, 1)

(28, 2)

(18, 3)

(22, 0.4)

(10, 1)

(36, 0.5)

(37, 2)

(22, 4)

(43, 0.1)

2
(28, 4)

(28, 3)

(23, 1)

(33, 5)

(28, 2)

(28, 2)

(28, 3)

(28, 4)

(28, 0.5)

(28, 1)

(22, 7)

(19, 0.6)

(48, 3)

(43, 2)

(22, 1)

(43, 2)

2 1
(28, 1)

(28, 2)

(25, 0.5)

(25, 0.3)

(8, 2)

(38, 0.5)

(25, 2)

(25, 1)

(22, 3)

(38, 0.1)

(22, 2)

(38, 1)

(22, 5)

(17, 3)

(22, 3)

(73, 0.5)

2
(28, 1)

(28, 3)

(28, 0.5)

(28, 0.7)

(25, 0.5)

(25, 2)

(25, 0.7)

(25, 0.9)

(23, 1)

(38, 0.8)

(23, 2)

(18, 5)

(31, 4)

(43, 2)

(41, 5)

(73, 2)
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For the formulation of the problem and getting the compromise solution, we may follow
the following steps:

Step 1: The decision making model is formulated for U4DMLMOMIFTP for above data
as of (4.1).

Step 2: We convert the above U4DMLMOMIFTP model into deterministic model by
making use of expected value method on uncertainity theory as (5.2).

Step 3: Calculate the individual max (N̄ (tn), D̄(tn)) and min (N (tn), D(tn)) for all levels
under the given constraints. The optimal values of each numerator and
denominator have been presented in table (9.5).

Table 9.5: Minimum and maximum values of the numerator and denominator of all
objectives

Levels Objectives Max Min

1

Z(11) Numerator N̄ (11) = 23020 N (11) = 7875

Denominator D̄(11) = 25900 D(11) = 6415

Z(12) Numerator N̄ (12) = 27565 N (12) = 7410

Denominator D̄(12) = 26465 D(12) = 7600

2 Z(21) Numerator N̄ (21) = 19760 N (21) = 7000

Denominator D̄(21) = 27615 D(21) = 5310

Z(22) Numerator N̄ (22) = 37855 N (22) = 7325

Denominator D̄(22) = 43485 D(22) = 7900

Step 4: The aspiration levels and fuzzy goals has been set for each numerator and
denominator.

Step 5: The objectives’ numerator parts’ highest and lowest values are 27565 and 7410
and the corresponding highest and lowest value for the decision variables are 110
and 0.

Step 6: Respective values of decision variables are set a aspiration levels for each decision
vectors’ membership functions as shown in (7.8).

Step 7: Membership functions of numerators, denominators and decision vectors of all
levels are found as of (7.7).
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Step 8: Formulate the fuzzy goal programming model for U4DMLMOMIFTP as given
below

min δ =
2∑

t=1

2∑
n=1

d
(tn)

N+ +
2∑

t=1

2∑
n=1

d
(tn)

D+ +
2∑

t=1

d
(t)
+

7875 + 15145d
(11)

N− −
2∑

i=1

2∑
j=1

2∑
k=1

2∑
r=1

2∑
g=1

C
(11)
ijkrgxijkrg ≥ 0

7410 + 20155d
(12)

N− −
2∑

i=1

2∑
j=1

2∑
k=1

2∑
r=1

2∑
g=1

A
(12)
ijkrgxijkrg ≥ 0

7000 + 12760d
(21)

N− −
2∑

i=1

2∑
j=1

2∑
k=1

2∑
r=1

2∑
g=1

C
(21)
ijkrgxijkrg ≥ 0

7325 + 30530d
(22)

N− −
2∑

i=1

2∑
j=1

2∑
k=1

2∑
r=1

2∑
g=1

A
(22)
ijkrgxijkrg ≥ 0

−25900 + 19485d
(11)

D− +
2∑

i=1

2∑
j=1

2∑
k=1

2∑
r=1

2∑
g=1

D
(11)
ijkrgxijkrg ≥ 0

−29465 + 21865d
(12)

D− +
2∑

i=1

2∑
j=1

2∑
k=1

2∑
r=1

2∑
g=1

D
(12)
ijkrgxijkrg ≥ 0

−27615 + 22305d
(21)

D− +
2∑

i=1

2∑
j=1

2∑
k=1

2∑
r=1

2∑
g=1

S
(21)
ijkrgxijkrg ≥ 0

−43485 + 35585d
(22)

D− +
2∑

i=1

2∑
j=1

2∑
k=1

2∑
r=1

2∑
g=1

S
(22)
ijkrgxijkrg ≥ 0

−1 ∗ (x11111 + x11121 + x11211 + x11221 + x12111 + x12121 + x12211 + x12221 + x21111

+x21121 + x21211 + x21221 + x22111 + x22121 + x22211 + x22221)− d1− ∗ 110 ≥ 0
J∑

j=1

K∑
k=1

R∑
r=1

xijkrg − E(ãig) ≤ 0, i = 1, 2, · · · , I, g = 1, 2, · · · , G

E(b̃jg)−
I∑

i=1

K∑
k=1

R∑
r=1

xijkrg ≤ 0, j = 1, 2, · · · , J, g = 1, 2, · · · , G

I∑
i=1

J∑
j=1

R∑
r=1

G∑
g=1

xijkrg − E(ẽk) ≤ 0, k = 1, 2, · · · , K

xijkrg ≥ 0,∀i, j, k, r, g
(9.1)

as said in equation(7.10)
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Step 9: The problem obtained in step 8 has been solved using the reduced gradient
technique to obtain the compromise solution of the proposed U4DMLMOMIFTP
problem.

The compromise solution for the proposed U4DMLMOMIFTP is
δ = 0, x11111 = 50, x12111 = 50, x21112 = 25, x22111 = 50, x22222 = 200,

d
(11)

N+ = d
(12)

N+ = d
(21)

N+ = d
(22)

N+ = d
(11)

D+ = d
(12)

D+ = d
(21)

D+ = d
(22)

D+ = 0 with the
corresponding objective values Z(11) = 0.9742, Z(12) = 1, Z(21) = 1.2607, Z(22) =

0.709.
Repeat the above said steps from 1 to 9 for chance constraint method for the proposed
U4DMLMOMIFTP to obtain the compromise solution of the model. The solution has
been obtained by considering predetermined confidence level as
α11 = α12 = α21 = α22 = γ11 = γ12 = γ21 = γ22 = β1 = β2 = β3 = 0.9.
The compromise solution has been given in the table 9.6. The decision makers can

Table 9.6: Compromise solution of the objectives from chance constraint method
Variable Values Objective values
x11111 = 59.69, x12121 = 9.99, MinZ(11) = 0.915,
x12221 = 19.4, x21112 = 25.46, MinZ(12) = 0.933,
x21122 = 10.448, x22111 = 82.72, MinZ(21) = 1.1467,
x22222 = 224.24 MinZ(22) = 0.72,

obtain the optimal solutions flexibly, as per their desired conditions, by using the chance
constrained method. Considering diverse set of values for various parameters in the
proposed model, will benefit the decision making under uncertain environment.

10. CONCLUSIONS AND FUTURE RESEARCH WORK

In this work, a four dimensional multi-level multi objective multi item fractional
transportation problem under uncertain environment has been investigated. Four
diemensional multi level multi objective multi item fractional transportation problem
(4DMLMOMIFTP) to handle real life suitations has been studied for the first time
ever in this paper. We have solved the transportation problem taken using fractional
programming instead of linear programming as the ratio to be optimized in fractional
programming often describes the efficiency of the system considered. The problem
has been converted into equivalent deterministic problem using expected value method
and chance constrained method. The compromise solution has then been obtained for
hierarchical decision making system suitably to avoid dead locks in situations involving
conflicting objectives, using goal programming method. An illustrative numerical
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example’s solution using above method has been presented to showcase the validity of
the method presented. The above work can be extended further in future by including
time constraint considering vehicle speed in the above problem.
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