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Abstract
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1. INTRODUCTION

Fractional calculus is mostly description of the integral and derivative operator with
fractional order. The fractional derivative (FD) was first invented by Leibniz [1, 2, 3].
After Leibniz invented the FD, it was further elaborated by more authors. The most
used FDs are the Riemann–Liouville and Caputo types. There are other types of FDs
as well, we allude to [4, 5, 6, 7] and references therein.

The most normal property of the previously mentioned fractional operators is that the
portions they typify contain singular kernels. This property causes numerous hindrances
in applying these operators.

To sidestep these hindrances, Caputo and Fabrizio [8] suggested a new fractional
operator so-called Caputo–Fabrizio. This operator contains a non-singular kernel yet
still conserves the most substantial peculiarity of the classical fractional operators.
Utilizing this operator created better outcomes compared with the FDs singular kernel.

However, a burden of this operator emerged in light of the fact that the associated
integral can be written in terms of an integral of integer order. To avoid this drawback,
Atangana and Baleanu [9] proposed a FD based on a generalized Mittag-leffler function
so-called Atangana–Baleanu derivative (AB type-derivative). For short, this operator in
the sense of Riemman-Liouville and Caputo are meant by ABR-derivative and ABC-
derivative, respectively.

Many researchers contributed in growing the AB fractional calculus. We notice for
instance [10, 11, 12] and a portion of the references they contain. As of late, the
AB type-derivative has been attracting the interest of many authors, where many of
its uses appeared in the field of epidemiological modeling and the theory of differential
equations, e.g., Koca [13] analysed the rubella disease by employ the AB-derivative.
Atangana and Gomez-Aguilar in [14] constructed a nature model in the frame of
AB-derivative. Toufik and Atangana [15] applied a new numerical scheme to solve
fractional differential equations under AB-derivative. Khan et al. [16] discussed the
existence and stability of the hepatitis B epidemic model with a AB-derivative. The
class of fractional differential equations (FDEs) with AB-derivative has been studied
by Jarad et al. [17]. Abdo et al. [18] investigated the existence and uniqueness results
of an impulsive FDE under AB-derivative.

On the other hand, there have been some recent papers managing the existence and
uniqueness of positive solutions of different types of FDEs by the usage of various
techniques of fixed point, see [19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

Motivated by the aforementioned discussions and papers, and inspired by [9, 20], we
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investigate the existence and uniqueness of positive solution of the following ABC-type
FDF {

ABC
0 Dδ

κφ(κ) = f(κ, φ(κ)), κ ∈ (0, 1),

φ(0) = 0,
(1.1)

where 0 < δ < 1, ABC
0 Dδ

κ is the ABC-derivative of order δ, f : [0, 1] × R+ → R+ is a
continuous function.

We give interesting results for ABC-type FDE. Most of our derivations are
made utilizing theorems of significant importance such as Arzelá–Ascoli’s theorem,
Schauder’s fixed point theorem, Banach’s fixed point theorem and upper and lower
solutions method. Moreover, we construct the upper and lower control functions of the
nonlinear term without monotone conditions to obtain the desired results.

The paper is marshaled as follows: In Section 2, we give some basic results. In Section
3, we prove the existence and uniqueness of positive solutions to the problem (1.1).
Two examples are given in the last section.

2. FUNDAMENTAL RESULTS

In this section, we provide some notions and basic definitions of AB fractional calculus
which are needed whole this paper. Suppose X = C[0, 1] be a Banach space with the
norm ∥φ∥ = max {|φ(κ)| ; κ ∈ [0, 1]} ; φ ∈ X. Define the cone

K = {φ ∈ X : φ(κ) ≥ 0, 0 ≤ κ ≤ 1}.

Definition 2.1. [9] Let 0 < δ < 1, and φ ∈ H1(a, b), a < b. The ABC fractional
derivative for function φ of order δ is given by

ABC
0 Dδ

κφ(κ) =
M(δ)

1− δ

∫ κ

0

φ′(ξ)Eδ

(
−δ(κ − ξ)δ

1− δ

)
dξ. (2.1)

Further, the ABR fractional derivative is defined by

ABR
0 Dδ

κφ(κ) =
M(δ)

1− δ

d

dκ

∫ κ

0

φ(ξ)Eδ

(
−δ(κ − ξ)δ

1− δ

)
dξ. (2.2)

Here, M(δ) > 0 is a normalization function satisfies M(0) = M(1) = 1 and Eδ

represents the well known Mittag- Liffler function.

Definition 2.2. [9] Let 0 < δ < 1 and φ be function, then AB fractional integral of
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order δ is given by

AB
0 Iδ

κφ(κ) =
1− δ

M(δ)
φ(κ) +

δ

M(δ)
RL
0 Iδ

κ φ(κ)

=
1− δ

M(δ)
φ(κ) +

δ

M(δ)Γ(δ)

∫ κ

0

φ(ξ)(κ − ξ)δ−1dξ, (2.3)

where
RL
0 Iδ

κ φ(κ) =
1

Γ(δ)

∫ κ

0

φ(ξ)(κ − ξ)δ−1dξ

is called the Riemann-Liouville fractional integral [1].

Definition 2.3. [12] Let n < δ ≤ n + 1, n = 0, 1, ..., and φ be a function such that
φ(n) ∈ H1(a, b). Then ABC derivative satisfies ABC

0 Dδ
κφ(κ) = ABC

0 Dη
κ φ

(n)(t), where
η = δ − n.

Lemma 2.4. [12] For n < δ ≤ n + 1, n = 0, 1, ..., the following result holds for the
FDEs

AB
0 Iδ

κ
ABC
0 Dδ

κ φ(κ) = φ(κ) + d0 + d1κ + d2κ2 + · · ·+ dnκn,

for arbitrary constant di with i = 0, 1, 2, ...., n.

Theorem 2.5. [29] Let Φ be a Banach space with a contraction mapping T : Φ → Φ.
Then, T has a unique fixed-point φ in Φ.

Theorem 2.6. [29] Let Φ be a Banach space and let S a closed, convex, bounded subset
of Φ. If T : S −→ S is a continuous map such that the set {Tφ : φ ∈ S} is relatively
compact in Φ. Then T has at least one fixed point.

3. MAIN RESULTS

In this portion, we prove the existence and uniqueness of positive solutions for (1.1).
Before starting, we introduce the following lemma:

Lemma 3.1. [9] Let 0 < δ < 1 and h : [0, 1] → R+ is a continuous function with
h(0) = 0. Then the linear ABC-type FDF

ABC
0 Dδ

κφ(κ) = h(κ), κ ∈ (0, 1),

φ(0) = 0,
(3.1)

is equivalent to

φ(κ) =
1− δ

M(δ)
h(κ) +

δ

M(δ)Γ(δ)

∫ κ

0

h(ξ)(κ − ξ)δ−1dξ. (3.2)
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As result of Lemma 3.1, we get the following Lemma:

Lemma 3.2. Assume that f : [0, 1] × R+ → R+ is a continuous with f(0, φ(0)) = 0,
and φ be a function. Then the nonlinear ABC-type FDF (1.1) is equivalent to

φ(κ) =
1− δ

M(δ)
f(κ, φ(κ)) +

δ

M(δ)Γ(δ)

∫ κ

0

f(ξ, φ(ξ))(κ − ξ)δ−1dξ. (3.3)

Note that, The equation (3.3) is also equivalent to

(Tφ) (κ) =
1− δ

M(δ)
f(κ, φ(κ)) +

δ

M(δ)Γ(δ)

∫ κ

0

f(ξ, φ(ξ))(κ − ξ)δ−1dξ, (3.4)

where T : K → K is an operator such that (Tφ) (κ) = φ(κ), φ(κ) ∈ X.

Definition 3.3. [20] The upper and lower control functions are defined by

∆(κ, φ) = sup
a≤η≤φ

f(κ, η) and ∆(κ, φ) = inf
φ≤η≤b

f(κ, η),

respectively, where a, b ∈ R+(b > a) and φ ∈ [a, b].

It is clear that ∆(κ, φ) and ∆(κ, φ) are non-decreasing on φ and

∆(κ, φ) ≤ f(κ, φ) ≤ ∆(κ, φ).

Definition 3.4. [20] Let φ(κ),φ(κ) ∈ K and a ≤ φ(κ) ≤ φ(κ) ≤ b satisfy

φ(κ) ≥ 1− δ

M(δ)
∆(κ,φ(κ)) +

δ

M(δ)Γ(δ)

∫ κ

0

∆(ξ,φ(ξ))(κ − ξ)δ−1dξ

and

φ(κ) ≤ 1− δ

M(δ)
∆(κ, φ(κ)) +

δ

M(δ)Γ(δ)

∫ κ

0

∆(ξ, φ(ξ))(κ − ξ)δ−1dξ

Then, φ(κ) and φ(κ) are called upper and lower solutions for (1.1).

Now, we give the following hypothese:

(H1) f : [0, 1]× R+ → R+ is continuous.

(H2) There exists a constant Lf > 0 such that

|f(κ, φ1)− f(κ, φ2)| ≤ Lf |φ1 − φ2| , ∀κ ∈ [0, 1], φ1, φ2 ∈ R+
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(H3) f(κ, φ) is a completely continuous such that for κ ∈ [0, 1] and φ ∈ X, there exists
a constant ρ > 0 satisfying

|f(κ, φ)| ≤ ρ, (κ, φ) ∈ [0, 1]× R+.

Theorem 3.5. Suppose that (H1) and (H3) hold. Let φ(κ), φ(κ) are upper, lower
solutions of problem (1.1). Then the nonlinear ABC-type FDF (1.1) has at least a
solution φ(κ). Moreover,

φ(κ) ≤ φ(κ) ≤ φ(κ), κ ∈ [0, 1].

Proof. Convert the problem (1.1) into a fixed point problem. Consider the operator
T : K → K defined by (3.4). Then we shall make use of Theorem 2.6 to verify that T
has a fixed point. The proof will be presented in some steps.

Step1: The operator T : K → K is compact.

From the continuity and nonnegativity of f(κ, φ), the operator T is continuous. Define
a ball

Br = {φ ∈ K : ∥φ∥ ≤ r, κ ∈ [0, 1]},

Let φ ∈ Br and κ ∈ [0, 1]. Then we get

|(Tφ) (κ)| ≤ 1− δ

M(δ)
|f(κ, φ(κ))|+ δ

M(δ)Γ(δ)

∫ κ

0

|f(ξ, φ(ξ))| (κ − ξ)δ−1dξ,

≤ 1− δ

M(δ)
ρ+

δρ

M(δ)Γ(δ)

∫ κ

0

(κ − ξ)δ−1dξ

≤ ρ

M(δ)

(
1− δ +

1

Γ(δ)

)
.

Hence

∥Tφ∥ ≤ ρ

M(δ)

(
1− δ +

1

Γ(δ)

)
.

This show that T : Br → Br is uniformly bounded.

Now, we prove that T is equicontinuous. For each φ ∈ Br. Then for κ1,κ2 ∈ [0, 1]
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with κ1 < κ2, we have

|(Tφ)(κ2)− (Tφ)(κ1)| ≤
∣∣∣∣1− δ

M(δ)
f(κ2, φ(κ2)) +

δ

M(δ)Γ(δ)

∫ κ2

0
f(ξ, φ(ξ))(κ2 − ξ)δ−1dξ

− 1− δ

M(δ)
f(κ1, φ(κ1)) +

δ

M(δ)Γ(δ)

∫ κ1

0
f(ξ, φ(ξ))(κ1 − ξ)δ−1dξ

∣∣∣∣
≤ 1− δ

M(δ)
|f(κ2, φ(κ2))− f(κ1, φ(κ1))|

+
δ

M(δ)Γ(δ)

∫ κ1

0

∣∣∣(κ2 − ξ)δ−1 − (κ1 − ξ)δ−1
∣∣∣ |f(ξ, φ(ξ))| dξ

+
δ

M(δ)Γ(δ)

∫ κ2

κ1

(κ2 − ξ)δ−1 |f(ξ, φ(ξ))| dξ (3.5)

Since f(κ, φ) is completely continuous due to (H3),

|f(κ2, φ(κ2))− f(κ1, φ(κ1))| → 0, as κ1 → κ2.

Consequently,

|(Tφ)(κ2)− (Tφ)(κ1)| ≤ δρ

M(δ)Γ(δ)

∫ κ1

0

(κ1 − ξ)δ−1 − (κ2 − ξ)δ−1dξ

+
δρ

M(δ)Γ(δ)

∫ κ2

κ1

(κ2 − ξ)δ−1dξ

≤ ρ

M(δ)Γ(δ)

[
(κ2 − κ1)

δ + κδ
1 − κδ

2

]
+

ρ

M(δ)Γ(δ)
(κ2 − κ1)

δ

≤ 2ρ

M(δ)Γ(δ)
(κ2 − κ1)

δ,

which implies
|(Tφ)(κ2)− (Tφ)(κ1)| → 0, as κ1 → κ2.

Thus, (TBr) is equicontinuous. Hence, T : Br → Br is completely continuous due to
Arzela–Ascoli theorem.

Step2: To apply Theorem 2.6, we need to prove T : N → N , where

N = {φ(κ) : φ(κ) ∈ K, φ(κ) ≤ φ(κ) ≤ φ(κ), κ ∈ [0, 1]}. (3.6)

It is clear that N is a closed, convex, and bounded subset of C([0, 1],R+). For any
φ(κ) ∈ N , we get φ(κ) ≤ φ(κ) ≤ φ(κ), it follows from Definitions 3.3 and 3.4 that

(Tφ)(κ) =
1− δ

M(δ)
f(κ, φ(κ)) +

δ

M(δ)Γ(δ)

∫ κ

0

f(ξ, φ(ξ))(κ − ξ)δ−1dξ

≤ 1− δ

M(δ)
∆(κ,φ(κ)) +

δ

M(δ)Γ(δ)

∫ κ

0

∆(ξ,φ(ξ))(κ − ξ)δ−1dξ

≤ φ(κ),
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and

(Tφ)(κ) =
1− δ

M(δ)
f(κ, φ(κ)) +

δ

M(δ)Γ(δ)

∫ κ

0

f(ξ, φ(ξ))(κ − ξ)δ−1dξ

≥ 1− δ

M(δ)
∆(κ, φ(κ)) +

δ

M(δ)Γ(δ)

∫ κ

0

∆(ξ, φ(ξ))(κ − ξ)δ−1dξ

≥ φ(κ).

So, φ(κ) ≤ Tφ(κ) ≤ φ(κ), 0 ≤ κ ≤ 1 which implies Tφ(κ) ∈ N , ∀ κ ∈ [0, 1]. This
proves that T : N → N . As an results of Theorem 2.6, T has at least one fixed point
φ(κ) ∈ N , 0 ≤ κ ≤ 1. Therefore, φ(κ) ∈ X is a solution of the problem (1.1), and
φ(κ) ≤ φ(κ) ≤ φ(κ), 0 ≤ κ ≤ 1.

Corollary 3.6. Assume that f : [0, 1] × R+ → R+ is continuous, and there exist
L2 ≥ L1 > 0 such that

L1 ≤ f(κ, σ) ≤ L2, (κ, σ) ∈ [0, 1]× R+. (3.7)

Then there exists at least a solution φ(κ) of the ABC-type FDF (1.1). Moreover,

L1

M(δ)

(
1− δ +

1

Γ(δ)
κδ

)
≤ φ(κ) ≤ L2

M(δ)

(
1− δ +

1

Γ(δ)
κδ

)
, for κ ∈ [0, 1],

(3.8)

Proof. In view of Definition 3.3 and assumption (3.7), we have

L1 ≤ ∆(κ, σ) ≤ ∆(κ, σ) ≤ L2, (κ, σ) ∈ [0, 1]× [a, b]. (3.9)

Consider the ABC-type FDF

ABC
0 Dδ

κφ(κ) = L2, 0 ≤ κ ≤ 1,
φ(0) = 0,

(3.10)

by virtue of Lemma 3.1, the ABC-type FDF (3.10) has a positive solution

φ(κ) =
(AB
0 Iδ

κ L2

)
(κ)

=
1− δ

M(δ)
L2 +

δL2

M(δ)Γ(δ)

∫ κ

0

(κ − ξ)δ−1dξ

=
L2

M(δ)

(
1− δ +

1

Γ(δ)
κδ

)
By (3.9), we get

φ(κ) =
(AB
0 Iδ

κ L2

)
(κ) ≥ AB

0 Iδ
κ ∆(κ,φ(κ)).
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Therefore, φ(κ) is the upper solution of the ABC-type FDF (1.1).

Similarly, the ABC-type FDF
ABC
0 Dδ

κφ(κ) = L1, 0 ≤ κ ≤ 1,
φ(0) = 0,

(3.11)

has a positive solution

φ(κ) =
(AB
0 Iδ

κ L1

)
(κ)

=
1− δ

M(δ)
L1 +

δL1

M(δ)Γ(δ)

∫ κ

0

(κ − ξ)δ−1dξ

=
L1

M(δ)

(
1− δ +

1

Γ(δ)
κδ

)
By (3.9), we conclude that

φ(κ) =
(AB
0 Iδ

κ L1

)
(κ) ≤ AB

0 Iδ
κ ∆(κ, φ(κ)).

Thus, φ(κ) is the lower solution of the ABC-type FDF (1.1).

Theorem (3.5) shows that that the ABC-type FDF (1.1). has at least one positive
solution φ(κ) ∈ N , which verifies the inequality (3.8).

Corollary 3.7. Suppose that f : [0, 1]× [0,+∞) → [a,+∞) is a continuous satisfies

a ≤ lim
φ→+∞

f(κ, φ) ≤ +∞, (3.12)

for κ ∈[0, 1] and a is a positive constant. Then there exists at least a solution φ(κ) of
the ABC-type FDF (1.1).

Proof. By hypothesis (3.12), there are positive constants ℵ1,ℵ2, such that when φ > ℵ2,
we have

f(κ, φ) ≤ ℵ1.

Let
fmax = max

0≤κ≤1,0≤φ≤ℵ2

f(κ, φ),

Then
a ≤ f(κ, φ) ≤ ℵ1 + fmax, 0 < φ < +∞.

In view of Corollary 3.6, the ABC-type FDF (1.1) has at least one positive solution
φ(κ) ∈ X and satisfies

a

M(δ)

(
1− δ +

1

Γ(δ)
κδ

)
≤ φ(κ) ≤ ℵ1 + fmax

M(δ)

(
1− δ +

1

Γ(δ)
κδ

)
, for κ ∈ [0, 1].
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The next result is based on Theorem 2.5.

Theorem 3.8. Assume that (H1) and (H2) hold. If(
1− δ +

1

Γ(δ)

)
Lf

M(δ)
< 1, (3.13)

then the ABC-type FDF (1.1) has a unique positive solution φ(κ) ∈ X.

Proof. Consider T : K → K defined by (3.4). Now, we show that T is contraction map
in X. Let φ1, φ2 ∈ X and κ ∈ [0, 1]. Then

∥Tφ1 − Tφ2∥ = max
κ∈[0,1]

|(Tφ1)(κ)− (Tφ2)(κ)|

≤ max
κ∈[0,1]

{
1− δ

M(δ)
|f(κ, φ1(κ))− f(κ, φ2(κ))|

+
δ

M(δ)Γ(δ)

∫ κ

0

|f(ξ, φ1(ξ))− f(ξ, φ2(ξ))| (κ − ξ)δ−1dξ

}
≤ max

κ∈[0,1]

{
1− δ

M(δ)
Lf |φ1(κ)− φ2(κ)|

+
δ

M(δ)Γ(δ)
Lf

∫ κ

0

|φ1(ξ)− φ2(ξ)| (κ − ξ)δ−1dξ

}
≤ 1− δ

M(δ)
Lf ∥φ1 − φ2∥+

1

M(δ)Γ(δ)
Lf ∥φ1 − φ2∥

=

(
1− δ +

1

Γ(δ)

)
Lf

M(δ)
∥φ1 − φ2∥

From (3.13), T is contraction map. Due to Theorem 2.5, we can conclude that T has a
unique fixed point which is the unique positive solution of (1.1) on [0, 1].

4. EXAMPLES

In this portion, we provide two examples to enlighten our results.

Example 4.1. Consider the following ABC-type FDF

ABC
0 D

1
2
κ φ(κ) = φ(κ)

10+sin(φ(κ)) , 0 ≤ κ ≤ 1,
φ(0) = 0,

(4.1)

where δ = 1
2
, and f(κ, φ) = φ

10+sin(φ)
. It is clear that f(κ, φ) is a nonnegative

continuous function with f(0, φ(0)) = 0. For κ ∈ [0, 1] and φ, ϑ ∈ [0,∞), we get
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|f(κ, φ)− f(κ, ϑ)| ≤ 1
10
|φ− ϑ|. Here Lf =

1
10
. Thus (H1) and (H2) are satisfied.

Moreover, we have(
1− δ +

1

Γ(δ)

)
Lf

M(δ)
=

1 + 2√
π

20M(1
2
)
≈ 0.11 < 1.

So, all the assumptions for Theorem 3.8 hold. Hence, Theorem 3.8 guarantees that (4.1)
has a unique positive solution φ(κ) on [0, 1].

Example 4.2. Consider the following ABC-type FDF

ABC
0 D

1
3
κ φ(κ) = 1

κ+10

(
κφ(κ)
1+φ(κ) + 10

)
, 0 ≤ κ ≤ 1,

φ(0) = 0,
(4.2)

Here, δ = 1
3
, and f(κ, φ) = 1

κ+10

(
κφ
1+φ

+ 10
)
. Since f is continuous and

10

11
≤ f(κ, φ) ≤ 1

for all κ ∈ [0, 1], φ ∈ [0,+∞). Thus, L1 =
10
11

and L2 = 1.As a result of Corollary 3.6,
the ABC-type FDF (4.2) has a positive solution which satisfies φ(κ) ≤ φ(κ) ≤ φ(κ)
where

φ(κ) =
(
2

3
+

1

Γ(1
3
)
κδ

)
,

φ(κ) =
10

11

(
2

3
+

1

Γ(1
3
)
κδ

)
,

are respectively the upper and lower solutions of ABC-type FDF (4.2). Moreover, for
all (κ, φ) ∈ [0, 1]× [0,+∞), |f(κ, φ)| ≤ 1 = ρ. Thus, all assumptions in Theorem 3.5
and Corollary 3.6 are satisfied, hence our results can be applied to the ABC-type FDF.

5. CONCLUSIONS

We have deliberated a class of IVPs for nonlinear FDEs involving the ABC-type
derivative. With the control functions, the fixed point techniques of Banach and
Schauder, and the upper and lower solutions method, we have proven the existence and
uniqueness of positive solutions for the proposed problem. Moreover, two examples
to justify the main results have been presented. Further results of the corresponding
problems were given as special cases of (1.1). The reported results here are a new and
significant contribution to the current literature on AB fractional calculus.
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