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Abstract

The oscillatory and non-oscillatory properties of fourth order neutral generalized
difference equations with distributed delay are discussed in this paper. Sufficient
conditions for the oscillation and asymptotic behavior of non-oscillation of all
solutions of the given equation are obtained. To substantiate our findings, adequate

examples are presented.
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1. INTRODUCTION

In the recent past, the study of oscillation and non oscillation of generalized difference
equations gains momentum and is an active area of research. The analysis of asymptotic
behaviour of non-oscillatory solutions has already been studied by many researchers. A
few authors have studied the behaviour of such solutions for delay difference equations.
One can refer [1]-[3],[9]-[11] for the required literature on this topic.

As in differential equation with symmetries, Different schemes can be constructed
which preserves the symmetries. In Lie theory, difference equations play a significant
role. In Lie theory, discretizion of the continuum equation which preserves the
symmetries leads to a class of exact solutions. For an in-depth understanding of this
areas one can refer [6]-[8].
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Researchers mainly concentrated on second and third order equations with delay. But
there is very little literature available for neutral delay difference equations of order
higher than three. Very recently, delay difference equations are used to study the
stability properties of electrical power systems and for this application one can refer
[14]. Many such applications are avialable in Applied Sciences, Mathematical Biology,
Engineering and Technology, Economics and so on.

The study of the oscillation of solutions of different types of difference equations such
as fractional difference equations, dynamic equations on a time scale, and equation of
fractional partial differences are being actively carried out by many scholars at present.
Many researchers [5], [12]-[17] have studied the oscillation and non oscillation of the
third order difference equations with delay and neutral delay difference equations.
There is only little literature available on the study of the oscillation of difference
equations of order more than three. On the study of fourth order fractional difference
equation one can refer [18]. This motivated us to take up the study with difference
equations of order four of the generalized type with distributed delay. For our study, we
consider the fourth-order generalized difference equations with distributed delay of the

form
Ay (a3(§)Ar (a2(§)A¢ (a1 () A (€)))) + 12(8) = ws(8), € = &, (1)
where
() = tip(ﬁ,t)w(@r%—ﬁ) +z(§), (2)
y2(§) = §:Q(£’ t)f(z(€ +tl —al)), (3)
ys(§) = tir(éit), )

and a, b, ¢, d, g, h T and 0 € Z. Here, A, is the forward generalized difference
operator for any real sequence {z(§)} defined by Apz(§) = z(§ + ¢) — x(§) for
€ e Ng = {&, 6 + 0,6 +2¢,---}, where &, € N = {0,1,2,---} and satisfies
the following assumptions.

1
a; (t)

(A1) {ai(&)} are real positive sequences such that >
t=&o

=oo0or<oo,i=1,23.

(A2) {p(&,t)} is areal sequence for all £ > & with 0 < p(&) = zb:p(g,t) <p< .

t=a
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(As) {q(&,t)} is a positive sequence of real numbers for all £ > &, with slim q(&.t) <
—00
0.

(A4) f is a continuous real-valued function such that @ > M, for y = 0 and M, is
Yy

a constant.

(As) {r(&, 1)} is a positive sequence of real numbers for all £ > &.

(As) lim 61(6) = 0. where 6,(¢) = S =2 with gy (¢) = Lfori = 1,2,3,
—0 n=£+¢

(A7) mi(€) = [ & =& +jand j =€ — & — [S52] €.

By a solution of (1), we mean a real sequence {z(£)} which is defined for all
¢ > o, and satisfying (1) for sufficiently large values of £. If a nontrivial solution z(§) is
either eventually positive or negative, it is non-oscillatory; otherwise, it is oscillatory. If
all of the solutions to (1) are oscillatory or 5li_)I(I)lo z(§) = 0, it is called almost oscillatory.

2. PRELIMINARIES
We present some basic lemmas in this section, which will be used in our main results.

Lemma 2.1. Consider the difference equation

DGO . A(E)
Bex) = =5 O T 5

where {p(§)}, {P(&)} are real sequences defined for € > K € Ny(&) and ¢(&) > 0
Avp(§) < 0 and élim ®(&) = 0. Equation (5) has the solution {z(§)} defined for all

¢ > K with the condition z(K) = 0. Then

®(§) =0, ®)

£lim P¢) =00 = glim 2(§) = o0. (6)
Elim P(¢)=—-0 = 5lim 2(§) = —o0. (7)

Proof. From the (5), solution {z(&)} is referenced as

mo (&)

Agd(Eo + nol) 3
= — E _ = d 1 8
for& > K. If £hm ® (&) = £oo is true, then it is evident that
Ay (& + nol) -
512{)10 5 ¢ F—I ({o—i-noé-l—f)q)(&)—i_nog) = t+o0. 9)
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Hence by Stolz’s theorem,

mo(§)
Agg(€o+nol)
Ay <_ mz::g ¢(§0+n£0@)<;(§0£n05+z)q)(£0 + n0€)>

lim z(§) = lim = lim ¢(§) = +oo.
£—o00 £—00 AE < 1 ) £—o0
#(&o+nol)
(10)
and the lemma is proved. ]

Lemma 2.2. Let {¢(€)} and {v(§)} be real sequences defined for & > K € Ny(&).
Ifglim (v(&) + Pp()Aw(E)) € R*, then 5lim v(€) € R*, where R* is the extended real
—00 —00

line.

Proof. Consider z(§) = v(&) + ¢(§)Av(€). Then

lim z(§) = glgglo(v(g) + o(§)Arv(§))

E—o00
= lim v() + Jim ¢(¢) Jim (€ + ) — lim 6(6) lim o(¢)

E—o0
= lim v(¢)
E—o0
So, lim z(&) exists in R* implies lim v(§) exists in R*. O
£—o00 £—o0

3. MAIN RESULTS

Theorem 3.1. Let the first part of the assumption (A1), (As) — (As) hold, y3(§) = 0
and suppose that each of the following conditions (Cy) — (C3) are true;

oo [mo(no) _ mo(n1) _ mo(n2) _ d _
(Cl> > ( > as(éo +nik) ( > az2(fo + n2k) < > a1(éo+ n2€)>>) ;:: q(&o + not,t) = oo.

np=0 \ n1=0 n2=0 n3=0

o d _ 00 _ o d _
(Co) If >0 D> q(§o+nol,t) <ocand ) asz(§o+mnil) > > q(&o+ nol,t) < oo,
no=0t=c no=0 ni1=ng t=c

then i az(& + nol) ( i az(& + nil) ( i iq(émtnge, t))) = .

nog=0 ni=ngo no=n1 t=c

no=0 \ n1=0 n2=0 t=c

(03) i (m%m) ay (50 + nlg) (mgs”) az(éo + nzﬁ))) zd: q(fo + nol, t) = 00.

Then every solution of (1) is oscillatory.
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Proof. Let (1) has a non-oscillatory solution {z(&)}. Since, {z(£)} is a non-oscillatory
solution, it can be assumed that {y;(£)} > 0. However, the proof is similar when
{y1(§)} < 0. Therefore, an integer &, € N, such that y;(£) > 0 for all £ > &. Let

y1(6) i =0;
Ei(§) = (11)
(5) al(é.)AgEl,l(f) 1= 1, 2, 3

Now the system

Bl =1,2,3
AE; (&) = { 4 (12)

—y2(§) =4
is satisfied. Clearly, F;5(€) is non-increasing and is either positive or negative. If there
is an integer §; > &, € N, such that F5(&;) < 0, then

0(8)

0)
Eia(€) = Z gjig& i=1,2,3 (13)

Letting ¢ — oo, and using the assumption (A;), we have that F;, () — —oo
for @ = 1,2,3, which is a contradiction. Thus, E3({) > 0 for all § < &, so
§li_>nolo FE3(&) = E3(00) exists and 0 < Fs3(00). Also, 0 < E3(&) if & < & . Then,
FE5(&) = 0 whenever & < . Thus, from (12), A;E53(§) = 0 and ¢(&,t) = 0 whenever
& < &. But, this contradicts (C), so 0 < E5(&) for §y < £. Thus {E3(€)} is increasing
for §p < ¢&.

Let us consider the other cases.

Suppose Ey(§) < 0 for & < £. Now, Fy(0o) < 0; and if Ey(co) < 0, then, (13) is
a contradiction again and so Ey(c0) = 0. Now, for §; < &, E1() is decreasing, and
E1(00) < 01is impossible and hence F;(o0) > 0. If § < £ < K, then

E—E—¢
E3(K) = E5(€) = = Y, wa(E+m). (14)
n1=0
So,
Es(00) = E3(§) = = > pa(§+m0), (15)
n1=0
which yields
00 d
) > qu (€ +nyl,t) f(x(E+nl + 0 — o). (16)
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Since E,(¢) > 0, By (€) isincreasing, so E3(¢) > f(x(&y+cl—aol)) i iq(@—nlﬁ, t)

n1=0t=c

o d _
for & < & If > > q(€ + myl,t) < oo fails, we obtained a contradiction. Hence

n1=0t=c

co d B
assume > > q(§ +nif,t) < oo holds. Since Fy(0c0) = 0, we have

n1=0t=c

_ > E3(§+n0€)
Ey(€) = ;—%(&)MM), for £ > &. (17)

However, the inequality in the above conclusion shows that if

0o d

DY g€+ nilit) < oo (18)

no= 0a3 (€+n2€) ni=ns t=c

o0

1

thus fails, which is a contradiction. Therefore, assume

[e%S) 00 d

Yo ) D> a4+ mbit) <o (19)

ng= 00,3 (€—|—n2£) ni=ng t=c

holds. If £ > &, then,

mo (&) - mo(§) o ¢
R (£ — By (& + nsl) _ 1 E5(€ + nat)
Ex(&) = Bal&o) = 7; as (& + nsl) 7;) as(& + nsl) (n;3 as(& + ngé)) 7
(20)
and so
mo(§) o0 &
B _ B 1 FEs (f + ngﬁ)
B (&) < nszzo as(&o + nsl) < g as (& +n2€)>
mo(€) 00 c
_ 1 E3 (f —+ ngﬁ)
Ey(&) > 7;0 a2 (€ + nl) < Z as(& —|—n2€)>

mo(§)

_ 1
> f(Eo(&o+el —ol) ) s 2:: ” &HM Z Z (E+ml).

n3=0 ni=ng t=c

[e.9]

However, this contradicts condition (Cy), and we get through the case F»(§) < 0 for
§ = &o-

Since, { E2(§)} is ascending and E»(€) < 0 is false, confirms that there is an integer
& € Ny(&) such that & > &y and Ey(§) > 0 forall € > &;. Now {E1(§)} is increasing
forall £ > &. If F1(§) < 0forall £ > &, then {E;(£)} is bounded. But by condition
(C1) and the Theorem 2 in [19] we can conclude that any bounded solution of (1) is
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oscillatory. Therefore, there exists an integer {&; > &; such that F;(§) > 0 for all
E>&. Now if € > &, then

ma2(&) -
_ - By (& + nol)
Eo(§) = Eo(&) + 7;) —a1(§_2 ol)

E1 (& + nol)

m2(§)
> .
B % ay (& + nol)

ma(§) ma(€) -

1 - Ey(& + nal)

= = E + =

2w rmn (O 2 e
L3t (3 EGrmy
T a(&tnol) \ o aa(&e +nal)

ma(§) 1 ma(§) 1

2 Bx(&2) 7;) a1 (& + nol) mz;m as (& + nyl)

Also
ma(€) B ma(€) -
0 < E3(8) = E3(%) + Z AvE3(& + nol) = E3(&) — Z Yo (&2 +nol).  (21)
no=0 no=0
ma(§) d ~ -
> > Y (& +nol,t) f(Eo(§ + nol + tl — o))
no=0 t=c
ma(§) d -
> f(Eo(€) Y D alse+nol,t))
no=0 t=c
ma(§) -
> MoEy(§) Z ZQ(& +nol, t))
no=0 t=c
B ma(§) d B ma2(&) 1 ma(§) 1
> MyE. + nol, t _ I
0E>(&2) 7;0 ;Q(& ol;t)) 7;) a1 (& + nol) Z as(§o +nil)
(22)
As per Stolz’s Theorem [4], we have
ma(£) ma(€)
noz_o ai ( §2+7L0€ nlz:no az( Ez-&-nlf)
lim =1 (23)

&a—00 ma(§) . ma(€)
no

1
~0 a1(£0+nof) Z a2 (£0+n1£)
= n1=no
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and so condition (C'3) implies the divergence of the summations in (22) as ¢ tends to
00. This contradiction confirms the theorem. O

Theorem 3.2. Let the first part of the assumption (A;), (As) — (As) hold, y5(§) = 0.
Assume condition (C3) holds and

ma(§) d - m1(no) 1 mo(n1) 1
gl t S N
7;:0 (; Q(£2 0 )) 7;:0 a3(€1 + ?7/16) 7;) CLQ(&U + 77,26)
(24)

for 0 < B3 < 1. Then every solution of equation (1) is oscillatory.

Proof. Let (1) has a non-oscillatory solution {z(£)}. We may assume that {z(&)} is
eventually positive. If condition (Cs) holds and £ € Ny (), then applying summation
by parts twice, it yields

> e (2 ae i (z >t

no=0 ni=n no=nj t=c
mo(§) 1 00

— - q fo + nlg t
no=0 a2 (60 + nog) nozmzogf) <£0 + nog (’an’l:’LO tZ;

no

1
+ Om<za2§0+nlg (ZZ fo—l-ngft))

na=ng t=c

mo(§) no ) d
1 1 _
2 = = q(&o + nol, t
nOZ:O a3<€0 + noﬁ) (nlz:o a2 (f() + nle) H;O (; (50 2 )))
mo(g) 1 no 1 00 d ~
- T N — = + nol,t
— az(&o + nol) (7;) az(&o + nil) n;() (; 4(&o + 2 )>>
mo(§) d ~ no 1 n 1
+ + nol,t - - -
g::o ((tz:; St o >> (w;:o az(§o +nil) 4 Z  as(&o + nal) )
ma(£) d - m1(no) 1 mo(nl)
> + nol, t -
1;) (; it )> 7;:0 ag(& + naf) T;] az fo + nal)

for £ < & < & < . Thus, (24) implies condition (C3). Now, assumption (A;), and
two successive implementations of Stolz’s Theorem, it follows that

m1(§) . mo(n1) .

o az(§1+n10) a0 az(§o+na2l)
li — — = 0. 25
oma® ) molm) 25)

az(é2+n1) o0 az(&1+n2f) a0 a1(€o+nsf)

n1=
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Hence, there exists an integer K € N, such that

ma(€) 1 m1(n1) 1 mo(n2) 1 m1(§) 1 mo(n1) 1
- - - - > _ _
7;) az(& + nyl) 7;) as (&1 + nol) 7;) a1(&o +ngl) — 7;) az(&1 + nal) 7;) a (& + nal)
(26)

whenever ¢ > K, and we conclude that (24) implies condition (C), which proves the
theorem. u

Remark 3.3. If a3(¢) = a1(), then (24) is identical with (Cj3), implies that every
solution of (1) is oscillatory.

Theorem 3.4. Assuming that the second part of (A1) and (Ag) hold, let us suppose
lim f(xz) > 0andlimsup f(z) < 0. If
T—00

0o d
> 6(S +m00) Y o+ mol,t) = oo, 27)
no==¢& t=c
and i
> d(&o+mol) > Ir(§o +nol,t)| < oo, (28)
no=¢§ t=g

then, as & increases, all non-oscillatory solutions of (1) are bounded and tend to zero
as & — Q.

Proof. Let (1) has a non-oscillatory solution {z(§)} and z(§) > 0 for & > & € N.

Define
mi(§)

(€)=Y ds-i(&1 + nol) ArEs_i(&1 + nol), (29)

no=0

fori = 0,1,2,3. we begin by illustrating that {x(£)} is bounded above. From (1) we

get
m1(§) m1(€)
Es($) — Bs(€0) + Y wa(&+mol) = Y ys(&1 +nol). (30)
no=0 no=0

Since the left-hand side sum is positive and the right-hand side sum is bounded by (28),
in this case, there exists a constant M5 such that

E3(8) = a3(§) (ArE(§)) < M,  for £ > &. (31)
Dividing the above inequality by a3(¢) and summing from &; to £ — ¢, we obtain

m1(€)
Ey (&) — Ex (&) < My Z

np=0

1

wa(& +mol)’ for £ > &. (32)
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By assumption (Ag) there exists M3, a constant such that

Es(§) = aa(§)ArEr(§) < M3,  for > & > €. (33)
We get the following result by repeatedly applying the above arguments.

Ey(§) <My and Ey(§) < Ms,for § > &3 > &, (34)

where M, and M3 are constants. which implies that {x (&)} is bounded above for £ > &;.
Taking summation by parts in (29) we obtain

m1(§)
zi—1(€) = Z ¢47i<51 + nog)AéEzlfi(él + nol)
no=0
m1(§)

= 64-i(§)Eai(§) — da—i(§) Baci(&) = D Aeopa—i(&1 + nol) Ea—i(&1 + nol)

B ¢4—z‘(§)¢3—z‘(§)a ‘ (€ _ 0. 3 (&
= b5 (6 1-i(§)AeE3 (&) — da—i(§1) Eai(61)

m1(€)

p3—i(&1 + nol) -
Z as—i(& + nol) e i(&r T rof) Ta-iler T mod)

np=0

Ae¢4 Avda_i(€) Ae¢4 i(€)

This shows that {z;(£)} satisfies the difference equation

Pa—i(§)
Aypa—i(§)

e 03-i(E) Bai(&1) — dami(§) Eami(&1)-

Apzi(€) + zi(€) + Pi(€) = 0, (35)

or equivalently,

Apda—i(§) Apps—i(§)
Pa—i(§) Pa-i(§)

where ®;(¢) = 2i1(&)+¢1-:1(€1) Ba—i(§1) + 555 03-4(§) Bs—i(&)- Since z(&) = 0
by (29) and since ¢4_;(§) > 0, Appy—i(§) < 0 and gb4 i(€) is equal to zero as £ — oo,
by assumption (A7) we apply Lemma 2.1 to (36) which concludes z;_;(§) is equal to

Aezi(€) — zi(€) + ®;(¢) =0, (36)

+o0 as £ — oo implies z;(&) is equal to +oo as £ — oo. Henceforth, applying Lemma
2.2 to (35), we conclude that élim 2z;(€) € R whenever Elim zi—1(€) € R.
—00 —00

On multiplying either sides of (1) by ¢3(¢), and summing from &; to £ — ¢ we obtain

mi () mi(£) ma (§)
> ds(G+nol)SiEs(Gi+n0l)+ Y | b(Gatnol)ya(E1+nol) = Y ds(&i+nol)ys(E+nol).
no=0 no=0 no=0

(37)
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‘We consider the two cases

m1(§)
> h3(& + nol)y(&r + nol) = oo (38)

no=0

Assume that (38) is true. Bacause of (28) the right hand side of (37) tends to a finite
limit as £ — oo, and thus we can see from (37) that glim 20(§) = —oo. Hence, by
—00

Lemma 2.1 applied to (36) with i = 1 we have glim 21(§) = —oo. Applying Lemma
—00

2.1 again to (36) with i = 2 we find 25() is equal to —oo as £ — oo. Again, we
conclude from the same argument that z3(&) is equal to —oo as & — oo implying that
zn(€) is equal to —oo as £ — oo. However, the positivity of z,, contradicts. Hence, (38)
is impossible.

We now see in & — oo as (37) and with (38) we see zo(&) is finite as £ tends to oco.
As Lemma 2.2 is applied to (35) with ¢ = 1, we derive z;(§) exists in R* as £ — oc.

This limit must be finite since glim 21(§) = —oo would imply Elim zi(§) = —o0
—00 —00
which is a contradiction, and élim 21(§) = oo would imply glim zi(§) = oo which
—00 —00

is a contradiction to the boundedness of z,,. Hence, 6lim 2;(€) exists in R*. On the other
—00

hand, from (27) and (38) we see that z;({) = 0 as ¢ — oo. Thus, we sum up that z;
tends to zero as £ tends to infinity. ]

4. EXAMPLES

Example 4.1. Consider the generalized fourth-order neutral difference equation with
distributed delay

3 2
A <§2A3< )+Zm(§+w—ze>> Z“?ﬁfﬁz (E+t0—1) 0.

t=1 t=
(39)

2 2
Here ay(€) = as(§) = 1, a3(§) = €72 p(&,t) = 1, q(6,t) = CEHH 7 =2
= 1l and f(x(§)) = x(§). It is easy to verify that all the conditions of Theorem
3.1 are satisfied and hence every solution of equation (39) is oscillatory. In fact

{z(&)} = {(—1)[%]} is one such oscillatory solution of equation (39).

Example 4.2. Consider the generalized fourth-order neutral difference equation with
distributed delay

1 2 x(E+t0—0)
Ay ((f +0)A, <5Az (fﬁe (1’(5) + ;f>>>>

4E3 + 12620 + 10602 + (3
S g e @) 0 @
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Here ar(€) = € ax(€) = L, as(€) = €+ 6 p(&,t) = L, q(&,5) = LmLLt0LE
7 =10 =1and f(x(€)) = z(§)(1 + (2(£))?). All conditions of Theorem 3.2 are
satisfied and hence every solution of equation (40) is oscillatory.
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