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Abstract

The oscillatory and non-oscillatory properties of fourth order neutral generalized
difference equations with distributed delay are discussed in this paper. Sufficient
conditions for the oscillation and asymptotic behavior of non-oscillation of all
solutions of the given equation are obtained. To substantiate our findings, adequate
examples are presented.
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1. INTRODUCTION

In the recent past, the study of oscillation and non oscillation of generalized difference
equations gains momentum and is an active area of research. The analysis of asymptotic
behaviour of non-oscillatory solutions has already been studied by many researchers. A
few authors have studied the behaviour of such solutions for delay difference equations.
One can refer [1]-[3],[9]-[11] for the required literature on this topic.

As in differential equation with symmetries, Different schemes can be constructed
which preserves the symmetries. In Lie theory, difference equations play a significant
role. In Lie theory, discretizion of the continuum equation which preserves the
symmetries leads to a class of exact solutions. For an in-depth understanding of this
areas one can refer [6]-[8].
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Researchers mainly concentrated on second and third order equations with delay. But
there is very little literature available for neutral delay difference equations of order
higher than three. Very recently, delay difference equations are used to study the
stability properties of electrical power systems and for this application one can refer
[14]. Many such applications are avialable in Applied Sciences, Mathematical Biology,
Engineering and Technology, Economics and so on.

The study of the oscillation of solutions of different types of difference equations such
as fractional difference equations, dynamic equations on a time scale, and equation of
fractional partial differences are being actively carried out by many scholars at present.
Many researchers [5], [12]-[17] have studied the oscillation and non oscillation of the
third order difference equations with delay and neutral delay difference equations.
There is only little literature available on the study of the oscillation of difference
equations of order more than three. On the study of fourth order fractional difference
equation one can refer [18]. This motivated us to take up the study with difference
equations of order four of the generalized type with distributed delay. For our study, we
consider the fourth-order generalized difference equations with distributed delay of the
form

∆ℓ (a3(ξ)∆ℓ (a2(ξ)∆ℓ (a1(ξ)∆ℓy1(ξ)))) + y2(ξ) = y3(ξ), ξ ≥ ξ0, (1)

where

y1(ξ) =
b∑

t=a

p(ξ, t)x(ξ + tℓ− τℓ) + x(ξ), (2)

y2(ξ) =
d∑

t=c

q(ξ, t)f(x(ξ + tℓ− σℓ)), (3)

y3(ξ) =
h∑

t=g

r(ξ, t), (4)

and a, b, c, d, g, h τ and σ ∈ Z. Here, ∆ℓ is the forward generalized difference
operator for any real sequence {x(ξ)} defined by ∆ℓx(ξ) = x(ξ + ℓ) − x(ξ) for
ξ ∈ Nξ0 = {ξ0, ξ0 + ℓ, ξ0 + 2ℓ, · · · }, where ξ0, ℓ ∈ N = {0, 1, 2, · · · } and satisfies
the following assumptions.

(A1) {ai(ξ)} are real positive sequences such that
∞∑

t=ξ0

1
ai(t)

= ∞ or < ∞, i = 1, 2, 3.

(A2) {p(ξ, t)} is a real sequence for all ξ ≥ ξ0 with 0 ≤ p(ξ) =
b∑

t=a

p(ξ, t) ≤ p < ∞.
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(A3) {q(ξ, t)} is a positive sequence of real numbers for all ξ ≥ ξ0 with lim
ξ→∞

q(ξ, t) <

∞.

(A4) f is a continuous real-valued function such that
f(y)

y
≥ M1 for y ̸= 0 and M1 is

a constant.

(A5) {r(ξ, t)} is a positive sequence of real numbers for all ξ ≥ ξ0.

(A6) lim
ξ→∞

ϕi(ξ) = 0, where ϕi(ξ) =
∞∑

n=ξ+ℓ

ϕi−1(n)
ai(n)

with ϕ0(ξ) ≡ 1 for i = 1, 2, 3.

(A7) mi(ξ) =
[
ξ−ξi−j−ℓ

ℓ

]
, ξ̄i = ξi + j and j = ξ − ξ0 −

[
ξ−ξ0
ℓ

]
ℓ.

By a solution of (1), we mean a real sequence {x(ξ)} which is defined for all
ξ ≥ ξ0, and satisfying (1) for sufficiently large values of ξ. If a nontrivial solution x(ξ) is
either eventually positive or negative, it is non-oscillatory; otherwise, it is oscillatory. If
all of the solutions to (1) are oscillatory or lim

ξ→∞
x(ξ) = 0, it is called almost oscillatory.

2. PRELIMINARIES

We present some basic lemmas in this section, which will be used in our main results.

Lemma 2.1. Consider the difference equation

∆ℓz(ξ)−
∆ℓϕ(ξ)

ϕ(ξ)
z(ξ) +

∆ℓϕ(ξ)

ϕ(ξ)
Φ(ξ) = 0, (5)

where {ϕ(ξ)}, {Φ(ξ)} are real sequences defined for ξ ≥ K ∈ Nℓ(ξ0) and ϕ(ξ) > 0,
∆ℓϕ(ξ) < 0 and lim

ξ→∞
ϕ(ξ) = 0. Equation (5) has the solution {z(ξ)} defined for all

ξ ≥ K with the condition z(K) = 0. Then

lim
ξ→∞

Φ(ξ) = ∞ ⇒ lim
ξ→∞

z(ξ) = ∞. (6)

lim
ξ→∞

Φ(ξ) = −∞ ⇒ lim
ξ→∞

z(ξ) = −∞. (7)

Proof. From the (5), solution {z(ξ)} is referenced as

z(ξ) = −ϕ(ξ)

m0(ξ)∑
n0=ξ

∆ℓϕ(ξ̄0 + n0ℓ)

ϕ(ξ̄0 + n0ℓ)ϕ(ξ̄0 + n0ℓ+ ℓ)
Φ(ξ̄0 + n0ℓ), (8)

for ξ ≥ K. If lim
ξ→∞

Φ(ξ) = ±∞ is true, then it is evident that

lim
ξ→∞

−
m0(ξ)∑
n0=ξ

∆ℓϕ(ξ0 + n0ℓ)

ϕ(ξ0 + n0ℓ)ϕ(ξ0 + n0ℓ+ ℓ)
Φ(ξ0 + n0ℓ)

 = ±∞. (9)
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Hence by Stolz’s theorem,

lim
ξ→∞

z(ξ) = lim
ξ→∞

∣∣∣∣∣∣∣∣∣∣
∆ℓ

(
−

m0(ξ)∑
n0=ξ

∆ℓϕ(ξ0+n0ℓ)
ϕ(ξ0+n0ℓ)ϕ(ξ0+n0ℓ+ℓ)

Φ(ξ0 + n0ℓ)

)
∆ℓ

(
1

ϕ(ξ0+n0ℓ)

)
∣∣∣∣∣∣∣∣∣∣
= lim

ξ→∞
Φ(ξ) = ±∞.

(10)
and the lemma is proved.

Lemma 2.2. Let {ϕ(ξ)} and {v(ξ)} be real sequences defined for ξ ≥ K ∈ Nℓ(ξ0).
If lim

ξ→∞
(v(ξ) + ϕ(ξ)∆ℓv(ξ)) ∈ R∗, then lim

ξ→∞
v(ξ) ∈ R∗, where R∗ is the extended real

line.

Proof. Consider z(ξ) = v(ξ) + ϕ(ξ)∆ℓv(ξ). Then

lim
ξ→∞

z(ξ) = lim
ξ→∞

(v(ξ) + ϕ(ξ)∆ℓv(ξ))

= lim
ξ→∞

v(ξ) + lim
ξ→∞

ϕ(ξ) lim
ξ→∞

v(ξ + ℓ)− lim
ξ→∞

ϕ(ξ) lim
ξ→∞

v(ξ)

= lim
ξ→∞

v(ξ)

So, lim
ξ→∞

z(ξ) exists in R∗ implies lim
ξ→∞

v(ξ) exists in R∗.

3. MAIN RESULTS

Theorem 3.1. Let the first part of the assumption (A1), (A2) − (A5) hold, y3(ξ) ≡ 0

and suppose that each of the following conditions (C1)− (C3) are true;

(C1)
∞∑

n0=0

(
m0(n0)∑
n1=0

a3(ξ̄0 + n1ℓ)

(
m0(n1)∑
n2=0

a2(ξ̄0 + n2ℓ)

(
m0(n2)∑
n3=0

a1(ξ̄0 + n2ℓ)

)))
d∑

t=c
q(ξ̄0 + n0ℓ, t) = ∞.

(C2) If
∞∑

n0=0

d∑
t=c

q(ξ̄0 + n0ℓ, t) < ∞ and
∞∑

n0=0

a3(ξ̄0 + n1ℓ)
∞∑

n1=n0

d∑
t=c

q(ξ̄0 + n0ℓ, t) < ∞,

then
∞∑

n0=0

a2(ξ̄0 + n0ℓ)

(
∞∑

n1=n0

a3(ξ̄0 + n1ℓ)

(
∞∑

n2=n1

d∑
t=c

q(ξ̄0 + n2ℓ, t)

))
= ∞.

(C3)
∞∑

n0=0

(
m0(n0)∑
n1=0

a1(ξ̄0 + n1ℓ)

(
m0(n1)∑
n2=0

a2(ξ̄0 + n2ℓ)

))
d∑

t=c

q(ξ̄0 + n0ℓ, t) = ∞.

Then every solution of (1) is oscillatory.
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Proof. Let (1) has a non-oscillatory solution {x(ξ)}. Since, {x(ξ)} is a non-oscillatory
solution, it can be assumed that {y1(ξ)} > 0 . However, the proof is similar when
{y1(ξ)} < 0. Therefore, an integer ξ0 ∈ Nℓ such that y1(ξ) > 0 for all ξ ≥ ξ0. Let

Ei(ξ) =

y1(ξ) i = 0;

ai(ξ)∆ℓEi−1(ξ) i = 1, 2, 3.
(11)

Now the system

∆ℓEi−1(ξ) =


Ei(ξ)
ai(ξ)

i = 1, 2, 3;

−y2(ξ) i = 4.
(12)

is satisfied. Clearly, E3(ξ) is non-increasing and is either positive or negative. If there
is an integer ξ1 ≥ ξ0 ∈ Nℓ such that E3(ξ1) < 0, then

Ei−1(ξ) = Ei−1(ξ̄0) +

m0(ξ)∑
n0=0

Ei(ξ̄0 + n0ℓ)

ai(ξ̄0 + n0ℓ)
, i = 1, 2, 3. (13)

Letting ξ → ∞, and using the assumption (A1), we have that Ei−1(ξ) → −∞
for i = 1, 2, 3, which is a contradiction. Thus, E3(ξ) ≥ 0 for all ξ0 ≤ ξ, so
lim
ξ→∞

E3(ξ) = E3(∞) exists and 0 ≤ E3(∞). Also, 0 < E3(ξ1) if ξ0 < ξ1. Then,

E3(ξ) = 0 whenever ξ1 < ξ. Thus, from (12), ∆ℓE3(ξ) = 0 and q(ξ, t) = 0 whenever
ξ1 < ξ. But, this contradicts (C1), so 0 < E3(ξ) for ξ0 < ξ. Thus {E3(ξ)} is increasing
for ξ0 ≤ ξ.
Let us consider the other cases.
Suppose E2(ξ) < 0 for ξ0 ≤ ξ. Now, E2(∞) ≤ 0; and if E2(∞) < 0, then, (13) is
a contradiction again and so E2(∞) = 0. Now, for ξ0 ≤ ξ, E1(ξ) is decreasing, and
E1(∞) < 0 is impossible and hence E1(∞) ≥ 0. If ξ0 ≤ ξ ≤ K, then

E3(K)− E3(ξ̄) = −

ξ−ξ̄−ℓ
ℓ∑

n1=0

y2(ξ̄ + n1ℓ). (14)

So,

E3(∞)− E3(ξ̄) = −
∞∑

n1=0

y2(ξ̄ + n1ℓ), (15)

which yields

E3(ξ̄) ≥
∞∑

n1=0

d∑
t=c

q(ξ̄ + n1ℓ, t)f(x(ξ̄ + n1ℓ+ tℓ− σℓ)). (16)
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Since E1(ξ) > 0, E1(ξ) is increasing, so E3(ξ) ≥ f(x(ξ̄0+cℓ−σℓ))
∞∑

n1=0

d∑
t=c

q(ξ̄+n1ℓ, t)

for ξ0 ≤ ξ. If
∞∑

n1=0

d∑
t=c

q(ξ̄ + n1ℓ, t) < ∞ fails, we obtained a contradiction. Hence

assume
∞∑

n1=0

d∑
t=c

q(ξ̄ + n1ℓ, t) < ∞ holds. Since E2(∞) = 0 , we have

E2(ξ) = −
∞∑

n0=0

E3(ξ̄ + n0ℓ)

a3(ξ̄0 + n0ℓ)
, for ξ ≥ ξ0. (17)

However, the inequality in the above conclusion shows that if

∞∑
n2=0

1

a
1
β3
3 (ξ̄ + n2ℓ)

∞∑
n1=n2

d∑
t=c

q(ξ̄ + n1ℓ, t) < ∞ (18)

thus fails, which is a contradiction. Therefore, assume

∞∑
n2=0

1

a
1
β3
3 (ξ̄ + n2ℓ)

∞∑
n1=n2

d∑
t=c

q(ξ̄ + n1ℓ, t) < ∞ (19)

holds. If ξ ≥ ξ0, then,

E1(ξ)− E1(ξ̄0) =

m0(ξ)∑
n3=0

E2(ξ̄0 + n3ℓ)

a2(ξ̄0 + n3ℓ)
= −

m0(ξ)∑
n3=0

1

a2(ξ̄0 + n3ℓ)

(
∞∑

n2=n3

E3(ξ̄ + n2ℓ)

a3(ξ̄0 + n2ℓ)

)
,

(20)
and so

−E1(ξ̄0) ≤ −
m0(ξ)∑
n3=0

1

a2(ξ̄0 + n3ℓ)

(
∞∑

n2=n3

E3(ξ̄ + n2ℓ)

a3(ξ̄0 + n2ℓ)

)

E1(ξ̄0) ≥
m0(ξ)∑
n3=0

1

a2(ξ̄0 + n3ℓ)

(
∞∑

n2=n3

E3(ξ̄ + n2ℓ)

a3(ξ̄0 + n2ℓ)

)

≥ f(E0(ξ̄0 + cℓ− σℓ))

m0(ξ)∑
n3=0

1

a2(ξ̄0 + n3ℓ)

∞∑
n2=n3

1

a3(ξ̄0 + n2ℓ)

∞∑
n1=n2

d∑
t=c

q(ξ̄ + n1ℓ, t).

However, this contradicts condition (C2), and we get through the case E2(ξ) < 0 for
ξ ≥ ξ0.

Since, {E2(ξ)} is ascending and E2(ξ) < 0 is false, confirms that there is an integer
ξ1 ∈ Nℓ(ξ0) such that ξ1 ≥ ξ0 and E2(ξ) > 0 for all ξ ≥ ξ1. Now {E1(ξ)} is increasing
for all ξ ≥ ξ1. If E1(ξ) ≤ 0 for all ξ ≥ ξ1, then {E1(ξ)} is bounded. But by condition
(C1) and the Theorem 2 in [19] we can conclude that any bounded solution of (1) is
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oscillatory. Therefore, there exists an integer ξ2 ≥ ξ1 such that E1(ξ) > 0 for all
ξ ≥ ξ2. Now if ξ ≥ ξ2, then

E0(ξ) = E0(ξ̄2) +

m2(ξ)∑
n0=0

E1(ξ̄2 + n0ℓ)

a1(ξ̄2 + n0ℓ)

≥
m2(ξ)∑
n0=0

E1(ξ̄2 + n0ℓ)

a1(ξ̄2 + n0ℓ)

=

m2(ξ)∑
n0=0

1

a1(ξ̄2 + n0ℓ)

E1(ξ̄2) +

m2(ξ)∑
n1=n0

E2(ξ̄2 + n1ℓ)

a2(ξ̄2 + n1ℓ)


≥

m2(ξ)∑
n0=0

1

a1(ξ̄2 + n0ℓ)

m2(ξ)∑
n1=n0

E2(ξ̄2 + n1ℓ)

a2(ξ̄2 + n1ℓ)


≥ E2(ξ̄2)

m2(ξ)∑
n0=0

1

a1(ξ̄2 + n0ℓ)

m2(ξ)∑
n1=n0

1

a2(ξ̄2 + n1ℓ)

 .

Also

0 < E3(ξ) = E3(ξ̄2) +

m2(ξ)∑
n0=0

∆ℓE3(ξ̄2 + n0ℓ) = E3(ξ̄2)−
m2(ξ)∑
n0=0

y2(ξ̄2 + n0ℓ). (21)

E3(ξ̄2) ≥
m2(ξ)∑
n0=0

d∑
t=c

q(ξ̄2 + n0ℓ, t)f(E0(ξ̄2 + n0ℓ+ tℓ− σℓ))

≥ f(E0(ξ))

m2(ξ)∑
n0=0

d∑
t=c

q(ξ̄2 + n0ℓ, t))

≥ M0E0(ξ)

m2(ξ)∑
n0=0

d∑
t=c

q(ξ̄2 + n0ℓ, t))

≥ M0E2(ξ̄2)

m2(ξ)∑
n0=0

d∑
t=c

q(ξ̄2 + n0ℓ, t))

m2(ξ)∑
n0=0

1

a1(ξ̄2 + n0ℓ)

m2(ξ)∑
n1=n0

1

a2(ξ̄2 + n1ℓ)

 .

(22)

As per Stolz’s Theorem [4], we have

lim
ξ2→∞

m2(ξ)∑
n0=0

1
a1(ξ̄2+n0ℓ)

(
m2(ξ)∑
n1=n0

1
a2(ξ̄2+n1ℓ)

)
m2(ξ)∑
n0=0

1
a1(ξ̄0+n0ℓ)

(
m2(ξ)∑
n1=n0

1
a2(ξ̄0+n1ℓ)

) = 1 (23)
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and so condition (C3) implies the divergence of the summations in (22) as ξ tends to
∞. This contradiction confirms the theorem.

Theorem 3.2. Let the first part of the assumption (A1), (A2) − (A5) hold, y3(ξ) ≡ 0.
Assume condition (C3) holds and

m2(ξ)∑
n0=0

( d∑
t=c

q(ξ̄2 + n0ℓ, t)

)m1(n0)∑
n1=0

1

a3(ξ̄1 + n1ℓ)

m0(n1)∑
n2=0

1

a2(ξ̄0 + n2ℓ)

 = ∞,

(24)
for 0 < β3 < 1. Then every solution of equation (1) is oscillatory.

Proof. Let (1) has a non-oscillatory solution {x(ξ)}. We may assume that {x(ξ)} is
eventually positive. If condition (C2) holds and ξ ∈ Nℓ(ξ0), then applying summation
by parts twice, it yields

∞∑
n0=0

1

a2(ξ̄0 + n0ℓ)

(
∞∑

n1=n0

1

a3(ξ̄0 + n1ℓ)

(
∞∑

n2=n1

d∑
t=c

q(ξ̄0 + n2ℓ, t)

))

=

m0(ξ)∑
n0=0

1

a2(ξ̄0 + n0ℓ)

 ∞∑
n0=m0(ξ)+ℓ

1

a3(ξ̄0 + n0ℓ)

(
∞∑

n1=n0

d∑
t=c

q(ξ̄0 + n1ℓ, t)

)
+

m0(ξ)∑
n0=0

1

a3(ξ̄0 + n0ℓ)

(
n0∑

n1=0

1

a2(ξ̄0 + n1ℓ)

(
∞∑

n2=n0

d∑
t=c

q(ξ̄0 + n2ℓ, t)

))

≥
m0(ξ)∑
n0=0

1

a3(ξ̄0 + n0ℓ)

(
n0∑

n1=0

1

a2(ξ̄0 + n1ℓ)

∞∑
n2=n0

(
d∑

t=c

q(ξ̄0 + n2ℓ, t)

))

=

m0(ξ)∑
n0=0

1

a3(ξ̄0 + n0ℓ)

(
n0∑

n1=0

1

a2(ξ̄0 + n1ℓ)

∞∑
n2=n0

(
d∑

t=c

q(ξ̄0 + n2ℓ, t)

))

+

m0(ξ)∑
n0=0

((
d∑

t=c

q(ξ̄0 + n0ℓ, t)

)(
n0∑

n1=0

1

a3(ξ̄0 + n1ℓ)

n1∑
n2=0

1

a2(ξ̄0 + n2ℓ)

))

≥
m2(ξ)∑
n0=0

( d∑
t=c

q(ξ̄2 + n0ℓ, t)

)m1(n0)∑
n1=0

1

a3(ξ̄1 + n1ℓ)

m0(n1)∑
n2=0

1

a2(ξ̄0 + n2ℓ)

 ,

for ξ0 < ξ1 < ξ2 ≤ ξ. Thus, (24) implies condition (C3). Now, assumption (A1), and
two successive implementations of Stolz’s Theorem, it follows that

lim
ξ→∞

m1(ξ)∑
n1=0

1
a3(ξ̄1+n1ℓ)

m0(n1)∑
n2=0

1
a2(ξ̄0+n2ℓ)

m2(ξ)∑
n1=0

1
a3(ξ̄2+n1ℓ)

m1(n1)∑
n2=0

1
a2(ξ̄1+n2ℓ)

m0(n2)∑
n3=0

1
a1(ξ̄0+n3ℓ)

= 0. (25)
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Hence, there exists an integer K ∈ Nℓ such that

m2(ξ)∑
n1=0

1

a3(ξ̄2 + n1ℓ)

m1(n1)∑
n2=0

1

a2(ξ̄1 + n2ℓ)

m0(n2)∑
n3=0

1

a1(ξ̄0 + n3ℓ)
≥

m1(ξ)∑
n1=0

1

a3(ξ̄1 + n1ℓ)

m0(n1)∑
n2=0

1

a2(ξ̄0 + n2ℓ)

(26)
whenever ξ ≥ K, and we conclude that (24) implies condition (C1), which proves the
theorem.

Remark 3.3. If a3(ξ) ≡ a1(ξ), then (24) is identical with (C3), implies that every
solution of (1) is oscillatory.

Theorem 3.4. Assuming that the second part of (A1) and (A6) hold, let us suppose
lim
x→∞

f(x) > 0 and lim sup
x→∞

f(x) < 0. If

∞∑
n0=ξ

ϕ(ξ̄0 + n0ℓ)
d∑

t=c

q(ξ̄0 + n0ℓ, t) = ∞, (27)

and
∞∑

n0=ξ

ϕ(ξ̄0 + n0ℓ)
h∑

t=g

|r(ξ̄0 + n0ℓ, t)| < ∞, (28)

then, as ξ increases, all non-oscillatory solutions of (1) are bounded and tend to zero
as ξ → ∞.

Proof. Let (1) has a non-oscillatory solution {x(ξ)} and x(ξ) > 0 for ξ ≥ ξ1 ∈ N.
Define

zi(ξ) =

m1(ξ)∑
n0=0

ϕ3−i(ξ̄1 + n0ℓ)∆ℓE3−i(ξ̄1 + n0ℓ), (29)

for i = 0, 1, 2, 3. we begin by illustrating that {x(ξ)} is bounded above. From (1) we
get

E3(ξ)− E3(ξ1) +

m1(ξ)∑
n0=0

y2(ξ̄1 + n0ℓ) =

m1(ξ)∑
n0=0

y3(ξ̄1 + n0ℓ). (30)

Since the left-hand side sum is positive and the right-hand side sum is bounded by (28),
in this case, there exists a constant M2 such that

E3(ξ) = a3(ξ) (∆ℓE2(ξ)) ≤ M2, for ξ ≥ ξ1. (31)

Dividing the above inequality by a3(ξ) and summing from ξ1 to ξ − ℓ, we obtain

E2(ξ)− E2(ξ1) ≤ M2

m1(ξ)∑
n0=0

1

a3(ξ̄1 + n0ℓ)
, for ξ ≥ ξ1. (32)
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By assumption (A6) there exists M3, a constant such that

E2(ξ) = a2(ξ)∆ℓE1(ξ) ≤ M3, for ξ ≥ ξ2 ≥ ξ1. (33)

We get the following result by repeatedly applying the above arguments.

E1(ξ) ≤ M4 and E0(ξ) ≤ M5, for ξ ≥ ξ3 ≥ ξ2, (34)

where M4 and M5 are constants. which implies that {x(ξ)} is bounded above for ξ ≥ ξ1.
Taking summation by parts in (29) we obtain

zi−1(ξ) =

m1(ξ)∑
n0=0

ϕ4−i(ξ̄1 + n0ℓ)∆ℓE4−i(ξ̄1 + n0ℓ)

= ϕ4−i(ξ)E4−i(ξ)− ϕ4−i(ξ̄1)E4−i(ξ̄1)−
m1(ξ)∑
n0=0

∆ℓϕ4−i(ξ̄1 + n0ℓ)E4−i(ξ̄1 + n0ℓ)

=
ϕ4−i(ξ)ϕ3−i(ξ)

ϕ3−i(ξ)
a4−i(ξ)∆ℓE3−i(ξ)− ϕ4−i(ξ̄1)E4−i(ξ̄1)

+

m1(ξ)∑
n0=0

ϕ3−i(ξ̄1 + n0ℓ)

a4−i(ξ̄1 + n0ℓ)
E4−i(ξ̄1 + n0ℓ)

= − ϕ4−i(ξ)

∆ℓϕ4−i(ξ)
∆ℓzi(ξ) + zi(ξ)−

ϕ4−i(ξ)

∆ℓϕ4−i(ξ)
ϕ3−i(ξ̄)E3−i(ξ̄1)− ϕ4−i(ξ̄1)E4−i(ξ̄1).

This shows that {zi(ξ)} satisfies the difference equation

ϕ4−i(ξ)

∆ℓϕ4−i(ξ)
∆ℓzi(ξ) + zi(ξ) + Φi(ξ) = 0, (35)

or equivalently,

∆ℓzi(ξ)−
∆ℓϕ4−i(ξ)

ϕ4−i(ξ)
zi(ξ) +

∆ℓϕ4−i(ξ)

ϕ4−i(ξ)
Φi(ξ) = 0, (36)

where Φi(ξ) = zi−1(ξ)+ϕ4−i(ξ̄1)E4−i(ξ̄1)+
ϕ4−i(ξ)

∆ℓϕ4−i(ξ)
ϕ3−i(ξ̄)E3−i(ξ̄1). Since zi(ξ0) = 0

by (29) and since ϕ4−i(ξ) > 0, ∆ℓϕ4−i(ξ) < 0 and ϕ4−i(ξ) is equal to zero as ξ → ∞,
by assumption (A7) we apply Lemma 2.1 to (36) which concludes zi−1(ξ) is equal to
±∞ as ξ → ∞ implies zi(ξ) is equal to ±∞ as ξ → ∞. Henceforth, applying Lemma
2.2 to (35), we conclude that lim

ξ→∞
zi(ξ) ∈ R whenever lim

ξ→∞
zi−1(ξ) ∈ R.

On multiplying either sides of (1) by ϕ3(ξ), and summing from ξ1 to ξ − ℓ we obtain

m1(ξ)∑
n0=0

ϕ3(ξ̄1+n0ℓ)δℓE3(ξ̄1+n0ℓ)+

m1(ξ)∑
n0=0

ϕ3(ξ̄1+n0ℓ)y2(ξ̄1+n0ℓ) =

m1(ξ)∑
n0=0

ϕ3(ξ̄1+n0ℓ)y3(ξ̄1+n0ℓ).

(37)
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We consider the two cases
m1(ξ)∑
n0=0

ϕ3(ξ̄1 + n0ℓ)y2(ξ̄1 + n0ℓ) = ±∞. (38)

Assume that (38) is true. Bacause of (28) the right hand side of (37) tends to a finite
limit as ξ → ∞, and thus we can see from (37) that lim

ξ→∞
z0(ξ) = −∞. Hence, by

Lemma 2.1 applied to (36) with i = 1 we have lim
ξ→∞

z1(ξ) = −∞. Applying Lemma

2.1 again to (36) with i = 2 we find z2(ξ) is equal to −∞ as ξ → ∞. Again, we
conclude from the same argument that z3(ξ) is equal to −∞ as ξ → ∞ implying that
zn(ξ) is equal to −∞ as ξ → ∞. However, the positivity of zn contradicts. Hence, (38)
is impossible.

We now see in ξ → ∞ as (37) and with (38) we see z0(ξ) is finite as ξ tends to ∞.
As Lemma 2.2 is applied to (35) with i = 1, we derive z1(ξ) exists in R∗ as ξ → ∞.
This limit must be finite since lim

ξ→∞
z1(ξ) = −∞ would imply lim

ξ→∞
zi(ξ) = −∞

which is a contradiction, and lim
ξ→∞

z1(ξ) = ∞ would imply lim
ξ→∞

zi(ξ) = ∞ which

is a contradiction to the boundedness of zn. Hence, lim
ξ→∞

zi(ξ) exists in R∗. On the other

hand, from (27) and (38) we see that zi(ξ) = 0 as ξ → ∞. Thus, we sum up that zi
tends to zero as ξ tends to infinity.

4. EXAMPLES

Example 4.1. Consider the generalized fourth-order neutral difference equation with
distributed delay

∆ℓ

(
1

ξ2
∆3

ℓ

(
x(ξ) +

3∑
t=1

tx(ξ + tℓ− 2ℓ)

))
+

2∑
t=0

4(2ξ2 + 2ξℓ+ ℓ2

ξ2(ξ + ℓ)2
x(ξ+ tℓ− ℓ) = 0.

(39)
Here a1(ξ) = a2(ξ) = 1, a3(ξ) = ξ−2, p(ξ, t) = t, q(ξ, t) = 4(2ξ2+2ξℓ+ℓ2)

ξ2(ξ+ℓ)2
, τ = 2,

σ = 1 and f(x(ξ)) = x(ξ). It is easy to verify that all the conditions of Theorem
3.1 are satisfied and hence every solution of equation (39) is oscillatory. In fact
{x(ξ)} = {(−1)[

ξ
ℓ ]} is one such oscillatory solution of equation (39).

Example 4.2. Consider the generalized fourth-order neutral difference equation with
distributed delay

∆ℓ

(
(ξ + ℓ)∆ℓ

(
1

ξ
∆ℓ

(
ξ∆ℓ

(
x(ξ) +

2∑
t=1

x(ξ + tℓ− ℓ)

t

))))

+
4ξ3 + 12ξ2ℓ+ 10ξℓ2 + ℓ3

ξ(ξ + ℓ)
x(ξ)

(
2 + (x(ξ))2

)
= 0. (40)
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Here a1(ξ) = ξ, a2(ξ) = 1
ξ
, a3(ξ) = ξ + ℓ, p(ξ, t) = 1

t
, q(ξ, s) = 4ξ3+12ξ2ℓ+10ξℓ2+ℓ3

ξ(ξ+ℓ)
,

τ = 1, σ = 1 and f(x(ξ)) = x(ξ)(1 + (x(ξ))2). All conditions of Theorem 3.2 are
satisfied and hence every solution of equation (40) is oscillatory.
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