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Abstract 

Light-wave's propagation characteristics, governed by the physical laws of 

electrodynamic phenomena and described by Maxwell’s equations, are investigated 

applying the finite-difference time-domain (FDTD) and finite difference method 

(FDM) approaches based on concrete mathematical foundation. As for novel 

waveguide design, hollow-core cylindrical photonic crystal waveguides are first 

proposed and analyzed by numerically solving coupled full-vectorially partial 

differential equations through derivational mathematics. Overall, results from FDTD 

and FDM agree very remarkably. The present detailed verification can provide a 

solid and reliable basis for further investigation in this research as well. 
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1. INTRODUCTION  

In analogy to the basic concept that a spatial periodic arrangement of atoms or 

molecules constructs a normal crystal, it has been recently investigated that an 

artificial photonic crystal can be formed by modulating the relative refractive 

permittivity of a material with an appropriately-designed repeating pattern in space. 

Photonic crystal structures have received significant interest from researchers, who 

have found considerable innovative applications as in light-emitting diodes, lasers, 

optical fibers, nonlinear devices, and photovoltaic cells as a source of power for 

electronics [1-3]. As very special variant types of structures, low-index core photonic 

crystal fibers (PCFs) have been suggested, providing numerous advantages in terms of 

ultra-low flattened dispersion or effective material loss, high birefringence, very large 

effective area or power fraction, and sensing of the diverse liquids and gases [4-7].  



1044 Jeong Kim 

Those promising photonic crystal structures have been analyzed by using simulation 

tools based on a finite element method with perfectly matched layer as the outer 

boundary layer. In this paper, hollow-core cylindrical photonic crystal waveguides 

(HCPCWs) are first proposed and analyses for the novel waveguide design have been 

innovatively performed, applying the finite-difference time-domain (FDTD) and finite 

difference method (FDM) approaches based on concrete mathematical foundation. 

Initially adopting the FDTD method to the proposed waveguides, the sequential 

electromagnetic field values in a finite volume of calculation space are sampled at 

equally spaced sampling points in time and at distinct points in a spatial lattice. The 

sampled data at the points are used for numerical calculations of allowed modes, 

without generating spurious mode solutions, in a given waveguide. Additionally, the 

FDM formulation can be obtained from the Helmholtz wave equation result. 

Employing the two numerical computation methods provides cross-verification and 

additive confidence in the accuracy of the results. In consecutive order, remarkable 

design of the HCPCW with reasonable guidance properties is addressed for device 

applications. This new type of numerical analysis and design approach can be 

reasonably expected to be useful in manufacturing processes and for fabrications of a 

variety of optical waveguide components.  

 

2. MATHEMATICAL FORMULATIONS FOR THE FDTD AND FDM 

ALGORITHMS 

An optically-guided lightwave is an electromagnetic vector field in nature, and thus 

its propagation characteristics are governed by the physical laws of electrodynamic 

phenomena which are collectively referred to as Maxwell’s equations [8,9]. 

Maxwell’s equations are the basis of the FDTD algorithm that can provide robust 

solutions and readily accommodate complex-valued material properties. An arbitrary 

material object can be approximated by building up computational unit cells for which 

field component positions are disposed with the desired values of electric permittivity 

() and magnetic permeability (). 

Founded on the MKS system of units, the full-vectorial curl differential form among 

Maxwell’s four equations can be expressed by using partial derivatives as following:  
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where the Hx, Hy, Hz, Ex, Ey, and Ez components of electromagnetic fields are inter-

related in the rectangular coordinate system. Expanding the curl expressions and 

equating the like components, the system of six coupled partial differential equations 
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are formed for the FDTD analysis of electric and magnetic wave interactions with 

general three-dimensional (3D) objects [10]. 

Furthermore, these six equations are discretized in the space and time domains and 

formulated to find field solutions numerically [11,12], by assigning a calculation grid 

point in the rectangular lattice with digitized integers of k, l, m, and q as 

   , , , ,k l m k x l y m z               (3) 

and any function of space and time as  

   , , , , ,qf k l m f k x l y m z q t              (4) 

 

where Δx, Δy, and Δz are the lattice space increments in the x, y, and z coordinate 

directions, respectively, and Δt is the time increment [13]. By taking central finite 

difference approximation for space and time derivatives that are accurate to the 

second order [14], the partial derivatives are expressed as 
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Therefore, by applying logical and robust algorithms further in the cross section for 

the proposed waveguide and adopting the central finite-difference space and time 

expressions with accuracy to the second order, the following relationships as 

representative cases in a 3D FDTD formulation can be developed:  
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By using phasor notation with the axial propagation constant (β), the first-order partial 

derivatives with respect to z are replaced with -jβ, because variations of material 

properties are normally limited to the transverse directions and the z-dependence of 

fields is as exp(-jβz). And two adjacent fields required for the first-order derivatives in 

the discretized space region can be represented by a field at the middle point between 

them. Hence, the following equations related to expressions (7) and (8), respectively, 

can be formulated:  
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Moreover, in modeling regions extending to infinity with this efficient algorithm, a 

perfectly matched layer (PML) to make a highly absorbing boundary condition 

satisfied is effectively designed at the outer material boundary of a computation 

domain. Ideally, the absorbing medium is only as thick as a few lattice cells, highly 

absorbing, reflectionless to all impinging electromagnetic waves, and effective over 

the full range of operating wavelengths. 

As in the development of the FDTD algorithm, the FDM formulation can be derived 

from the coupled Maxwell’s equations [11]. For continuous waves in linear and 

isotropic media, combining equations (1) and (2) results in the following vectorial 

wave expression:  

2 2

0 0rn k  E E          (11) 

 

where nr is the refractive index and k0 is the propagation constant in free space. Many 

waveguiding devices, like optical fibers, can be viewed as z-invariant, or piecewise z-

invariant structures. For those structures, the refractive index nr(x,y,z) varies slowly 

along the propagation direction z, which is valid for most photonic guided-wave 

devices. By using the vector identity of   2   , equation (11) can be 

written as the following Helmholtz wave form:  

 2 2 2

0rn k   E E E          (12) 

 

Also with the reasonable assumption of negligible time dependency along the z-axis, 

the FDM formulation as in equation (12) can be implemented by replacing spatial 
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derivatives with finite difference approximations. Here, it is noted that the transverse 

component of (12) is  
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where the subscript “t” stands for the transverse components. Consequently, by 

applying both the developed digital calculation algorithms, complicated structures 

such as the proposed HCPCWs can be exploited to yield the propagation 

characteristics. 

 

3. DESIGN AND ANALYSIS OF THE PROPOSED HCPCW  

Since cylindrically-modulating PCWs have periodic index variations in the radial 

direction only, a low-index core PCW with N = 15 layers as in Figure 1(a) consists of 

r1 = 0.6 m and r2 = 1.2 m, forming a low-index core, located in the core region with 

a variable radius of r1 and surrounded by a clad region composed of alternating-index 

and equal-thickness rings with da = 0.2 m and dg = 0.3 m for the primary design. 

Here, da and dg in the refractive index profile for the proposed geometry denote 

thicknesses of air and pure-silica glass layers [15], respectively. Because of the 

periodic index profiles, either a high (silica glass) refractive index (n1) or a low (air) 

refractive index (n0) is employed for the nr value. One such light-guiding fiber is 

composed of N linear, isotropic, homogeneous and cylindrically symmetric dielectric 

layers as illustrated in Figure 1(b).  

 

(b) (a) 

 

n1

n0 r1 r2 r3 rN-10 r

n(r)

r4

da dadg da dg

n1

n0 r1 r2 r3 rN-10 r

n(r)

r4

da dadg da dg

 

Figure 1. Schematics of a proposed HCPCW with an air core by  

(a) the three-dimensional view and (b) the refractive index profile 

 

When assuming the glass portion of the designed waveguide has a refractive index of 

1.45 with no material dispersion, the FDTD method is an efficient approach for 

calculation of the normalized propagation constants of guided modes. In order to find 
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the effective refractive index (  ) variation, a reasonable β value also needs to be 

chosen. Therefore, the operation wavelength () associated with the β value of the 

fundamental mode can be calculated.  

By generating the source of an impulse function in the time domain covering an 

infinite spectrum, the proposed waveguide can be excited. Figure 2 depicts spectral 

data for different β values for the proposed HCPCW with r1 = 0.6 m, r2 = 1.2 m, da 

= 0.2 m, dg = 0.3 m, and a total of fifteen layers.  
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Figure 2. Spectrum for the proposed HCPCW with r1 = 0.6 m, r2 = 1.2 m,  

da = 0.2 m, dg = 0.3 m, and N = 15, when (a) β = 7,000,000 and (b) β = 9,000,000 

 

Once spectral data for different β values are digitally-computed, mode index results as 

a function of normalized wavelengths can be calculated. For example, when β = 

7,000,000 as in Figure 2(a), the normalized propagation constant can be found to be 

about 1.32078 by using the peak frequency (fp) value of 2.5311014 Hz as follows 

[12]:  

8

0

14

p

c 7000000 3.0 10
1.32078

2 f 2 2.53052 10
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

 


 
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where c0 is equal to the speed of light in free space. Figure 3 illustrates spectral data 

for the HCPCW designed with r1 = 0.4 m, r2 = 1.2 m, da = 0.2 m, dg = 0.3 m, 

and fifteen layers. As noticed, more apparent sharp peak frequency can be evidently 

found at 2.4651014 Hz for β = 7,000,000. 

Similarly to the FDTD method based on mathematical foundation, the FDM algorithm 

is reasonably applied to the numerical calculation of propagation characteristics such 

as effective refractive index [9]. As an initial investigation, complicated structures of 

the same proposed HCPCWs are exploited to yield the normalized propagation 
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constants, which are compared with the results from the FDTD algorithm. Figure 4 

illustrates the effective refractive index versus the operation wavelength for the 

fundamental mode without taking into account the material dispersion effect [12]. 
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Figure 3. Spectrum for the proposed HCPCW with r1 = 0.4 m, r2 = 1.2 m, da = 0.2 

m, dg = 0.3 m, and N = 15, when (a) β = 7,000,000 and (b) β = 9,000,000 
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Figure 4. Variations of the effective refractive index versus the operation wavelength 

for the HCPCW with r1 = 0.4 m or r1 = 0.6 m, and a total of 15 layers 

 

As clearly noticed in Figure 4 for the HCPCW designed with r1 = 0.4 m, r2 = 1.2 m, 

da = 0.2 m, dg = 0.3 m, and a total of 15 layers, results from FDTD and FDM, 

which are denoted by the solid red line with the diamond symbol and the dashed blue 
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line with the up-triangle symbol, respectively, agree very well. When operating the 

proposed HCPCW at the wavelength of around 1.4 m, the FDTD analysis produces 

the effective refractive index of 1.3406. Meanwhile, the FDM technique yields the   

value of 1.3392 about the same operation wavelength. Almost negligible difference of 

0.0014 is noticed. Overall, agreements are remarkable. Also based on the obviously 

strongest clear peak in each spectrum in Figure 3(a) for β = 7,000,000 and Figure 3(b) 

for β = 9,000,000, the effective refractive indices are computed to be about 1.3561, 

and 1.3801 at the operating wavelengths of 1.2172, and 0.9635, respectively. 

Again for the HCPCW designed with r1 = 0.6 m, r2 = 1.2 m, da = 0.2 m, dg = 0.3 

m, and a total of 15 layers, it is noticed that the   value results from FDTD and 

FDM, which are denoted by the dashed red curve with the diamond symbol and the 

dotted green curve with the triangle symbol, respectively, also agree well as for the 

same HCPCW in Figure 4. Here, it is reasonably observed that, since one sharp 

distinct spike exists in each spectrum in Figure 2(a) for β = 7,000,000 and Figure 2(b) 

for β = 9,000,000, there is strong single-mode operation through the operation 

wavelength from 1.1 to 1.9 m, which is remarkably optimistic for realistic 

communication or optical sensor applications. 

In the same way as the elementary fundamental evaluation approaches, based on 

FDTD and FDM algorithms, are cross-verified, the overall light-guiding operation 

tendency can be analyzed numerically. The present detailed verification can provide a 

solid and reliable basis for further investigation in this research as well. 

 

4. CONCLUSION  

The mathematical derivation has been preceded and the algorithm addressed for the 

FDTD and FDM approaches to find out the propagation characteristics of optical 

waveguides. Expanding the curl expressions of full-vectorial Maxwell’s equations 

with the first-order derivatives and equating the like components, the system of six 

coupled partial differential equations are formed for the FDTD analysis of electric and 

magnetic wave interactions with the proposed HCPCWs. By taking central finite 

difference approximation for space and time derivatives that are accurate to the 

second order, the sequential electromagnetic field values in a finite volume of 

calculation space are sampled at equally spaced sampling points in time and at distinct 

points in a spatial lattice. The sampled data at the points are used for the numerical 

calculations of allowed modes. Likewise, the FDM formulation can be obtained from 

the Helmholtz wave equation result and implemented by replacing spatial derivatives 

with finite difference forms. 

For the proposed HCPCW with r1 = 0.4 m or r1 = 0.6 m, r2 = 1.2 m, da = 0.2 m, 

dg = 0.3 m, and a total of 15 layers, overall agreements by effective refractive index 

results from FDTD and FDM algorithms are remarkable through the operation 

wavelength from 1.1 to 1.9 m. In the same way as the elementary fundamental 

evaluation approaches, based on FDTD and FDM algorithms, are cross-verified, the 

overall light-guiding operation tendency can be analyzed numerically. The present 
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detailed verification can provide a solid and reliable basis for further investigation in 

this research as well. 
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