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Abstract

In recent decades, grouping strategies have been proven to possess
characteristics that are able to reduce the spectral radius of the generated
matrix resulting from the finite difference discretization of the partial
differential equations, and therefore increase the convergence rates of the
iterative algorithms. In this paper the development and formulation of new
accelerated fractional explicit group iterative method which is called
Preconditioned Fractional modified explicit group (PFMEG) for solving the
2D- time fractional advection-diffusion equation will be presented. Some new
Fundamental theorems are established which are then analyze the convergence
properties of the proposed method. Numerical experiments will also be
conducted to confirm the agreement between the theoretical and the
experimental results.

Keywords: Time fractional advection-diffusion equation, Crank—Nicolson
scheme, Preconditioning method.

1. Introduction

Improved techniques using explicit group methods derived from the standard and
skewed (rotated) finite difference operators have been developed over the last few years
in solving the linear systems that arise from the discretization of the fractional partial
differential equation [1-7]. Several preconditioned iterative methods reported in the
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literature have been used for improving the convergence rate of explicit group methods
derived from the standard and rotated finite difference operators [8-23].

The time fractional advection-diffusion equation plays an important role in describing
transport dynamics in complex systems which are governed by anomalous diffusion
and non-exponential relaxation patterns [1]. Therefore, in this study, the formulation of
new group iterative methods is presented in solving the following 2D time fractional
advection diffusion equation,
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where0O<a<1,a,, a,,b ,b are  positive  constants  and f(x,y,t) 1S

y ? Tx 1 Fy
nonhomogeneous term subject to the following initial and dirichlet boundary

conditions,

u(x,y,0)=g(x,y),
U(O, y’t): gl(y!t)! U(l, y!t):gz(y1t) (2)
u(x,0,t) = g,(x,t), u(x,Lt)=g,(xt)

The Caputo fractional derivative, D are of the order-« is expressed as follows [12]:

D*—_ 1 I fm(t?ldt,a>0,x>0,meN, (3)
r(m—a)-o (x—t)>™

where I'(.) is the Euler Gamma function andm-1<a<m .

The domain is assumed to be uniform in both x and y directions with 2 > 0 be
the space step and £ > 0. The grid points in the space are denoted
x =ih, y,=jh, {i,j=01..n}and the grid points for time are designated

t. =kz, k=0,1,...,1 to space and time for the positive integers n and | are respectively

represented by p— Land ,_ T . Discretization with regard to time fractional with
n |

utilization of second-order Crank-Nicolson finite difference approximations could
obtained for equation (1) at the point of (x, y,,t,) . By taking the average of the central
difference approximations to the left side of equation (1) at the points (i, j,k)and
(i, j,k +1), the caputo time fractional approximation (3) can be transformed to the

following form [6]

o“u(x,, y;,t k1 ket —yk
.Y ba) IatZJ ) _ WU+ T W W JUS —w U +o-—( I’le‘“ ) +0(z*), 4)
s=1

where _ 1 _ lue o lua
= rTe—a ™ o5 +2)™ =~ (=)}
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Using (4) in combination with the second-order Crank—Nicolson difference scheme for
the right side of (1) will result in the following fractional standard point (FSP) formula

K1 Uk _yk Uk _ogki gk gk _ogk gk
Wluk +Z[(kas+1AWk—s)uis,j 7Wkui0,j +G( '-1217“ Ivj):ax?( = hléJ e hIZJ I+1VJ) (5)
s=1
+§L(Uhﬁ1*2Wﬁi+uhﬁ1+Uhy4*2uhj*Uhju)_gi(uhfj7u£ﬁ‘+UﬁLj*uhmj)_9L(uﬁﬁ1*uhﬁ1
2 h? h? 2 2h 2h 2 2h
uk. —uX WL
e LIy 20 2 4+ (AX)? + (A )]
Equation (5) can be simplified to become as follows
. S, . Cyn . oka S, Cuy ws s, ¢ . s, ¢ .
@Q+s, + Sy)uik,jl = (?+Z) uik—l:,Lj =+ ( > *Z) ui‘il:.Lj + (?nyZy) uik.jil +(?y77y uik,jil (6)
— S, . G, s, C, s, ¢
+(1*21 W, — S, 7Sy)uik,j +(?+Z) uik—l,j(?i 2 uik+l,j +(?y+zy) uik,j—l
+(S—yfc—y) u<. 2w, ul, + 24> i[(w* —W,__)us +m f.k.%
2 4 i, j+1 k (] oy k—s k—s+1 [ ] (o} [ ]
ara am, a,m b,m bm, . (R L
where M, =2"“t‘T(2—a), s, = hzo .S, = LZO ,C, = - °,c, = vh W, =[(s+5)l _(5_5)1 1.

The main aim of this paper is to formulate a new fractional group iterative method
known as Preconditioned Fractional Modified Explicit Decoupled Group (PFMEG)
method in solving equations (1) and (2). The paper is organized in five sections: Section
2 describes the formulation of the fractional Explicit Group Method. In Section 3, the
proposed accelerated version PFMEG approximation method will be given. Section 4
presented the stability and convergence analysis. In Section 5, the numerical results are
presented in order to show the efficiency of the proposed method. Finally, the
conclusion is given in Section 6.

2. Formulation of Fractional Modified Explicit Group (FMEG) Method

First, we have to formulate the fractional explicit group (FEG) method which can be
obtained by applying equation (6) to any group of four points in the solution domain to
generate a 4 x 4 system of equation as follows

d -a 0 -b Ui ; rhs; ;
—a, d —b 0 Ui, j _ rhsi+1,j (7)
0 _b2 d _az ui+l,j+l r-hsi+l,j+1 ,
—b, 0 —aq d Ui i1 rhsi,j+1
s, C s, C
where  §_j,5 15, a :(%X—%X), a, = (S?X+%‘),bl — (=26, = (2 ),

k+1 k+1

_ K K K K Ty % 0
rhsi,j = az[ui—l,j +ui—1,j]+b2[ui,j—l+ui,j—l]+a1ui+1,j +b1ui,j+1 + 27 WUy

k-1 1
k+=
K Lo, * * s 2
+ Ruy;; +22 Wy s =W 5.1 up; +mg fi,j
s1
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k+1 k+1 k
rh I+1] ai[u|+2 j |+2 J]+a u +b1u|+1 j+1 +b [ul+lj -1 ui+1,j—:L]
1
k+=
1-o 1-a 2
+22 [Wk —-s Wk 5+l] ul+lj +2 Wk uH—lj + RuH—lj + mO fi,j

s=1

k+1 k+1 1-a
rh |+1 j+1 a1[u|+2 j+l+ul+2 ]+1]+bl[ul+1 j+2 +U |+1 ]+2]+b ul+1j a2u| j+1 + 2 Wk u|+1 j+1

1

+RuUX, .+ 3 2w, —w,_ . Jus, . 4+m £
i+1, j+1 Z k—s k—s+1d ™i+1, j+1 0 i+l j+1?
s=1
k+1 k+1 1-a

rhsi,j+1 = a2[ui—l,j+l i—1, J+1] + bl[ul j+2 + ul j+2] + a:l. u|+l j+1 + b U + 2 Wkul j+1

1 kL K K+

—a o > s 2

+2 Z[Wk—s —W, ] U+ RU .+ M fi,j+1 )
s=1

A four point FEG equation can be generated through a reversal of the matrix above

ui JJ r11 r12 r-13 r14 rhsi Vi
u i+1,j — 1 r21 r11 r14 r24 rhsl +1,j (8)
Ui, j+1 M Fp L Iy rhsi +1,j+1
u; i+l I3, P I, LEP1 rhsi e+l
where
r= ﬁ{c +c +8¢? (4+55 +8s, +3s +8s,(1+s, ))]+16[9s; + 48s? x@+s,)+(4+8s, +3s2 )

+2s2(44+88s, +39s7) +16s,(4+12s, +11s] +3s])] +ci[-2c2 +8(4 +3s? +8s, +5s2
+8s,(Q+s,))]}

r, :i(1+sX +s,)ci+c?+4(4+3s; +8s, +3s7 +8s, (1+s,))],
r, =—a(c —2s,)[c +c) +4(4+3s7 +8s, +5s]7 +8s, (1+5,))],
rns =—=(, —2s,)(c, —2s,)A+s, +s,),

M, :—6—14(0y —2s,)[cf+c?+4(4+5s7 +8s, +3s] +8s, (1+5,))],

r, =6—14(cX +2s,)[ct—c} +4(4+3sF+8s, +557 +8s, (1+5s,))],

o =—%(CX +2s,)(, —2s,)A+s, +s,),

1
ra =§(cx +2s,)(, +2s,)(1+s, +s,),
1
Iy, =a(cy +2s )[c?+c] +4(4+5s] +8s, +3s7 +8s, (1+5,))],

I, :_%(CX —2s,)(c, +2s,)A+s, +s,).
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Now, we consider the nodal points with grid size -2 The standard fractional
n

formula is generated through the application specific finite difference approximations
with 2h-spaced points. Using the Caputo time fractional approximation (4) at the left-
hand side of (1) and the second order Crank—Nicolson difference scheme with 2h-
spaced points at the right hand side of (1), the following approximation formula is
obtained:

k+1 k k+1 k+1 k+1

U —u’)  a, Uy —2u +u —2uf, +u
i L7z _ i-2,j i+2, | 2]

WU Wkul j +Z(Wk s+1 Wi S)ul j +c 21 o _7)(( 4h2 + 4h2

s=1

k+1 k+1 k+1 k
i, ]+2) bx (u|+21 ul 2,j + u|+21 | 2 J)
2 4h 4h

|+2])

©)

k+1

LAy U s —2u U, Ul —2uf U
(

2 4h? 4h2
b uk+1 ulk-;-l2 U~k-

—uk W1
—( "*24h T L) 4 172 L O 4+ (AX) + (AY)°)

After simplification, it can be obtained the following

S, +S S C
k k k k
X4 y)u +1_( x+_x)u|+21]+(§)(_§x)ul++zlj+(—+ y)l.,lljrl2

Q-+

S k+1 Lo~ Sx S K Sy X\ 1k

+(_8y y)u| j+2+(1_2 W, — 4 y)ui,j +(?+§)ui—2,j
S, (o} S C _

(g__)ul+21+(_+ y)uik,j72+(§y_§y)u| J+2+21 Wku

1
+21—u Z [(W:_S _W:—S+l) uis,j + mo fi'kj‘fi
- (10)

Applying(10) to any group of four points(i, j), i+ 2,j), (i+2,j+2)and (i,j +2) in
the solution domain will result in the following 4 x 4 system

d, —a (0] —b, U; rhs; ;
—-a, d;, b, (0] Uioj | rhs;
0 b, d; —a, ||Uj. B rhsi+2,j+2 ,
—b, 0 —a, d,; Ui iz rhs; ;. (11)
where: g, 1,250 g - (220, a, - (28, p, - (22 b, - (22,
4 8
k-1
rhsi,j =a [u.k+211 u; 2J]+b [U.k,ﬂz |k,j72]+a1uik+2,j +b1uik,j+2 +2217a|3’v:75 —W :—s+1]uis,j
K+l -
+2"%w u?, +Qui"'j +m,f, 2,
rhs|+21 —ai[ulk:ztlj |+4,]+az +bu|+21+2+b [u|k++211 2+u|+21 2]"‘221 Q[Wk s Wy s+1]uis+2,j

k+l

1, k
+27W ul+2] +QuU,; +myf, 3,
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Kk +1 k +1 1- k
rh |+2]+2 ai[u|+41+2 ul+4j+2]+b [u|+21+4+u|+21+4]+b u|+21 a2 |]+2 +2 aW u|+21+2 Qui+2,j+2
S 10 [, * * s k+§
+22 Wy s =Wy o adui, o +mefi,3,,
s=1
k+1 k+1 k k 1—
rh |J+2 a‘2[ul 2]+2+u| 2]+2]+b [u| J+4 i,j+4]+a1ui+2,j+2+b +2 aW ul ,i+2
=) 1
k+=
1-o * * s k 2
+2 Z[Wk—s_Wk—s+1]ui,j+2+Qui,j+2+m0fi,j+2’
s=1
: S, +S
1 -
with @ = (1— 2" w} _%) _

Hence, the four-point FMEG equation below is obtained by inverting (11), as follows

k+1 * * * *
l'Ii,j M1 P} I3 r rhsi,j
k+1 * * * *
Uiz, _ 1 or Ty Na Ty rhsl+2 i (12)
k+1 - * * * * ’
ui++2,j+2 constant 5 I3 M P I’hSHZ 2
K+1 * * * *
u i,j+2 M3 M2 P 11 rhsi,j+2
where:

constant = ﬁ (4096 +cj; +Cy + 40965, +1408s% +192s] +9s;, + 40965, +3072s,s, +704s’ s,

+48s3s, +1408s? +704s,s? + 78s5s2 +192s° +48s, s +9s; + 2C5 (64 +5s. + 325, + 35

2
Yy
2 2 2 2
+8s,(4+s,)) +2c, (64 —c; +3s, +32s, +5s, +8s,(4+S,))

. 1
rll—ﬁ(4+s +s )[64+c +c +32s, +3s’? +32s, +8s,s, +3s? v 1
r, =—5—12(cx —s,)[64+c? —c? +3s?+32s, +32s, +5s7 +8s,s5,1,

M =—$(c —s )[64+c?—c)+3s?+32s, +32s, +5s5] +8s,5, 1],

*

M, =— 512(c —s,)[64—c;+c] +5s +32s, +32s, +3s? +8s,s, ],

*

Iy :i(cX +s,)[64+c?—c)+3s7 +32s, +32s +5s] +8s,5, ],

512
r,, ——i(c +s,)(c, —s, )[4+s, +s,]
> 128 y x T3y b
r, :ﬁ(cx +s,)(c, +s,)[4+s, +s,1,
r3*2:512(c +s,)[64—c; +c] +5sf +32s, +32s +3s] +8s,5, ],
* 1
r,=—-—s(@€, —s,)c, +s,)[4+s, +s,1.

128
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The solution domain of the above must be labelled in three different types of points
(i.c., ®,0,0) as shown in Figure 1 .
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Figure 1 The solution domain of the four points-FMEG method

Figure 1 shows the construction of blocks of four points in the solution domain for the
case n = 14. This method stood out amongst all the other tested methods that it is the
most superior in terms of execution time, number of iterations and accuracy [23].

3. Preconditioned Fractional MEG Method

It is well known that preconditioners play a vital role in accelerating the convergence
rates of iterative methods. A well-designed preconditioning of group iterative methods
for solving partial differential equations (PDEs) and fractional partial differential
equations (FPDEs) problems reduces the number of iterations to reach convergence [8-
12]. Dramatic improvements are possible, but the difficulty is to construct the suitable
preconditioner. In general, a good preconditioner should satisfy the following
prosperities: the first one is that, the preconditioned system should be easy to solve and
the second one is that the preconditioner should be cheap to construct and apply.
Usually the system (11) is large and the matrix is sparse. Furthermore, matrix can be
write as

A=D-L-U (13)

where D is diagonal matrix 4, —L is strictly lower triangular parts of 4 and -U is
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strictly upper triangular parts of A. A preconditioner

0 0 —kb, O

where 0<k <2 and a,,a,,b, same as in (11), is used to modify the original system

(11) to the following system:

0 kb2  —kb,d, kba, ) U —kb,rhs, ;.
—ka,d, kaa, 0 kb,a, U.oj | | —karhs;; (14)
kb2a2 —kb2d1 kb1b2 0 Uiz iz - _kbzrhsi+2,j
ka,b, 0 ka> —kad, )| U .. —karhs; ;. ,

A preconditioner P is a matrix that transforms the original system (11) into new
system (14) that is equivalent in the sense that it has the same solution, but that has
more favourable spectral properties. Hence, the explicit four-point preconditioned
FMEG equation is obtained by inverting (14) by the same manner as in (12).

4. Stability and Convergence Analysis

A scheme is considered to be stable if the errors cease to increase with the passing of
time, and gradually become inconsequential as the computation progresses. Even
though the spacing is different, Equation (6) gives rise to both the FEG and FMEG
methods. Therefore, the stability of both methods can be analyzed in similar ways.
Here, we will show the stability of the PFMEG scheme using eigenvalues of the
generated matrices with mathematical induction.

Form (11) we obtain

AU' =BU, k=0
AU " =BU* —cU*+> "¢, U +cU°+b, k>0 (15)
where
R R, 0 0 S, S, 0 0 Wy
R, R R, 0 S; S S, 0 W,
A= R, B= b=
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G G, G, G,
G, G, G, G, G;
R = N R, = R, =
G, G, G, G, Gs
G, G G, G,
1 2 J, J.
J, J, 3, J, Js
S, = S, = S, =
‘]3 1 ‘]2 ‘J4 JS
3 ‘Jl ‘]4 ‘JS
d -a, 0 -b, 00 O b,, 0 0 00
™ d -b, O G |00 b, O G - 0 -b, 0O
! 0 b, d, -a,| * |0 0 O o 2 |-b, 0O 00O
b, 0 -a, d, 00 O 0 b, 0 0O
0O 0 0 O 0 -a,, 0] 0 Q a, 0 b,
G _|7@ 00 0| _ JO 0 0 0  Ja Q b 0
¢ 0O 0 0 -a, * |0 o o o™ 0 b, Q a,
0O 0 0 O 0] 0 —-a,, O b, 0 a, O
0 0 0 by, 0 0 00O 0 00 O 0 a 0 O
;_|00b, O} 0O 00O , |a 00 0| O 0 00
/oo o0 0® |0 b, OO"" |0 0O0aal ®>|0 0 0O
00 0 O b, 0 0 O 0 00 O 0 0 a, O
I\/lk Mk—s Ml
M M M
C = X Coo = ks c, = L ,s=1..,k-1
Mk Mk—s Ml
| R .
, (W_g =W ;) 0 0 0
W, = :l , M — 2170{ O (W:—S - W:—S+1) 0 O ,
' I e t” 0 0 (W:—s - W:—s+1) 0
N 0 0 0 (W, = We.y)
1
w0 0 0 w, 0 0 0 f.;
210 w 0 0 210 w, 0 0 fioi |, .
M, = L M, = < =2 TR-a)| M |0 j=26,..,n-2.
t“10 0 W 0 t“ 10 0 W, 0 fi+2,j+2
00 0 w 0 0 0 w fii

1

=

The following lemma is important to prove the stability [6].
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Lemma 1 In (15), the -coefficients W:,S:1,2,...,k satisfy the following

1- Wk -s >Wk —s+1? and 2— Z[W

s=1

—w .. J+w —w; - Forsimplicity, we assume:

—S

1-a _ l-a
S, =S :S:M, c,=¢C :C:M, D1:i+§ and
Y h y h ta 2
1 ~ S
:__zl—aw .
Q ta 2

Theorem 1 If (L_S__ZHW*+*/£2+SZ)>O then the FMEG scheme (11) is
t* 2 t* 7 4

stable.
Proof.
To prove the stability of (11), we assume that u e j=12,...,n and k =1,2,...,Care

the approximate solution to the exact solution U/, of (1), the error &, =Uf, —u/, be

the error at time level k. From (15), the error satisfies

AE'=BU, k=0 (16)
AE*" = BE* — CEk+2Ck JU+C, E° k>0
=1
where
E1k+1 5;+l gkt
Ek+ ekt 'i,jl
1 4 +
Exi=| |, EFT=| i |, ger=| G20 | i=26,..,n—2, j=2,6,...,n—2
k+1 k+1 €i+2.j+2
El Em,4 €k+1
Ek+ 8::12 ij+2

From the above equations, the following are obtained:
A=G +G,+G,+G,+G,,B=H,+H,+H,+H,+H, ,.C =M,,C,_. =M, ,,C, =M,
(17)
It can be seen that from (17), the eigenvalues of the matrices A, B,C,,C,_ and C, are

,b.,c,c _.and C, respectively, where

k k—s k TSP y

E,i+§ l(i 25—\/—02+52),1(i+25+\/—cz+52)},
2t 2 4't° 4 t¢

{——E 1_s l(i—ZS—\/—cz+sz),%(tia—25+\/—cz+sz)}

1
ak ={t_a+

2t 2 4°t°
21705 21—05 21—0(
G =" W G = Wy s =Wy o 3)s G = W
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For k=0,
i_§+ —cz+s2
E'=A7BE’ —[E|< p(a7B)|E| =| -T2 ———|E’| = & <[]
e °4 5

Supposing that: ||E

s||E°||,s=1,...,k

Need to prove this inequality holds for s =k +1,

K—:
EX = AY(B—c,)E* +iAfchEs +A'C,E° < p(A™(B—¢,))|E°||+
s=1

S p(atc, )[E%+ p(a c|E°)
s=1

Using Lemma 1, we get

(7_2— 21—(1 W* N _C2 + SZ ) 217(1 )
K+1 2 t ' 4 0 t“ Va 0 K+1 o
e = N &+ T IF ===
(7+§ T ) (7+§ 4 )

Therefore, under the conditions (i _s_2 w Y —C* +s” )>0, the FMEG iterative
@2t 4

scheme (11) is stable. Hence the proof is completed.

Remark 1 By using the same manner of theorem 1, we can easily prove that the
PFMERG iterative scheme (14) is also conditionally stable.

Theorem 2 The FMEG iterative scheme (11) is convergent and therefore the PFMEG

iterative scheme (14) is also convergent. The following estimate hold
1-a [ 2, 2

s 2 W Ve +S

. 1
SC Mz +(ax)?+ aif (=—-=-
s (ax)"+(ay)} (t“ 5 T 2

||e k+1

)>0 .
Proof.

If we denote the truncation error at(x;,y,t, ;) by R “*1 then from (5) we have

Define & =u(x;,yt,,))-U i, j =12,...n, k =1,2,...,( and

1,] 1
k +1 k +1 k +1 k +1\T
e =k e e ),

k+1

R 2| <C{r? + (ax)? +(ay )2}
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where
k+1 (fkﬂ é:zi( " gm Jj ::g ' ’ gik = (ékj+1 §ik+21,j §ik++2%j +2 i J+2) {I J} 2 6
Substitution into (16) produces:

k+l

Ae**t =Be* —C e +chs T4+R 2

NI

Ae'=R

By using mathematical induction to prove the above theorem, set ||C ; l|| <1.

For k =0, Ae' = R%, < pA DR <[Co €27 + (ax)* + (ay )}

Assume that e |l < e R «+3|| Need to prove that the last inequality holds for

s=k +1.
-~ Ae*™t =(B —-C,)e" +§Ck75 e " +R 2
k-1 WA
o= pea 8 —copfe” |+ 5 oA e, e [+ pea R
217 2—a
(t"‘ ——w ) {7 + (AX)? + (AY )*}
k “k ¢z~ 2-a 2 2
— I {7 +(AX)* +(Ay )°}
2L (k +§)1 “—(k — )1 “}
k+1 1 2-a 2 2
Hence, ||e W{T +(AX)? +(Ay )%} -
Since lim = k™ - L
Lk +2) —(k — )1 i S

2

5. Numerical Results

In this section, we present numerical results for the proposed method applied to the time
fractional initial boundary problem as the following [24]

a 2 2
Ou _OU, OU U _N L 05TE+a)tier™ (18)

e T Az T AT T Ay
ot OX oy oxX oy

where Q={(x,y):0<x <1,0<y <1}is the solution domain with the exact solution
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2+aex+y )

being t

Different mesh sizes of 6, 10, 14 and 18 and various time steps, which satisfy the
stability conditions, with a fixed relaxation factor (Gauss-Seidel relaxation scheme) of
1.0 were used to run the experiments. Preconditioned method was deemed efficient
through investigations which revealed their superiority in the context of execution time
(measured in seconds), number of iterations and maximum error with tolerance ¢=10".
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Table 1 The Comparison of the number of iterations, Execution times and

maximum error for different time step and mesh size at o = 0.75

Model Problem{ The time fractional initial boundary problem (18)}

h at Method Time iterations Max Error
) L FMEG 1.12 2 2.99E-3
6 100
PFMEG 1.09 1 2.56E-3
) L FMEG 54.55 4 1.26E-3
10 350
PFMEG 49.87 3 1.25E-3
. L FMEG 590.22 4 5.08E-4
14 850
PFMEG 270.06 2 4.03E-4
. L FMEG 3690.66 4 4.71E-4
18 1620
PFMEG 2130.42 2 4.65E-4
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Table 2 The Comparison of the number of iterations, Execution times and
maximum error for different time step and mesh size at o = 0.95

Model Problem{ The time fractional initial boundary problem (18)}

h at Method Time iterations Max Error
1 1 FMEG 1.11 2 2.71E-3
6 100 PFMEG 1.03 1 2.44E-3
1 1 FMEG 52.44 4 1.11E-3
10 350 PFMEG 49.35 3 1.08E-3
1 1 FMEG 361.72 2 4.26E-4
14 850 PFMEG 194.88 1 3.98E-4
1 1 FMEG 1678.53 2 2.61E-4
18 1620 PFMEG 1275.91 1 2.05E-4

From tables (1) and (2), we can observe that the proposed preconditioned system
(PFMEQ) is superior than original system FMEG methods in term of the number of
iterations and execution times which yield very encouraging results.

6. Conclusion

In this work, we have formulated new preconditioned iterative method based on FMEG
method for solving the time fractional initial boundary problem. From observation of
all experimental results, it can be concluded that the proposed scheme may be a good
alternative to solve this type of equations and many other numerical problems. The
stability and convergence of the proposed method were analyzed using the matrix form
with mathematical induction. Furthermore, the idea of this introduced method can be
extended to solve other types of fractional initial boundary problems which will be
reported separately in the future.
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