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Abstract

In this paper, a SEIQRS non-linear numerical model for the impacts of awareness
programs on the spread of irresistible illnesses has been proposed and broke down.
In the modelling system, it is expected that sickness spreads because of the contact
among susceptibles and infectives as it were. The growth rate of awareness
programs affecting the population is thought to be corresponding to the number of
infective people. It is additionally expected that because of the impact of media,
susceptible populations from a different class and stay away from contact with the
infectives. The model is examined by utilizing the stability theory of differential
equations. The model analysis shows that the spread of an irresistible infection can
be constrained by utilizing awareness programs yet the sickness stays endemic
because of movement. The reproduction examination of the model affirms the
analytical outcomes. The results indicate that media coverage can reduce the
burden of the epidemic and shorten the duration of the disease outbreak.

Keywords: Epidemic model, Non-Pharmaceutical Interventions (NPIs),
Fundamental reproduction number, Global stability, Local stability, Sensitivity
Analysis.
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1. INTRODUCTION

Controlling the spread of irresistible sicknesses to decrease the impacts of disease on
a population is a significant command of general wellbeing. Irresistible infectious
prevention can be accomplished through different methodologies including inoculation,
the utilization of medication treatment, hand washing, wearing masks and social
separating - eliminating oneself as much as could be expected from the population.
Immunizations and medication treatments, be that as it may, might be ineffectual
or inaccessible. Subsequently, hand washing, wearing masks and social separating
rehearses, which can be utilized consistently during an irresistible illness episode
are basic in diminishing the likelihood of contracting and sending disease. Broad
communications missions can be utilized to give data on current and viable inoculation,
drug treatment and social separating measures. General wellbeing instruction crusades,
that incorporate enlightening writing, banners, paper articles and notices, radio and TV
messages, and web-based media outlets are utilized every day to advise the general
population on current medical problems. Broad communications outlets can help in
the scattering of this data. Investigations of broad communications crusades and sound
conduct have revealed that broad communications missions can evoke positive conduct
change and even forestall negative conduct change in people. It is hence presumed that
broad communications missions ought to be utilized to educate the public so conduct
change can result. It has been demonstrated that data passed on by the media is
turning into the basic factor concerning whether an immunization mission will succeed
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

The media inclusion is clearly not the main factor liable for the transmission of the
irresistible illness, however it is a vital issue which must be dealt with truly. On account
of countless tainted cases, on one hand, the media inclusion may cause the frenzy of
the general public, while then again, it can surely diminish the chance and likelihood
of contact transmission among the alarmed defenseless populations, which thus assists
with controlling and keep the sickness from additional spreading [12, 13, 14, 15].

Media inclusion about a scourge gives a sense about the danger level and the overall
requirement for insurances in hazard regions and urge the general population to take
prudent steps against the illness like wearing veils, staying away from public spots,
evading travel when debilitated, continuous hand washing, and so on. This is critical
in the beginning phases of a scourge, when drug intercessions are not regularly
conceivable in light of the fact that treatment or inoculation alternatives have not
yet been created. Numerous scientists researched the effect of media mindfulness
utilizing mathematical modelling. Cui utilized transmission coefficient capacity of the
structure β(I) = βe−mI and set up that different positive equilibria are conceivable
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when the media impact is adequately solid. Non direct capacity of the structure
β(I) = c1 − c2f(I) is joined in the transmission term to research the impact of media
inclusion, where f(I) = I

m+I
[?, 13, 14, 15, 16, 17, 18, 19, 20].

In the mopdelling of irresistible illnesses, the rate work assumes a vital part, it can
decide the ascent and fall of scourges. In numerous pestilence models, the bilinear rate
βS̃Ĩ and the standard rate βS̃Ĩ

Ñ
are regularly utilized, where β gauges the impact of both

the irresistibleness of the sickness and the contact transmission rates. Anyway these
rate capacities don’t consider the effect of media inclusion to the spread and control
of irresistible illnesses. The utilization of suggested non-drug intercessions through
media inclusion and alarm has been discovered valuable for lessening illness trouble
in some irresistible infections. Liu and Cui utilized media incited transmission rate of
the structure β(I) = βe−mI which has two significant restrictions. We consider media
actuated transmission rate as β(I) = βe−m I

N in the proposed model which is more
reasonable than β(I) = βe−mI , on the grounds that βe−mI → 0 as I → ∞, free
of the estimation of m. Since the media inclusion and readiness are not the inherent
deterministic factor answerable for the transmission, thus it is sensible to expect that
the transmission rate can’t be decreased under a specific level only through media
alert. Also, in any event, for a fixed m , the base transmission rate varies from various
population sizes, paying little mind to the comparability in friendly construction and
climatic condition, which isn’t sensible. Then again, min{βe−m I

N } = βe−m that stays
unaltered regarding the absolute population size [21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

The point of this paper is to explore the effect of media inclusion to the spread and
control of irresistible sicknesses in a given locale. The rest of this paper is coordinated
as follows: In Section 2 We proposed a numerical model as the ODE framework and
characterized all parameters utilized in the model. In Section 3, we calculate all possible
steady state and basic reproduction numbers. Graphical portrayals are introduced In
Section 4 and furthermore numerical simulations are performed to check the outcomes,
in the examination, biologically relevant parameter values are used. In Section 5,
sensitivity analysis and furthermore found highly sensitive parameters. At long last,
in Section 6, the outcomes are talked about.

2. FORMULATION OF MATHEMATICAL MODEL

In this section, we introduce SEIQRS pandemic infectious disease system with induced
media transmission rate βe−m Ĩ

Ñ . We divided total population into five compartments
at time t̃, which are Susceptible(S̃), Exposed(Ẽ), Infected(Ĩ), Quarantine(Q̃) and
Recovered (R̃). Let us consider that the total population at time t̃ is Ñ(t̃) = S̃(t̃) +
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Figure 1: Schematic flow of proposed an SEIQRS epidemic Model.

Ẽ(t̃) + Ĩ(t̃) + Q̃(t̃) + R̃(t̃). The schematic flow diagram of the presented epidemic
infectious disease mathematical system model including the coverage of media for
homogeneously population which is shown in Figure 1, the model is presented with
ODEs which are given below:

dS̃

dt̃
= Λ− β̃e−m Ĩ

Ñ
S̃Ĩ

Ñ
− µ̃S̃ + θ̃R̃, (1)

dẼ

dt̃
= β̃e−m Ĩ

Ñ
S̃Ĩ

Ñ
− (µ̃+ ξ̃ + δ̃)Ẽ, (2)

dĨ

dt̃
= ξ̃Ẽ − (µ̃+ δ̃1 + Λ̃1)Ĩ , (3)

dQ̃

dt̃
= δ̃Ẽ − (µ̃+ δ̃2 + Λ̃2)Q̃, (4)

dR̃

dt̃
= Λ̃1Ĩ − Λ̃2Q̃(µ̃+ θ̃)R̃, (5)

with initial conditions:

S̃(0) = S̃0 > 0, Ẽ(0) = Ẽ0 > 0, Ĩ(0) = Ĩ0 > 0, Q̃(0) = Q̃0 > 0, R̃(0) = R̃0 > 0.

(6)

Now, we suppose the initial conditions for the solution which are inside feasible
biologically region

Ω =

{
( S̃, Ẽ, Ĩ, Q̃, R̃) : 0 ≤ S̃, Ẽ, Ĩ, Q̃, R̃ ≤ Λ

µ̃
,

}
.

We study model system (1)-(6) and assert that region Ω is positively invariant which is
bounded with respect to presented model (1)-(6).
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Table 1: Definition of parameters for the system (7)-(11)
Parameter Description Unit
Λ Recruitment rate of S days−1

β̃ Contact rate of I with S days−1

m Coefficient of media coverage or awareness —–
µ̃ Natural death rate for all days−1

δ̃ Rate of quarantine for exposed individuals days−1

ξ̃ Rate of infectious for exposed individuals days−1

Λ̃1 Rate of recovery for infectious individuals days−1

Λ̃2 Rate of recovery for quarantine individuals days−1

θ̃ Rate of transfer for recovered individuals to susceptible individuals days−1

δ̃1 Death rate induced by disease for infectious individuals days−1

δ̃2 Death rate induced by disease for quarantined individuals days−1

Also, the total population

Ñ(t̃) = S̃(t̃) + Ẽ(t̃) + Ĩ(t̃) + Q̃(t̃) + R̃(t̃),

satisfies
dÑ

dt̃
= Λ− µ̃Ñ − δ̃1Ĩ − δ̃2Q̃.

Then,
dÑ

dt̃
< Λ− µ̃Ñ ,

by applying Birkhoff’s and Rota’s theorem [1, 10], as t̃ → ∞, also Ñ0 = 0 ≤ Ñ(t̃) ≤
Λ
µ̃

. Hence, the model system’s solution (1)-(6) is bounded

Now, we use the model system (1)-(6) for non- dimensionalise,

S =
S̃

Ñ
, E =

Ẽ

Ñ
, I =

Ĩ

Ñ
, Q =

Q̃

Ñ
, R =

R̃

Ñ
, N =

Ñ

Ñ0
, t = µ̃t̃.

Since S = 1− (E + I +Q+R), we can drop equation,

dS

dt
=

1

N
− βe−mISI + θR− S

N
+ δ1SI + δ2SQ,

the identical non-dimensional model system is following:
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dE

dt
= βe−mI(1− E − I −Q−R)I − ξE − E

N
+ δ1EI + δ2EQ, (7)

dI

dt
= ξE − (δ1 + Λ1)I −

I

N
+ δ1I

2 + δ2IQ, (8)

dQ

dt
= δE − (δ2 + Λ2)Q− Q

N
+ δ1IQ+ δ2I

2, (9)

dR

dt
= Λ1I + Λ2Q− θR− R

N
+ δ1RI + δ2QR, (10)

dN

dt
= 1− (1 + δ1I + δ2Q)N, (11)

where

β = β̃
µ̃
, δ = δ̃

µ̃
, ξ = ξ̃

µ̃
, Λ1 =

Λ̃1

µ̃
, Λ2 =

Λ̃2

µ̃
, δ1 =

δ̃1
µ̃
, δ2 =

δ̃2
µ̃
, θ = θ̃

µ̃
,

and with the initial condition:

E(0) = E0 > 0, I(0) = I0 > 0, Q(0) = Q0 > 0, R(0) = R0 > 0, N(0) = N0 > 0.

(12)

3. ANALYSIS OF THE MODEL

In this part, we will analyze the basic reproduction number of calR0, the equilibrium
of all feasible states, and the local and global stability of these two states (disease-free
and endemic).

Analyze that feasible biologically state for the model system is,

Γ = {( E, I, Q, R, N) : 0 ≤ S, E, I, Q, R, N ≤ 1} ,

that is positively invariant for the model system (7)-(12). The model system (7)-(12)
always has DFE E0 = (0, 0, 0, 0, 1).

3.1. Basic reproduction number
The basic reproduction number, R0, is defined as the expected number of secondary
cases produced by a single (typical) infection in a completely susceptible population.
Suppose,

x = (E, I, Q, R), then from model (7)-(12), it follows:

dx

dt
= F − V ,

where,
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Suppose,

x = (E, I, Q), from system model (7)-(12), where: dx
dt

= F − V , where

F =

 βe−mI(1− E − I −Q−R)I

0

0


and

V =

 ξE + E
N
− δ1EI − δ2EQ

−ξE + I
N
+ Λ1I + δ1I − δ1I

2 − δ2IQ

−δE + Q
N
+ Λ2I + δ2I − δ1IQ− δ2Q

2

 .

We have,

F = DF|E0 =

 0 0 β

0 0 0

0 0 0


and

V = DV|E0 =

 ξ + 1 0 0

−ξ 1 + Λ1 + δ1 0

−δ 0 1 + Λ2 + δ2

 .

The next generation matrix for the reproduction number of the model is given by

K = FV−1 =


βξ

(1+ξ)(1+δ1+Λ1)
β

1+δ1+Λ1
0

0 0 0

0 0 0

 .

R0 denotes the basic reproduction number, which is explained as the radius of spectral
of the matrix of next generation K = FV−1, which is, R0 = ρ(FV−1). Hence, R0 for
model system (7)-(12) is given by,

R0 =
βξ

(1 + ξ)(1 + δ1 + Λ1)
. (13)

3.2. Interior Equilibrium Points
Further, the system (7)-(12) has an endemic equilibrium which is given by,

Ē = (E∗, I∗, Q∗, R∗, N∗),

where,

E∗ =
1 + δ1 + Λ1

ξ
I∗,



1226 Smriti Agrawal, Nimisha Mishra

Q∗ =
δ(1 + δ1 + Λ1)

ξ(1 + δ2 + Λ2)
I∗,

R∗ =
Λ1 +

Λ2δ(1+δ1+Λ1)
ξ(1+δ2+Λ2)

1 + θ
I∗,

N∗ =
1

1 + δ1I∗ +
δ2δ(1+δ1+Λ1)
ξ(1+δ2+Λ2)

I∗,

The solution of the equation the value of I∗ is given by,

emI∗

R0

= 1−

(
1 +

1 + δ1 + Λ1

ξ
+

δ(1 + δ1 + Λ1)

ξ(1 + δ2 + Λ2)
+

Λ1 +
Λ2δ(1+δ1+Λ1)
ξ(1+δ2+Λ2)

1 + θ

)
I∗. (14)

Figure 2: EE not exists for values of parameters β̃ = 1,m = 2.3,R0 = 0.4545 < 1.
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Figure 3: EE exists for values of parameters β̃ = 8,m = 2.3, R0 = 3.6363 > 1.

3.3. Local Stability Analysis of Disease-free and Endemic Equilibrium
In this subpart of the chapter, we analyze the local stability of the system (7)-(12) for
both the states endemic and disease-free equilibria which are analyzed as following:

3.3.1 Local stability of disease-free equilibrium

The matrix of variational at disease-free equilibrium is shown by,

J0 =


−1− ξ β 0 0 0

ξ −1− δ1 − Λ1 0 0 0

δ 0 −1− δ2 − Λ2 0 0

0 Λ1 Λ2 −1− θ 0

0 −δ1 −δ2 0 −1

 . (15)

The characteristic equation of J0 is shown by,

(1 + λ)(1 + θ + λ)(Λ2 + δ2 + 1 + λ)

λ2 + λ(2 + ξ + Λ1 + δ1) + (ξ + 1)(Λ1 + δ1 + 1)(1−R0) = 0.
(16)
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Clearly, the all five eigen values have real negative parts of J0, if R0 < 1 and the four
eigen values have real negative parts and only one eigen value has real positive part of
J0, if R0 > 1. therefore, the disease-free equilibria is unstable, if R0 > 1 and locally
asymptotically stable, if R0 < 1.

3.3.2 Local stability of endemic equilibrium

The bifurcation parameter’s critical value β at the R0 = 1 is β∗ = (1+ξ)(1+δ1+Λ1)
ξ

. This
can easily satisfied the J0 at β = β∗ has one right eigenvector which is shown by:

W = (w1, w2, w3, w4, w5)
T ,

where,

w1 = 1 + δ1 + Λ1, w2 = ξ, w3 =
δ(1 + δ1 + Λ1)

1 + δ2 + Λ2

,

w4 =
1 + δ1 + Λ1

1 + θ
[

Λ1ξ

1 + δ1 + Λ1

+
Λ2δ

1 + δ2 + Λ2

],

w5 = −(1 + δ1 + Λ1)[
δ1ξ

1 + δ1 + Λ1

+
δ2δ

1 + δ2 + Λ2

].

Further, the left eigenvector components are,

V = (v1, v2, v3, v4, v5),

must be verify the given equalities V.J0 = 0 and V.W = 1, thus, we have conclude,

v1 =
1

2 + ξ + δ1 + Λ1

, v2 =
ξ + 1

ξ(2 + ξ + δ1 + Λ1)
, v3 = v4 = v5 = 0,

The non-zero partial derivatives of F = (f1, f2, f3, f4)
T at the disease-free equilibria

and β = β∗ is shown as

∂2f1
∂E∂I

=
∂2f1
∂I∂E

= δ1−
(1 + ξ)(1 + δ1 + Λ1)

ξ
,

∂2f1
∂E∂Q

=
∂2f1
∂Q∂E

= δ2,
∂2f1
∂E∂N

=
∂2f1
∂N∂E

= 1,

∂2f1
∂I2

=
−2(1 +m)(1 + ξ)(1 + Λ1 + δ1)

ξ
,

∂2f1
∂R∂I

=
∂2f1
∂I∂R

=
∂2f1
∂I∂Q

=
∂2f1
∂Q∂I

= −β,
∂2f2
∂I2

= 2δ1,

∂2f2
∂I∂Q

=
∂2f2
∂Q∂I

= δ2,
∂2f2
∂I∂N

=
∂2f2
∂N∂I

= 1,
∂2f3
∂Q∂N

=
∂2f3
∂N∂Q

= 1,
∂2f3
∂I∂Q

=
∂2f3
∂Q∂I

= δ1,
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∂2f3
∂Q2

= δ2,
∂2f4
∂R∂N

=
∂2f4
∂N∂R

= 1,
∂2f4
∂I∂R

=
∂2f4
∂R∂I

= δ1,
∂2f4
∂Q∂R

=
∂2f4
∂R∂Q

= δ2,

∂2f5
∂I∂N

=
∂2f5
∂N∂I

= −δ1,
∂2f5
∂Q∂N

=
∂2f5
∂N∂Q

= −δ2,
∂2f1
∂I∂β

= 1.

Here we used x1 ≡ E, x2 ≡ I, x3 ≡ Q, x4 ≡ R, x5 ≡ N . Thus, we get

a =
5∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0)

= v1[2w1w2δ1 −
(1 + ξ)(1 + δ1 + Λ1)

ξ
+ 2w1w3δ2 + 2w1w5 + 2w2w2

−2(1 +m)(1 + ξ)(1 + Λ1 + δ1)

ξ
+ 2w2w4(−β) + 2w2w3(−β)]

+v2[2w2w5 + 2w2w2(2δ1) + 2w2w3δ2]

=
−2(1 + δ1 + Λ1)

(2 + ξ + δ1 + Λ1)(δ2 + Λ2 + 1)
[ξ(Λ1 + 1) + (1 + δ2δ + δ2ξ + δξ + δ)(δ1 + Λ1 + 1)

+ξ(Λ2δ1 + δ1δ2 + δ1 + δδ2) +
1

δ1 + Λ1 + 1
δ1(δ2 + Λ2 + 1)(ξ2 + 3ξ + 2)

+(ξ2 + ξ)δ2(δ1 + Λ1 + 1) +
1

1 + θ
2ξ(ξ + 1)(1 +m)(δ2 + Λ2 + 1)(1 + θ) + (1 + ξ)(δ2 + Λ2 + 1)ξΛ1 + (ξ + 1)(δ2 + Λ2 + 1)δΛ2],

(17)

b =
5∑

k,i=1

vkwi
∂2fk
∂xi∂ϕ

(0, 0)

= v1w2

=
ξ

2 + δ1 + ξ + Λ1
. (18)

Since a < 0 and b > 0 at β = β∗, hence, there is a bifurcation which is transcritical
happens at R0 = 1 and unique pandemic equilibria is Locally Asymptotically Stable at
R0 > 1.

3.4. Global stability analysis of disease-free equilibrium
Under this part, we analyze the global stability of the disease-free equilibrium. Let us
consider that the death rate induced by disease δ1 = δ2 = 0, then dN

dt
= 1 − N . In the

case of limiting, we have N(t) → 1, as t → ∞. Hence, the model system which is
reduced is shown as:
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dE

dt
= βe−mI(1− E − I −Q−R)I − (1 + ξ)E, (19)

dI

dt
= ξE − (1 + Λ1)I, (20)

dQ

dt
= δE − (1 + Λ2)Q, (21)

dR

dt
= Λ1I + Λ2Q− (θ + 1)R (22)

and the modified R0 is R0 =
βξ

(ξ+1)(1+Λ1)
.

Let Z = (E, I, Q), X = (R), here Q0 = (R0, 0), where R0 = 0. We have
dX
dt

= F (X, Z) = Λ1I + Λ2Q − (θ + 1)X. At R = R0, G(X, 0) = 0. Now
dX
dt

= F (X, 0) = −(θ + 1)X , as t → ∞, X → X0. Thus, X = X0(= R0 = 0) is
g.a.s. Now, G(X, Z) = BZ − Ĝ(X, Z)

=

 −1− ξ β 0

ξ −1− Λ1 0

δ 0 −1− Λ2


 E

I

Q

−

 βI(1− e−mI) + βIe−mI(E + I +Q+R)

0

0

 .

This may be easily satisfied that matrix

B =

 −1− ξ β 0

ξ −1− Λ1 0

δ 0 −1− Λ2

 .

is a M-matrix and Ĝ(X, Z) =

 βI(1− e−mI) + βIe−mI(E + I +Q+R)

0

0

 ≥ 0.

Therefore, it verifies both the condition, thus the disease-free equilibrium E0 is globally
asymptotically stable if R0 < 1.

3.5. Uniform Persistence
The system (7)-(12) is said to be uniformly-persistent if there exists a constant c such
that any solution (S(t), E(t), I(t), Q(t), R(t)) satisfies

lim inf
t→∞

S(t) ≥ c, lim inf
t→∞

E(t) ≥ c, lim inf
t→∞

I(t) ≥ c, lim inf
t→∞

R(t) ≥ c

provided that (S(0), E(0), I(0), Q(0), R(0)) ∈ Γ.

Similarly as in [12], the system (7)-(12) is uniformly-persistent in Γ if and only if
R0 > 1. Since, the necessity of R0 > 1 follows from global stability of disease-free
equilibrium and the fact that the asymptotical stability of E0 precludes any kinds of
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Table 2: Parametric values which are used for the numerical simulation of the model
system (7)-(12)

Parameters Values
Λ 0.4
β̃ [1,8]
m 2.3
µ̃ 0.005
δ̃ 0.8
ξ̃ 1
Λ̃1 0.09
Λ̃2 0.04
θ̃ 0.01
δ̃1 0.01
δ̃2 0.001

persistence. The sufficiency of the condition R0 > 1 follows from a uniform persistence
result. Now, we demonstrate that the system (7)-(12) satisfies all the conditions, when
R0 > 1, let X = R4 and E = Γ. The maximal invariant set N on the boundary ∂Ω is
the singleton {E0} and is isolated. Thus hypothesis (H) of holds for system (7)-(12).
Therefore, in the setting of (7)-(12), the necessary and sufficient condition for uniform
persistence is equivalent to E0 being unstable.

4. NUMERICAL SIMULATION

In this section, with the help of ODE solver Matlab we perform the numerical
simulation, to verify the analytical findings of previous sections. The parametric values
used for numerical simulation of the model system for infectious disease are listed in
Table 2 taking unit time in days.

now, we can suppose following cases:

Case (a): When m = 2.3 and β̃ = 1, then R0 = 0.909091 < 1 and disease-free
equilibrium is Globally Asymptotically Stable which is given in Figure 4, which
is according to the results in ??.

Case (b): When m = 2.3 and β̃ = 8, then R0 = 3.63636 > 1 and pandemic
equilibrium is locally asymptotically stable which in shown in Figure 5, which
is according to result in ??.
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Figure 4: Scaled population in scaled-time’s variation, taking m = 2.3 and β̃ = 1 with
R0 = 0.4545 < 1.

Figure 5: Scaled population in scaled-time’s variation, taking m = 2.3 and β̃ = 8 with
R0 = 3.6363 > 1.
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Figure 6: Effect of the m on I at β̃ = 1 with R0 = 0.4545 < 1.

Table 3: The sensitivity indices, ΥRC
yj

= ∂RC

∂yj
× yj

RC
, of RC to the parameters, yj for

parameteric values given in Table 2
Parameter (yj) Sensitivity index of RC w.r.t. yj ( ΥRC

yj
)

β +1.000
ξ +0.5000
δ1 -0.00909091
Λ1 -0.0818182

The effect of m on the fraction of infectious and quarantine individuals (I) and (Q) is
given in Figure 6 and Figure 7 taking same values of parameters as in cases (a) and (b),
respectively with the different values of m.

5. SENSITIVITY ANALYSIS

In this part, we analyze the sensitivity analysis of effective reproduction number RC

and endemic equilibrium taking parametric values given in Table 2. The normalized
sensitive indices of RC the effective reproduction number with respect to all parameters
are shown in 5

From the Table 3.3, we can observe that β and ξ have positive impact on RC and
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Figure 7: Effect of the m on I at β̃ = 8 with R0 = 3.6363 > 1.

remaining parameters have negative impact. Again, the parameters β and δ are most
sensitive to RC , hence we can see that significant change in RC by small changes in
these parameters.

Now, we analyze a sensitivity analysis of state variables at endemic equilibrium on
model system parameters. Sensitivity indices of state variables at endemic steady state
are shown in Table 3.4 using parametric values shown in Table 2.

6. RESULTS AND DISCUSSION

The media is broadly recognized as a critical device for affecting individuals practices
towards the sickness to devise appropriate strategies for controlling the scourge.
Awareness programs through media cause individuals to know about the sickness and
play it safe to lessen their odds of being tainted. In this paper, a non-linear SEIQRS
mathematical model has been proposed and broke down to contemplate the impacts
of awareness programs driven by the media on the spread of irresistible sicknesses in
a variable population. It has been viewed as that the development pace of aggregate
thickness of awareness programs is relative to the number of infectives. It has been
accepted further that awareness causes some susceptibles to confine themselves from
infectives shaping a different subclass in the population. The model has shown that
the disease-free equilibrium is steady until, the basic reproduction number, R¡1. The
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Table 4: The sensitivity indices, Υxi
yj
= ∂xi

∂yj
× yj

xi
, of state variables, xi, at EE with respect

to all the parameters, yj , for parameter values shown in Table 2
yj ΥE∗

yj
ΥI∗

yj
ΥQ∗

yj
ΥR∗

yj
ΥN∗

yj

β 23.0000 23.0000 23.0000 23.0000 -0.00355
ξ 11.1450 12.1450 11.1450 11.8719 0.85298
δ -0.28645 -0.28645 0.71354 -0.01335 0.28648
δ1 -0.20586 -0.20586 -0.20586 -0.20338 -0.00355
δ2 0.00027 0.00027 -0.00068 0.00001 0.01484
θ 0.00039 0.00039 0.00039 -0.00950 0.00950
Λ1 -1.88182 -1.88182 -1.88182 -1.13257 0.16393
Λ2 0.00009 0.00009 -0.03833 0.26270 0.11518
m -0.35140 -0.35140 -0.35140 -0.35140 +0.01520

DFE becomes temperamental for R¿1, which prompts the presence of an endemic
equilibrium. The investigation shows that an endemic equilibrium is locally just as
non-linearly stable under specific conditions. The model examination further shows that
awareness programs through the media battling are useful in diminishing the spread of
irresistible sicknesses by confining a fraction of susceptibles from infectives.
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