
Advances in Dynamical Systems and Applications.

ISSN 0973-5321, Volume 16, Number 2, (2021) pp. 1303-1320

© Research India Publications

https://www.ripublication.com/adsa.htm

Oppositional Learnt Multi-Objective Dragonfly

Resource Optimized Dynamic Task Scheduling in Cloud

S.Tamilsenthil 1 and Dr. A. Kangaiammal2

Ph.D Research Scholar (Part Time), PG & Research Dept of Computer Science,
Government Arts College (Autonomous), Salem-7, India.

Assistant Professor, Dept of Computer Science, Padmavani Arts and Science College
 for Women, Salem-11, India.

Assistant Professor, Dept of Computer Applications, Government Arts College
 (Autonomous), Salem-7, India.

Abstract

Cloud Computing is the service provider model in which users submit their

requests to the server for execution. The cloud server schedules a variety of

requests and handles the resources efficiently. Scheduling becomes a

significant task in the cloud framework. Many scheduling algorithms have

been proposed in literature, but the time consumption and efficiency for

scheduling is a major problem. Therefore, an efficient algorithm is needed to

improve scheduling efficiency and reduced time consumption. A novel

technique called Oppositional Learnt Multi-objective Dragonfly Resource

Optimized Dynamic Task Scheduling (OLMDRODTS) is proposed with the

aim of increasing the efficiency and minimizing the time consumption. The

user dynamically submits multiple heterogeneous tasks to the cloud server.

The task scheduler in the cloud receives the incoming tasks and determines the

resource-efficient virtual machine for the scheduling process. The

Oppositional Learnt Multi-objective Dragonfly Optimization is used to find an

efficient virtual machine based on the different resources such as CPU time,

memory, bandwidth, and energy. By applying the optimization technique,

first, the population of the virtual machine is initialized. Based on the multiple

objective functions, the fitness is computed for each virtual machine in the

cloud server. The virtual machine with maximum resource availability is

chosen as a global optimum than the others. Then the scheduler assigns the

user-requested tasks to the resource-efficient virtual machine to minimize the

job response time and overhead. Experimental evaluation is conducted in

CloudSim simulator using a personal cloud dataset with different performance

metrics such as task scheduling efficiency, false-positive rate, computation

mailto:stalinsenthil@gmail.com

1304 S.Tamilsenthil and Dr. A. Kangaiammal

overhead, and memory consumption with respect to the number of user-

requested tasks. The observed results indicate that the proposed

OLMDRODTS technique outperforms well for achieving the higher task

scheduling efficiency with lesser computation overhead, false-positive rate as

well as memory consumption.

Keywords: Cloud; Task Scheduling; Resource Optimization; Oppositional

Learning; Multi-objective Dragonfly Optimization.

1. INTRODUCTION

Cloud Computing is a type of distributed technology that provides various

computational services such as storage services and other web-based applications.

With the increasing operation of data centers around the world, cloud computing is a

significant paradigm for large-scale applications. However, these cloud environments

face lots of challenges including resource optimized task scheduling.

A Chaotic Squirrel Search Algorithm (CSSA) was introduced in [1] for multitask

scheduling with efficient resource utilization. But the designed CSSA optimization

algorithm failed to find the greatest compromise solution with minimum time. A new

Harmony-Inspired Genetic Algorithm (HIGA) was designed in [2] for energy-

efficient task scheduling on the cloud data center. Through the algorithm reduces the

makespan and execution overhead, the scheduling efficiency was not improved.

An improved task scheduling method was introduced in [3] to increase the efficiency

and minimize the resource utilization. But the optimization technique was not applied

to solve the multi-objective problems. An Improved Particle Swarm Optimization

(PSO) algorithm was designed in [4] to minimize the job completion time. The

designed algorithm reduces the makespan but the fault tolerance was not achieved.

An Estimation of Distribution Algorithm and GA (EDA-GA) was developed in [5] to

efficiently minimize the task completion time and improve the load balancing

capability. However, the algorithm failed to solve multi-objective problems. An

Enhanced Multi-Verse Optimizer (EMVO) algorithm was developed in [6] to improve

the task scheduling efficiency with better resource utilization. However, the algorithm

failed to perform dynamic task scheduling with multiple tasks.

An efficient map-reduce framework and Genetic Algorithm based Whale

Optimization Algorithm (GA-WOA) was introduced in [7] for efficient task

scheduling with minimum time. However, the energy-based task scheduling remained

unaddressed. The Metaheuristics Whale Optimization Algorithm (WOA) was

developed in [8] for task scheduling with a multi-objective optimization to improve

the performance of a cloud system. But the algorithm failed to reduce the scheduling

overhead in the presence of large workloads. A Particle Swarm Optimization (PSO)

algorithm based task scheduling was performed in [9] to reduce the makespan. But,

the proposed PSO-based scheduler failed to schedule the workflow with multiple

optimization objectives in the cloud environment.

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized… 1305

 A Multi-Criteria Decision-Making method was introduced in [10] for energy-

efficient task-scheduling with lesser resource utilization. The designed method failed

to analyze the efficiency of the proposed task scheduling method. A stochastic

approximation approach was introduced in [11] for task scheduling to decrease the

response time as well as makespan and also increases resource efficiency. However,

the overhead was not minimized.

AQ-learning based Task Scheduling approach was developed in [12] for energy-

efficient cloud computing and minimizing the task response time. But the approach

failed to further evaluate the scheduling approach in large scale cloud environments.

A Crow–Penguin Optimizer was introduced in [13] for task scheduling based on

multiple objective functions to minimize the execution time and makespan. But the

scheduling efficiency was not improved.

A Directed Acyclic Graph (DAG) based tasks scheduling was performed in [14] to

reduce the overall makespan and task execution time. But the approach failed to

perform the dynamic scheduling and it also failed to consider the energy consumption

of task scheduling. A Cuckoo Search (CS) and Particle Swarm Optimization were

developed in [15] to schedule the tasks to a virtual machine with lesser makespan.

However, the algorithm failed to optimize multiple resources.

 A Multi-Faceted Optimization Scheduling Framework (MFOSF) was developed in

[16] for task scheduling with lesser resource utilization. But the framework was not

efficient to perform the scheduling with minimum overhead. A Resource-Constrained

Task Scheduling algorithm was designed in [17]. However, the algorithm failed to

consider the resource utilization and energy consumption of task scheduling in the

cloud.

An Energy-Aware, Time, and Throughput Optimization Heuristic Algorithm was

introduced in [18] for cloud environments to address the multi-objective optimization.

But the algorithm failed to support the memory and bandwidth for solving the multi-

objective optimization.

A new Hybrid Bio-Inspired Algorithm was introduced in [19] for task scheduling with

lesser resource utilization. The designed algorithm failed to perform dynamic

scheduling in the cloud environment. In order to dynamically schedule the tasks with

minimum execution time, a deep Reinforcement Learning Architecture (RLTS) was

introduced in [20]. However, the architecture failed to consider the multi-objective

task scheduling problem.

The above-said issues are addressed by introducing a novel technique called

OLMDRODTS. The overall contribution of the OLMDRODTS is summarized as

given below,

 To improve the task scheduling efficiency, the OLMDRODTS technique is

introduced for finding the resource-efficient virtual machine in the cloud. The

oppositional learning concept is applied in the multi-objective dragonfly

optimization for selecting the optimum virtual machine through the fitness

evaluation based on the CPU time, bandwidth, energy, and memory. Then the

1306 S.Tamilsenthil and Dr. A. Kangaiammal

scheduler dynamically assigns the incoming tasks to the global best virtual

machine for completing the certain task.

 To reduce the false-positive rate, Multi-Objective Dragonfly optimization uses the

oppositional learning concept for generating the opposite population with the

current population to achieve fault tolerance. This helps to find the global

optimum for scheduling the tasks.

 To minimize the computation overhead, the OLMDRODTS technique uses the

ranking method to find the local optimum from the current and opposite

population of the virtual machine. The local optimum virtual machine is selected

from the population-based fitness calculation. This helps to minimize the time

taken to find the global optimum as well as task scheduling time.

 Finally, an extensive experiment is conducted to evaluate the performance of our

OLMDRODTS technique and related works. The observed result demonstrates

that our OLMDRODTS technique outperforms well than the other optimization

methods

1.1. Organization of Paper

The paper is organized into five different sections. Section 2 describes the

OLMDRODTS technique for resource-efficient task scheduling in the cloud. In

section 3, experimental evaluation is conducted with a dataset and the performance of

various metrics is discussed in section 4. Finally, section 5 provides the conclusion of

the work.

2. METHODOLOGY

In cloud computing, task scheduling is a process in which user transmitted tasks that

needs to be executed to the available resources through the internet. To satisfy the

user requirements and application requirements, the cloud service provider uses a

resource allocation policy for particular tasks. The cloud service provider needs to

know about how much as well as which types of resources, the status of each resource

required to complete a particular task. When the user submits the task, the cloud

scheduler identifies the best virtual machine with an optimized resource to fit the task

from the available resources. Then the allocation of resources for the submitted tasks

is done through the task scheduler. Finally, the task is executed with the minimum

response time. Based on this concept, a novel OLMDRODTS technique is proposed.

2.1. Network Model

The cloud computing architecture is designed based on the following network model.

The architecture comprises ‘n’ independent tasks,

`𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛} dynamically generated from the various users

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized… 1307

`𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑚} arrived in the queue and task scheduler ‘𝑇𝑆’ schedules a

set of ‘𝑏’ virtual machines

`𝑉𝑚 = {𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏} in a cloud server.

Figure 1 demonstrates the architecture of the proposed OLMDRODTS technique to

schedules multiple heterogeneous tasks into resource-efficient virtual machines in the

dynamic cloud environment. In the cloud, multiple users’ send their tasks to a cloud

server. After receiving the request from the cloud, the task scheduler in the cloud uses

the oppositional learnt Multi-objective dragonfly optimization to find the virtual

machine based on CPU, memory, bandwidth, and energy to schedule the tasks with

higher efficiency and lesser overhead. The process of the OLMDRODTS technique is

described in Section 2.2.

2.2. Oppositional Learnt Multi-objective Dragonfly Optimization

The proposed OLMDRODTS technique performs dynamic task scheduling using

Oppositional learnt Multi-objective dragonfly optimization. The cloud server consists

of a set of virtual machines for both computational and storage facilities. The Multi-

objective Oppositional Learnt Dragonfly Optimization is the meta-heuristic technique

employed to find an precisely good solution in the optimization problem. Multi-

objective represents the proposed optimization technique algorithm solves the

multiple objective functions such as CPU, memory, bandwidth, and energy. On the

contrary to existing optimization, the proposed technique uses oppositional based

learning concept to achieve the global best solution among the population with

minimum time consumption. Besides, the oppositional based learning optimization

algorithm increases the convergence speed, flexibility, error tolerance, and higher

accuracy.

The behavior of the dragonfly is moving and seeking its food source. Here the

dragonfly is related to the number of virtual machines and the food source is related to

Fig. 1. Architecture of proposed OLMDRODTS technique.

1308 S.Tamilsenthil and Dr. A. Kangaiammal

multi-objective functions i.e. CPU, memory, bandwidth, and energy. The proposed

optimization algorithm worked based on the population (called a swarm). Initialize

the population of the dragonfly (i.e. virtual machines) and are moved around in the

search space.

Initialize the population of the virtual machines in the search space as in Equation 1.

𝑄 = {𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏} (1)

Where ‘𝑄’ indicates a current population of the virtual machines𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏.

By applying the opposition based learning concept, the proposed technique generates

the opposite population with the current population to achieve a global best solution.

The opposition population generation is given in Equation 2.

 𝑄′ = 𝑚𝑖 + 𝑛𝑖 − 𝑄 (2)

Where, 𝑄′denotes an opposite population generation based on the current population

‘𝑄’, 𝑚𝑖 and 𝑛𝑖indicates a minimum and maximum value of the dimensions in the

current population ‘𝑄’. Therefore, the current and the opposite population are

generated in the search space. After the population generation, the multiple objective

functions are computed for each dragonfly (i.e. virtual machine) in the current as well

as the opposite population. The multiple objective functions such as availability of

CPU, memory, bandwidth, and energy are calculated. Initially, the CPU is measured

as the amount of time consumed by the virtual machine to complete a certain task.

Therefore, the availability of CPU is estimated as given in Equation 3,

 𝐶𝑃𝑈𝐴𝑉𝐿 = [𝐶𝑃𝑈𝑇] − [𝐶𝑃𝑈𝑐𝑑] (3)

From (3), 𝐶𝑃𝑈𝐴𝑉𝐿 indicates the 𝐶𝑃𝑈 availability of the virtual machine, 𝐶𝑃𝑈𝑇

denotes a total 𝐶𝑃𝑈 time of 𝑉𝑚, 𝐶𝑃𝑈𝑐𝑑 represents as consumed time of 𝑉𝑚 to

complete the particular task. Then the memory availability of the virtual machine is

measured as in Equation 4.

𝑀𝑎𝑣𝑙 = [𝑀𝑇] − [𝑀𝑢𝑡] (4)

Where, 𝑀𝑎𝑣𝑙represents the memory availability of the virtual machine, 𝑀𝑇represents a

total memory of a virtual machine,𝑀𝑢𝑡 indicates a utilized memory space of a virtual

machine. The bandwidth availability of the ‘ 𝑉𝑚’ is calculated as given in Equation 5,

𝐵𝑎𝑣𝑙 = [𝐵𝑇] − [𝐵𝑢𝑡] (5)

Where, 𝐵𝑎𝑣𝑙indicates an available bandwidth of 𝑉𝑚, 𝐵𝑇indicates a total

bandwidth,𝐵𝑢𝑡represents an amount of bandwidth consumed by the 𝑉𝑚. At last, the

energy availability of the virtual machine is calculated as given in Equation 6,

EAVL = [ET] − [EC] (6)

From (6), 𝐸𝐴𝑉𝐿 indicates residual energy of the virtual machine, 𝐸𝑇 indicates a total

energy, 𝐸𝐶 denotes consumed energy. Based on the above-calculated resource

availability, the fitness is measured as given in Equation 7.

𝜑𝐹 = arg max{(𝐶𝑃𝑈𝐴𝑉𝐿)&&(𝑀𝐴𝑉𝐿)&&(𝐵𝑎𝑛𝑑𝐴𝑉𝐿)&& (𝐸𝐴𝑉𝐿)} (7)

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized… 1309

Where, 𝜑𝐹 denotes a fitness function, arg max({}indicates an argument of maximum

function. After the fitness estimation, the current and opposite populations are

combined into one and rank the dragonflies according to their fitness value. The

virtual machine (𝑉𝑚) has maximum resource availability is ranked first than the

others as per Equation 8.

𝑉𝑚 = 𝜑𝐹(𝑉𝑚1) > 𝜑𝐹(𝑉𝑚2) > … > 𝜑𝐹(𝑉𝑚𝑏) (8)

Finally, ‘n’ best virtual machines are selected from the combination to find the global

best solution. In order to find the global best dragonfly in the search space, four

different processes are employed such as separation, alignment, cohesion, and

attraction towards the food source based on their fitness. Initially, the separation

process is executed to find the current position of the dragonfly and its neighboring

position using Equation 9.

𝛼 = − ∑ (𝑝 (𝑡) − 𝑝𝑗 (𝑡))𝑚
𝑗=1 (9)

From (9), ‘𝛼’ indicates a separation process, 𝑝 (𝑡) indicates a current position of a

virtual machine at a time ‘𝑡’, 𝑝𝑗 (𝑡) indicates a position of the neighboring virtual

machine at a time ‘𝑡’, ‘m’ indicates a number of neighboring dragonflies. Secondly,

the alignment process is carried out by matching the movement velocity of

dragonflies and their neighborhood based on Equation 10

 𝛽 = ∑
𝑣𝑗 (𝑡)

𝑚
 𝑚

𝑗=1 (10)

From (10),𝛽indicates an alignment, 𝑣𝑗 (𝑡)represents a velocity of ‘neighboring

dragonflies, ′𝑚’ indicates a number of neighboring dragonflies. The third process is

cohesion which is thetendency of dragonflies moving towards the middle of the mass

of their neighborhood as per Equation 11.

𝛾 = ∑
𝑝𝑗(𝑡)−𝑝(𝑡)

𝑚

𝑚
𝑗=1 (11)

From (11), ‘𝛾’denotes a cohesion of the dragonfly,𝑝𝑗 (𝑡)be the position of the

‘neighboring dragonfly, 𝑝(𝑡)represents a position of a current dragonfly, 𝑚denotes

the number of neighborhoods. Finally, the attraction towards food source is estimated

as given in Equation 12,

 𝜔 = 𝑝𝐹(𝑡) − 𝑝(𝑡) (12)

Where, 𝜔indicates an attraction function, 𝑝𝐹(𝑡)indicates the position of the food

source, 𝑝(𝑡)indicates the current position of a dragonfly. Finally, the position of the

dragonfly gets updated to find the global best solution based on Equation 13.

𝑝𝑡+1 = 𝑝(𝑡) + ∇𝑝𝑡+1 (13)

From (13),𝑝𝑡+1stand for the updated position of the dragonfly, 𝑝(𝑡)is the dragonfly

current position, ∇𝑝𝑡+1indicates the step vector used to find the movement direction

of the dragonfly as in Equation 14.

∇𝑝𝑡+1 = {𝑏1𝛼 + 𝑏2𝛽 + 𝑏3𝛾 + 𝐹𝜔 } + 𝑊 ∗ 𝑝(𝑡) (14)

1310 S.Tamilsenthil and Dr. A. Kangaiammal

Where,𝑏1designates a weight of separation (𝛼), 𝑏2indicates a weight of alignment 𝛽,

𝑏3denotes a weight of cohesion 𝛾, ‘𝐹’represents a food vector, 𝜔indicates an

attraction towards a food source, ‘𝑊’indicates an inertia weight used to controls the

convergence behavior of optimization, 𝑝(𝑡) represents a current position of the

dragonfly at time ‘t’. As a result, the global best dragonfly is identified from the

updated position of the dragonfly. After identifying the global best virtual machine,

the scheduler assigns the incoming user-requested task with higher efficiency. The

algorithmic process of the proposed OLMDRODTS technique is described as given

below,

\\ Algorithm 1: Oppositional learnt Multi-objective dragonfly Resource Optimized

Dynamic Task Scheduling

Input: users ‘𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑚} ; Requestedtasks 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛}’,

 virtual machines ‘𝑉𝑀 = {𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏}’, task scheduler ‘𝑇𝑆 ‘

Output: Improve the task scheduling efficiency

Begin

Step 1: Collect the number of requestedtasks ‘𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛} from users

‘𝑢1, 𝑢2, … , 𝑢𝑚‘

Step 2: for each ‘𝑇’

Step 3: Initialize the virtual machine populations of𝑄 = {𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏}

Step 4: Initialize the opposite population of dragonfly𝑄′

Step 5: For each ‘𝑉𝑚’ in 𝑄 and 𝑄′

Step 6: Compute multiple objective functions 𝑀𝐴𝑉𝐿, 𝐵𝐴𝑉𝐿,𝐶𝑃𝑈𝐴𝑉𝐿,𝐸𝐴𝑉𝐿

Step 7: Measure the fitness ‘𝜑𝐹′

Step 8: End for

Step 9 Combines two populations

Step 10: Rank the virtual machines𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏

Step 11: Select local optimum’

Step 12:Calculate 𝛼, 𝛽, 𝛾, 𝜔

Step 13:If (𝜑𝐹𝑖
> 𝜑𝐹𝑗

)then

Step 14: Update the position of the dragonfly

Step 15: End if

Step 16: If (max_ iter is reached) then

Step 17: Obtain global best dragonfly

Step 18: else

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized… 1311

Step 19: Go to step 7

Step 20:End if

Step 21: Task Scheduler allocates the tasks to the optimal virtual machine

Step 22: End for

End

Algorithm 1 expresses the step by step process of Dynamic Task Scheduling using

Oppositional learnt Multi-objective dragonfly optimization. At first, initializes the

populations of the current and opposite populations of virtual machines. The fitness is

calculated for each virtual machine in the current and opposite population-based on

multiple objective functions. After that, two populations are combined and rank the

dragonfly based on their fitness value. Finally, a local optimum solution is selected

for further processing. Based on the fitness estimation, four different processes

namely separation, alignment, cohesion, and attraction towards the food source are

estimated. Finally, the position of the dragonfly gets updated and finds an optimal

solution. Then the scheduler assigns the incoming tasks into the resource optimized

virtual machine with higher efficiency.

3. EXPERIMENTAL SETUP

In this section, experimental evaluation of the proposed OLMDRODTS technique and

existing CSSA [1] and HIGA [2] are implemented in the JAVA platform using

CloudSim simulation. In order to conduct the experiments, the Personal Cloud

datasets are taken from http://cloudspaces.eu/results/datasets. This dataset includes17

attributes (i.e. columns) and it includes 66245 instances. The main aim of this dataset

is to perform load and transfer tests. The 17 attributes are row id, account id, file size

(i.e. task size), operation_time_start, operation_time_end, time zone, operation_id,

operation type, bandwidth trace, node_ip, node_name, quoto_start, quoto_end,

quoto_total (storage capacity), capped, failed and failure info. Among the 17

columns, two columns are not used such as time zone and capped. With this available

informations, the user requested tasks are scheduled to the resource-efficient virtual

machines in the cloud data center.

4. PERFORMANCE RESULTS AND DISCUSSION

In this section, the experimental results of the OLMDRODTS technique and two

existing methods namely CSSA [1] and HIGA [2] are discussed with various

performance metrics such as task scheduling efficiency, false-positive rate,

computation overhead, and memory consumption with respect to the number of user

tasks. The performance of proposed and conventional optimization techniques are

discussed using a table and graphical illustration in next section.

http://cloudspaces.eu/results/datasets

1312 S.Tamilsenthil and Dr. A. Kangaiammal

4.1. Task Scheduling Efficiency

Task scheduling efficiency is measured as the ratio of the number of tasks that are

correctly scheduled to the optimized virtual machines to the total number of tasks.

The task scheduling efficiency is measured as in Equation 15.

𝑇𝑆𝐸 = [
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑎𝑟𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑

𝑛
] ∗ 100 (15)

From (15), 𝑇𝑆𝐸 represents a task scheduling efficiency,‘𝑛’ indicates a total number

of user-requested tasks. The overall task scheduling efficiency is measured in terms

of percentage (%).

Table 1. Task scheduling efficiency

Number of User-

requested Tasks

Task Scheduling Efficiency (%)

CSSA HIGA OLMDRODTS

30 87 83 90

60 88 85 92

90 87 84 92

120 86 82 90

150 85 83 89

180 86 84 90

210 85 82 89

240 87 83 92

270 88 85 93

300 86 83 91

Table 1 summarizes the performance analysis of task scheduling efficiency using

different methods namely the OLMDRODTS technique and two existing methods

namely CSSA [1] and HIGA [2]. The observed results indicate that the

OLMDRODTS technique provides superior performance in terms of achieving higher

efficiency than the other methods. This is proved through the statistical analysis. In

the first run, 30 tasks are considered for conducting the experiments. By applying the

OLMDRODTS technique, 27 tasks are correctly scheduled to the resource optimized

virtual machine and their efficiency is90%. Whereas 26 and 25 tasks are correctly

scheduled using CSSA [1] and HIGA [2] and the efficiency are 87% and 83%

respectively. For each method, ten different results are obtained and the results are

compared. The comparison results indicate that the task scheduling efficiency of the

OLMDRODTS technique is increased by 5% when compared to [1] and 9% when

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized… 1313

compared to [2]. The graphical representation of the OLMDRODTS technique is

illustrated in figure 2.

Figure 2 illustrates the task scheduling efficiency with respect to 300 user-requested

tasks. These tasks dynamically arrived at the cloud server at different time. From the

figure, the efficiency of the OLMDRODTS technique and existing CSSA [1] and

HIGA [2] are represented by three different colors of cones such as green, blue, and

red. Among the three methods, the OLMDRODTS technique outperforms well for

achieving higher efficiency. This is because of the reason that the OLMDRODTS

technique uses the multi-objective optimization technique for finding the optimal

virtual machine. The multi-objective functions are CPU, bandwidth availability,

memory availability, and energy. The task scheduler in the cloud server finds the

global best solution among the population through fitness. The virtual machine with

maximum availability of the resources is selected as the global best for executing a

certain task. The scheduler assigns the tasks to a particular virtual machine with

higher efficiency.

4.2.False-Positive Rate

It is measured as the ratio of a number of user-requested tasks that are in accurately

scheduled to the total number of tasks taken as input. The formula for calculating the

false-positive rate is expressed as in Equation 16,

𝐹𝑃𝑅 = [
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑎𝑟𝑒 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑

𝑛
] ∗ 100 (16)

From (16),𝐹𝑃𝑅represents the false-positive rate, ‘𝑛’ represents the total number of

user-requested tasks. The false-positive rate is measured in percentage (%).

Fig. 2. Graphical Representation of Task Scheduling Efficiency

75

80

85

90

95

3
0

6
0

9
0

1
2
0

1
5
0

1
8
0

2
1
0

2
4
0

2
7
0

3
0
0

T
a

sk
 S

ch
ed

u
li

n
g

 E
ff

ic
ie

n
cy

(%
)

Number of User Requested Tasks

CSSA

HIGA

OLMDRODTS

1314 S.Tamilsenthil and Dr. A. Kangaiammal

Table 2: False-Positive Rate

Number of User-

Requested Tasks

False-Positive Rate (%)

CSSA HIGA OLMDRODTS

30 13 17 10

60 12 15 8

90 13 16 8

120 14 17 10

150 15 18 11

180 14 16 10

210 15 18 11

240 13 17 8

270 12 15 7

300 14 17 9

Table 2 portrays the performance results of false-positive rate according to the

number of user requests 30 to 300. The result indicates that the OLMDRODTS

technique minimizes the incorrect task scheduling in a cloud environment than the

other existing methods. By considering 30user-requested tasks for experimentation in

the first run, 3 tasks are incorrectly scheduled and the false positive rate is 10% using

the OLMDRODTS technique. Followed by, the 4 and 5user-requested tasks are

incorrectly scheduled using CSSA [1] and HIGA [2], and data false positive rate

percentages are 13% and 17% respectively. Totally, ten runs are observed for each

method with a different number of user tasks. Finally, the observed result of the

proposed OLMDRODTS technique is compared with the results of existing methods.

The average of comparison results indicates that the false positive rate of the

OLMDRODTS technique is minimized by32% and 45% when compared to CSSA [1]

and HIGA [2] respectively. The performance result of the false positive rate is shown

in figure 3.

Figure 3 given above demonstrates the comparative analysis of the false-positive rate

of incorrect task scheduling in the cloud. As revealed in the chart, the ‘horizontal axis

Fig. 3. Graphical Representation of the False-Positive Rate

0

5

10

15

20

30 60 90 120 150 180 210 240 270 300

F
a

ls
e

P
o

si
ti

v
e

R
a

te
 (

%
)

Number of User Requested Tasks

CSSA

HIGA

OLMDRODTS

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized… 1315

refers to the number of user-requested tasks and the vertical axis refers to the results

of the false-positive rate. From the graphical plot, it is inferred that the false-positive

rate of the OLMDRODTS technique is minimized than the other methods. This is

because the OLMDRODTS technique uses the oppositional learning concept to the

multi-objective dragonfly optimization for generating the opposite population along

with the current population to improve the fault tolerance. This process helps to find

the global optimum in the search space for assigning the tasks. Then the task

scheduler efficiently assigns the task to the virtual machine to minimize the false

positive rate.

4.3.Computation Overhead

Computation overhead is measured as a time taken to schedule the given tasks into the

resource optimized virtual machines. The computation overhead is measured using

the following equation 17.

𝐶𝑂 = 𝑛 ∗ 𝑡(𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑜𝑛𝑒 𝑡𝑎𝑠𝑘) (17)

From (17), ‘𝐶𝑂′ indicates a computation overhead, 𝑛’ indicates a total number of

tasks, and ‘𝑡’ denotes a time taken to schedule the single task. The computation

overhead is measured in milliseconds (ms).

Table 3: Computation Overhead

Number of User-

Requested Tasks

Computation Overhead (ms)

CSSA HIGA OLMDRODTS

30 22 24 19

60 24 27 22

90 27 30 25

120 31 34 29

150 35 36 32

180 37 39 35

210 40 42 38

240 43 46 41

270 46 49 44

300 50 52 47

Table 3 reports the performance of computation overhead using three different

methods namely the OLMDRODTS technique and two existing methods CSSA [1]

and HIGA [2] with respect to the number of users requested tasks. From the tabulated

results, it is inferred that the computation overhead using the OLMDRODTS

technique is comparatively lesser than the [1] and [2]. Initially, the experiment is

1316 S.Tamilsenthil and Dr. A. Kangaiammal

conducted with 30 tasks, OLMDRODTS technique consumes the time of 19𝑚𝑠 to

schedule the tasks. Similarly, the time consumption of the existing methods are 22𝑚𝑠

and 24𝑚𝑠. Likewise, the other remaining nine runs are carried out with different user-

requested tasks. The overall observed results indicate that the proposed

OLMDRODTS technique minimizes the computation overhead by 7% and 13% when

compared to existing methods. Figure 4 clearly illustrates the experimental results of

computation overhead versus a number of tasks. For each method, ten varieties of

results are observed. The time is found to be in the increasing trend for all the three

methods while increasing the number of tasks. But the results clearly show that the

computation overhead is found to be considerably minimized using the

OLMDRODTS technique as compared to existing scheduling techniques. This is due

to the application of oppositional learning concept and ranking to the Multi-objective

dragonfly optimization. The ranking method finds the local optimum from the

population. In order to perform the scheduling with more virtual machines, the

technique consumes more time. But the OLMDRODTS technique uses the ranking

method to sort the virtual machines based on the fitness. Finally, the global optimum

solution is determined from the local optimum. This process takes a minimum time

to find the resource-efficient virtual machine and it also reduces the scheduling time

of large number of tasks.

4.4.Memory Consumption

Memory consumption is the amount of memory space taken by the virtual machine to

schedule the user tasks. The overall memory consumption is estimated as given in

Equation 18.

 𝑀𝐶 = 𝑛 ∗ 𝑀 (𝑆𝑆𝑇) (18)

Where 𝑀𝐶 represents a memory consumption, ‘𝑛’ denotes a total number of user-

requested tasks, ‘𝑀 (𝑆𝑆𝑇)’ indicates the memory consumption to schedule the single-

user tasks and. Therefore, the overall memory consumption is measured in the unit of

megabytes (MB).

Fig. 4. Graphical Representation of Computation Overhead

0

10

20

30

40

50

60

30 60 90 120 150 180 210 240 270 300C
o

m
p

u
ta

ti
o

n
 O

v
er

h
ea

d
 (

m
s)

Number of User Requested Tasks

CSSA

HIGA

OLMDRODTS

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized… 1317

Table 4: Memory Consumption

Number of User-

Requested Tasks

Memory Consumption (MB)

CSSA HIGA OLMDRO

DTS

30 20 23 17

60 23 25 21

90 26 28 24

120 29 31 26

150 32 33 30

180 34 36 32

210 36 38 34

240 38 41 36

270 40 43 38

300 42 45 40

Table 4 and Figure 5 given describe the performance of memory consumption using

three different methods namely the OLMDRODTS technique and two existing

methods namely CSSA [1] and HIGA [2] with respect to the number of tasks. Among

the three methods, the OLMDRODTS technique consumed lesser memory space for

scheduling the given user request to the cloud server. Initially, the experiment is

conducted with 30tasks, OLMDRODTS technique consumes the 17𝑀𝐵memory space

during the scheduling process whereas the space consumption of the CSSA [1] and

HIGA [2] are 20𝑀𝐵 and 23𝑀𝐵 respectively. Similarly, the remaining nine runs are

carried out and the results are compared. The average of ten results indicates the

Fig. 5. Graphical Representation of Memory Consumption

0

10

20

30

40

50

30 60 90 120 150 180 210 240 270 300

M
em

o
ry

 c
o

n
su

m
p

ti
o

n
 (

M
B

)

Number of user requested tasks

CSSA

HIGA

OLMDRODTS

1318 S.Tamilsenthil and Dr. A. Kangaiammal

memory consumption of the OLMDRODTS technique is significantly reduced by 7%

and 14% when compared to existing [1] and [2] respectively. This is due to the

proposed technique discovers the resource optimized virtual machine to schedule the

multiple heterogeneous user tasks.

5. CONCLUSION

In this research work, an efficient technique called the OLMDRODTS technique is

introduced for energy-efficient task scheduling process and dynamic resource

allocation in cloud environments. In the proposed task scheduling technique, the

oppositional learning concept is applied in the Multi-objective dragonfly optimization

to find the global optimum resource-efficient virtual machine based on the CPU time,

memory, bandwidth, and energy. The resource optimized virtual machine is selected

based on the fitness measure. Finally, a task scheduler in a cloud server assigns the

incoming tasks to the resource optimized virtual machine. Then the virtual machine

executes the assigned tasks with the minimum response time. To evaluate the

performance of the OLMDRODTS technique and other scheduling techniques, a

personal cloud dataset is implemented in the cloudsim simulator four different

metrics. The statistical analysis indicates that the OLMDRODTS technique provides

better performance for dynamically scheduling a large number of tasks with higher

efficiency and minimum overhead as well as memory consumption than the state-of-

the-art works.

REFERENCES

[1] M.S.Sanaj, P.M.Joe Prathap, “Nature inspired chaotic squirrel search algorithm

(CSSA) for multi objective task scheduling in an IAAS cloud computing

atmosphere”, Engineering Science and Technology, an International Journal,

Volume 23, Issue 4, 2020, Pages 891-902

[2] Mohan Sharma and Ritu Garg, “HIGA: Harmony-inspired genetic algorithm for

rack-aware energy-efficient task scheduling in cloud data centers”, Engineering

Science and Technology, an International Journal, Elsevier, Volume 23, Issue 1,

2020, Pages 211-22.

[3] J. Praveenchandar and A. Tamilarasi, “Dynamic resource allocation with

optimized task scheduling and improved power management in cloud computing”,

Journal of Ambient Intelligence and Humanized Computing, Springer, 2020,

Pages 1-13.

[4] Seema A. Alsaidy, Amenah D. Abbood, Mouayad A. Sahib, “Heuristic

initialization of PSO task scheduling algorithm in cloud computing”, Journal of

King Saud University - Computer and Information Sciences, Elsevier, 2020,

Pages 1-13.

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized… 1319

[5] Shanchen Pang, Wenhao Li, Hua He, Zhiguang Shan, Xun Wang, “An EDA-GA

Hybrid Algorithm for Multi-Objective Task Scheduling in Cloud Computing”,

IEEE Access , Volume 7, 2019, Pages 146379 – 146389.

[6] Sarah E. Shukri, Rizik Al-Sayyed, Amjad Hudaib, Seyedali Mirjalili, “Enhanced

multi-verse optimizer for task scheduling in cloud computing environments”,

Expert Systems with Applications, 2020, Pages 1-30

[7] M.S.Sanaj and P.M.Joe Prathap, “An efficient approach to the map-reduce

framework and genetic algorithm based whale optimization algorithm for task

scheduling in cloud computing environment”, Materials Today: Proceedings,

Elsevier, 2020, Pages 1-10

[8] Xuan Chen, Long Cheng, Cong Liu, Qingzhi Liu, Jinwei Liu, Ying Mao, John

Murphy, “A WOA-Based Optimization Approach for Task Scheduling in Cloud

Computing Systems”, IEEE Systems Journal , Volume 14, Issue 3, 2020, Pages

3117 – 3128

[9] Xingwang Huang, Chaopeng Li, Hefeng Chen & Dong An, “Task scheduling in

cloud computing using particle swarm optimization with time varying inertia

weight strategies”, Cluster Computing, Springer, Volume 23, 2020, Pages 1137–

1147

[10] Reihaneh Khors and Mohammadreza Ramezanpour, “An energy‐efficient

task‐scheduling algorithm based on a multi‐criteria decision‐making method in

cloud computing”, International Journal of Communication Systems, Wiley,

Volume 33, Issue 9, 2020 , Pages 1-17

[11] Seyedakbar Mostafavi & Vesal Hakami, “A Stochastic Approximation

Approach for Foresighted Task Scheduling in Cloud Computing”, Wireless

Personal Communications, Springer, Volume 114, 2020, Pages 901-925.

[12] Ding Ding, Xiaocong Fan, Yihuan Zhao, Kaixuan Kang, Qian Yin, Jing

Zeng,“Q-learning based dynamic task scheduling for energy-efficient cloud

computing”, Future Generation Computer Systems, Elsevier, Volume 108,

2020,Pages 361-371.

[13] Harvinder Singh, Sanjay Tyagi, Pardeep Kumar, “Crow–penguin optimizer

formultiobjective task scheduling strategy in cloud computing”, International

Journal of Communication Systems, Wiley, Volume 33, Issue 14, 2020, Pages 1-

18.

[14] Belal Ali Al-Maytami, Pingzhi Fan, Abir Hussain, Thar Baker, Panos Liatsis,

“A Task Scheduling Algorithm With Improved Makespan Based on Prediction of

Tasks Computation Time algorithm for Cloud Computing”, IEEE Access, Volume

7, 2019, Pages 160916 – 160926.

[15] T. Prem Jacob & K. Pradeep, “A Multi-objective Optimal Task Scheduling in

Cloud Environment Using Cuckoo Particle Swarm Optimization”, Wireless

Personal Communications, Springer, Volume 109, 2019, Pages 315-331.

1320 S.Tamilsenthil and Dr. A. Kangaiammal

[16] Mitali Bansal and Sanjay Kumar Malik, “A multi-faceted optimization

scheduling framework based on the particle swarm optimization algorithm in

cloud computing”, Sustainable Computing: Informatics and Systems, Elsevier,

Volume 28, 2020, pages 1-8.

[17] Liqiong Chen, Kun Guo, Guoqing Fan, Can Wang, Shilong Song,

“ResourceConstrained Profit Optimization Method for Task Scheduling in Edge

Cloud”,IEEE Access Volume 8, 2020, Pages 118638 – 118652.

[18] Yi Gu and Chandu Budati, “Energy-aware workflow scheduling and

optimizationin clouds using bat algorithm”, Future Generation Computer Systems,

Volume 113, 2020, Pages 106–112.

[19] Shridhar G. Domanal, Ram Mohana Reddy Guddeti, Rajkumar Buyya, “A

HybridBio-Inspired Algorithm for Scheduling and Resource Management in

Cloud Environment”, IEEE Transactions on Services Computing, Volume 13,

Issue 1, 2020, Pages 3 – 15.

[20] Tingting Dong, Fei Xue, Chuangbai Xiao, Juntao Li, “Task scheduling based

ondeep reinforcement learning in a cloud manufacturing environment”,

Concurrency and Computation: Practice and Experience, Wiley, Volume 32,

Issue 11, 2020, Pages 1-12.

