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Abstract 

Cloud Computing is the service provider model in which users submit their 

requests to the server for execution. The cloud server schedules a variety of 

requests and handles the resources efficiently. Scheduling becomes a 

significant task in the cloud framework. Many scheduling algorithms have 

been proposed in literature, but the time consumption and efficiency for 

scheduling is a major problem. Therefore, an efficient algorithm is needed to 

improve scheduling efficiency and reduced time consumption. A novel 

technique called Oppositional Learnt Multi-objective Dragonfly Resource 

Optimized Dynamic Task Scheduling (OLMDRODTS) is proposed with the 

aim of increasing the efficiency and minimizing the time consumption. The 

user dynamically submits multiple heterogeneous tasks to the cloud server. 

The task scheduler in the cloud receives the incoming tasks and determines the 

resource-efficient virtual machine for the scheduling process. The 

Oppositional Learnt Multi-objective Dragonfly Optimization is used to find an 

efficient virtual machine based on the different resources such as CPU time, 

memory, bandwidth, and energy.  By applying the optimization technique, 

first, the population of the virtual machine is initialized.  Based on the multiple 

objective functions, the fitness is computed for each virtual machine in the 

cloud server. The virtual machine with maximum resource availability is 

chosen as a global optimum than the others. Then the scheduler assigns the 

user-requested tasks to the resource-efficient virtual machine to minimize the 

job response time and overhead. Experimental evaluation is conducted in 

CloudSim simulator using a personal cloud dataset with different performance 

metrics such as task scheduling efficiency, false-positive rate, computation 

mailto:stalinsenthil@gmail.com


1304 S.Tamilsenthil and Dr. A. Kangaiammal 

overhead, and memory consumption with respect to the number of user-

requested tasks. The observed results indicate that the proposed 

OLMDRODTS technique outperforms well for achieving the higher task 

scheduling efficiency with lesser computation overhead, false-positive rate as 

well as memory consumption. 

Keywords: Cloud; Task Scheduling; Resource Optimization; Oppositional 

Learning; Multi-objective Dragonfly Optimization. 

 

1. INTRODUCTION 

Cloud Computing is a type of distributed technology that provides various 

computational services such as storage services and other web-based applications.  

With the increasing operation of data centers around the world, cloud computing is a 

significant paradigm for large-scale applications. However, these cloud environments 

face lots of challenges including resource optimized task scheduling.  

A Chaotic Squirrel Search Algorithm (CSSA) was introduced in [1] for multitask 

scheduling with efficient resource utilization. But the designed CSSA optimization 

algorithm failed to find the greatest compromise solution with minimum time.  A new 

Harmony-Inspired Genetic Algorithm (HIGA) was designed in [2] for energy-

efficient task scheduling on the cloud data center. Through the algorithm reduces the 

makespan and execution overhead, the scheduling efficiency was not improved.  

An improved task scheduling method was introduced in [3] to increase the efficiency 

and minimize the resource utilization.  But the optimization technique was not applied 

to solve the multi-objective problems. An Improved Particle Swarm Optimization 

(PSO) algorithm was designed in [4] to minimize the job completion time. The 

designed algorithm reduces the makespan but the fault tolerance was not achieved.  

An Estimation of Distribution Algorithm and GA (EDA-GA) was developed in [5] to 

efficiently minimize the task completion time and improve the load balancing 

capability. However, the algorithm failed to solve multi-objective problems. An 

Enhanced Multi-Verse Optimizer (EMVO) algorithm was developed in [6] to improve 

the task scheduling efficiency with better resource utilization. However, the algorithm 

failed to perform dynamic task scheduling with multiple tasks. 

An efficient map-reduce framework and Genetic Algorithm based Whale 

Optimization Algorithm (GA-WOA) was introduced in [7] for efficient task 

scheduling with minimum time. However, the energy-based task scheduling remained 

unaddressed. The Metaheuristics Whale Optimization Algorithm (WOA) was 

developed in [8] for task scheduling with a multi-objective optimization to improve 

the performance of a cloud system. But the algorithm failed to reduce the scheduling 

overhead in the presence of large workloads. A Particle Swarm Optimization (PSO) 

algorithm based task scheduling was performed in [9] to reduce the makespan.  But, 

the proposed PSO-based scheduler failed to schedule the workflow with multiple 

optimization objectives in the cloud environment.  
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 A Multi-Criteria Decision-Making method was introduced in [10] for energy-

efficient task-scheduling with lesser resource utilization. The designed method failed 

to analyze the efficiency of the proposed task scheduling method.  A stochastic 

approximation approach was introduced in [11] for task scheduling to decrease the 

response time as well as makespan and also increases resource efficiency. However, 

the overhead was not minimized.  

AQ-learning based Task Scheduling approach was developed in [12] for energy-

efficient cloud computing and minimizing the task response time. But the approach 

failed to further evaluate the scheduling approach in large scale cloud environments.  

A Crow–Penguin Optimizer was introduced in [13] for task scheduling based on 

multiple objective functions to minimize the execution time and makespan. But the 

scheduling efficiency was not improved.  

A Directed Acyclic Graph (DAG) based tasks scheduling was performed in [14] to 

reduce the overall makespan and task execution time. But the approach failed to 

perform the dynamic scheduling and it also failed to consider the energy consumption 

of task scheduling.   A Cuckoo Search (CS) and Particle Swarm Optimization were 

developed in [15] to schedule the tasks to a virtual machine with lesser makespan. 

However, the algorithm failed to optimize multiple resources.    

 A Multi-Faceted Optimization Scheduling Framework (MFOSF) was developed in 

[16] for task scheduling with lesser resource utilization. But the framework was not 

efficient to perform the scheduling with minimum overhead. A Resource-Constrained 

Task Scheduling algorithm was designed in [17]. However, the algorithm failed to 

consider the resource utilization and energy consumption of task scheduling in the 

cloud.  

An Energy-Aware, Time, and Throughput Optimization Heuristic Algorithm was 

introduced in [18] for cloud environments to address the multi-objective optimization. 

But the algorithm failed to support the memory and bandwidth for solving the multi-

objective optimization.  

A new Hybrid Bio-Inspired Algorithm was introduced in [19] for task scheduling with 

lesser resource utilization. The designed algorithm failed to perform dynamic 

scheduling in the cloud environment.  In order to dynamically schedule the tasks with 

minimum execution time, a deep Reinforcement Learning Architecture (RLTS) was 

introduced in [20]. However, the architecture failed to consider the multi-objective 

task scheduling problem.  

The above-said issues are addressed by introducing a novel technique called 

OLMDRODTS. The overall contribution of the OLMDRODTS is summarized as 

given below,  

 To improve the task scheduling efficiency, the OLMDRODTS technique is 

introduced for finding the resource-efficient virtual machine in the cloud.  The 

oppositional learning concept is applied in the multi-objective dragonfly 

optimization for selecting the optimum virtual machine through the fitness 

evaluation based on the CPU time, bandwidth, energy, and memory. Then the 
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scheduler dynamically assigns the incoming tasks to the global best virtual 

machine for completing the certain task.  

 To reduce the false-positive rate, Multi-Objective Dragonfly optimization uses the 

oppositional learning concept for generating the opposite population with the 

current population to achieve fault tolerance. This helps to find the global 

optimum for scheduling the tasks.  

 To minimize the computation overhead, the OLMDRODTS technique uses the 

ranking method to find the local optimum from the current and opposite 

population of the virtual machine. The local optimum virtual machine is selected 

from the population-based fitness calculation. This helps to minimize the time 

taken to find the global optimum as well as task scheduling time.  

 Finally, an extensive experiment is conducted to evaluate the performance of our 

OLMDRODTS technique and related works. The observed result demonstrates 

that our OLMDRODTS technique outperforms well than the other optimization 

methods 

 

1.1.  Organization of Paper 

The paper is organized into five different sections.  Section 2 describes the 

OLMDRODTS technique for resource-efficient task scheduling in the cloud. In 

section 3, experimental evaluation is conducted with a dataset and the performance of 

various metrics is discussed in section 4. Finally, section 5 provides the conclusion of 

the work.  

 

2. METHODOLOGY 

In cloud computing, task scheduling is a process in which user transmitted tasks that 

needs to be executed to the available resources through the internet. To satisfy the 

user requirements and application requirements, the cloud service provider uses a 

resource allocation policy for particular tasks. The cloud service provider needs to 

know about how much as well as which types of resources, the status of each resource 

required to complete a particular task. When the user submits the task, the cloud 

scheduler identifies the best virtual machine with an optimized resource to fit the task 

from the available resources. Then the allocation of resources for the submitted tasks 

is done through the task scheduler. Finally, the task is executed with the minimum 

response time.  Based on this concept, a novel OLMDRODTS technique is proposed.  

2.1. Network Model 

The cloud computing architecture is designed based on the following network model. 

The architecture comprises ‘n’ independent tasks, 

`𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛} dynamically generated from the various users  
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`𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑚} arrived in the queue and task scheduler ‘𝑇𝑆’ schedules a 

set of ‘𝑏’ virtual machines  

`𝑉𝑚 = {𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏} in a cloud server.   

Figure 1 demonstrates the architecture of the proposed OLMDRODTS technique to 

schedules multiple heterogeneous tasks into resource-efficient virtual machines in the 

dynamic cloud environment. In the cloud, multiple users’ send their tasks to a cloud 

server. After receiving the request from the cloud, the task scheduler in the cloud uses 

the oppositional learnt Multi-objective dragonfly optimization to find the virtual 

machine based on CPU, memory, bandwidth, and energy to schedule the tasks with 

higher efficiency and lesser overhead. The process of the OLMDRODTS technique is 

described in Section 2.2. 

 

 

2.2.  Oppositional Learnt Multi-objective Dragonfly Optimization  

The proposed OLMDRODTS technique performs dynamic task scheduling using 

Oppositional learnt Multi-objective dragonfly optimization. The cloud server consists 

of a set of virtual machines for both computational and storage facilities. The Multi-

objective Oppositional Learnt Dragonfly Optimization is the meta-heuristic technique 

employed to find an precisely good solution in the optimization problem.  Multi-

objective represents the proposed optimization technique algorithm solves the 

multiple objective functions such as CPU, memory, bandwidth, and energy. On the 

contrary to existing optimization, the proposed technique uses oppositional based 

learning concept to achieve the global best solution among the population with 

minimum time consumption. Besides, the oppositional based learning optimization 

algorithm increases the convergence speed, flexibility, error tolerance, and higher 

accuracy.   

The behavior of the dragonfly is moving and seeking its food source.  Here the 

dragonfly is related to the number of virtual machines and the food source is related to 

 

Fig. 1.  Architecture of proposed OLMDRODTS technique. 
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multi-objective functions i.e. CPU, memory, bandwidth, and energy. The proposed 

optimization algorithm worked based on the population (called a swarm). Initialize 

the population of the dragonfly (i.e. virtual machines) and are moved around in the 

search space.  

Initialize the population of the virtual machines in the search space as in Equation 1. 

𝑄 = {𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏}                                                                                (1) 

Where ‘𝑄’ indicates a current population of the virtual machines𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏. 

By applying the opposition based learning concept, the proposed technique generates 

the opposite population with the current population to achieve a global best solution. 

The opposition population generation is given in Equation 2. 

                𝑄′ = 𝑚𝑖 + 𝑛𝑖 − 𝑄                                                                                    (2) 

Where, 𝑄′denotes an opposite population generation based on the current population 

‘𝑄’, 𝑚𝑖 and 𝑛𝑖indicates a minimum and maximum value of the dimensions in the 

current population ‘𝑄’. Therefore, the current and the opposite population are 

generated in the search space. After the population generation, the multiple objective 

functions are computed for each dragonfly (i.e. virtual machine) in the current as well 

as the opposite population. The multiple objective functions such as availability of 

CPU, memory, bandwidth, and energy are calculated. Initially, the CPU is measured 

as the amount of time consumed by the virtual machine to complete a certain task. 

Therefore, the availability of CPU is estimated as given in Equation 3,   

     𝐶𝑃𝑈𝐴𝑉𝐿 = [𝐶𝑃𝑈𝑇] − [𝐶𝑃𝑈𝑐𝑑]                                                                        (3) 

From (3), 𝐶𝑃𝑈𝐴𝑉𝐿  indicates the 𝐶𝑃𝑈 availability of the virtual machine,   𝐶𝑃𝑈𝑇 

denotes a total 𝐶𝑃𝑈 time of 𝑉𝑚, 𝐶𝑃𝑈𝑐𝑑 represents as consumed time of  𝑉𝑚 to 

complete the particular task. Then the memory availability of the virtual machine is 

measured as in Equation 4. 

𝑀𝑎𝑣𝑙 = [𝑀𝑇] − [𝑀𝑢𝑡]                                                                                              (4) 

Where, 𝑀𝑎𝑣𝑙represents the memory availability of the virtual machine, 𝑀𝑇represents a 

total memory of a virtual machine,𝑀𝑢𝑡 indicates a utilized memory space of a virtual 

machine. The bandwidth availability of the ‘ 𝑉𝑚’ is calculated as given in Equation 5,  

𝐵𝑎𝑣𝑙 = [𝐵𝑇] − [𝐵𝑢𝑡]                                                                                               (5) 

Where, 𝐵𝑎𝑣𝑙indicates an available bandwidth of  𝑉𝑚, 𝐵𝑇indicates a total 

bandwidth,𝐵𝑢𝑡represents an amount of bandwidth consumed by the 𝑉𝑚.  At last, the 

energy availability of the virtual machine is calculated as given in Equation 6,   

EAVL = [ET] − [EC]                                                                                                 (6) 

From (6), 𝐸𝐴𝑉𝐿 indicates residual energy of the virtual machine, 𝐸𝑇 indicates a total 

energy,  𝐸𝐶 denotes consumed energy. Based on the above-calculated resource 

availability, the fitness is measured as given in Equation 7. 

𝜑𝐹 = arg max{(𝐶𝑃𝑈𝐴𝑉𝐿)&&(𝑀𝐴𝑉𝐿)&&(𝐵𝑎𝑛𝑑𝐴𝑉𝐿)&& (𝐸𝐴𝑉𝐿)}  (7) 
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Where, 𝜑𝐹 denotes a fitness function, arg max({}indicates an argument of maximum 

function.  After the fitness estimation, the current and opposite populations are 

combined into one and rank the dragonflies according to their fitness value. The 

virtual machine (𝑉𝑚) has maximum resource availability is ranked first than the 

others as per Equation 8.  

𝑉𝑚 = 𝜑𝐹(𝑉𝑚1) > 𝜑𝐹(𝑉𝑚2) >  … > 𝜑𝐹(𝑉𝑚𝑏) (8) 

Finally, ‘n’ best virtual machines are selected from the combination to find the global 

best solution. In order to find the global best dragonfly in the search space, four 

different processes are employed such as separation, alignment, cohesion, and 

attraction towards the food source based on their fitness. Initially, the separation 

process is executed to find the current position of the dragonfly and its neighboring 

position using Equation 9.  

𝛼 = − ∑ (𝑝 (𝑡) − 𝑝𝑗 (𝑡))𝑚
𝑗=1                                                                                (9) 

From (9), ‘𝛼’ indicates a separation process, 𝑝 (𝑡) indicates a current position of a 

virtual machine at a time ‘𝑡’, 𝑝𝑗  (𝑡) indicates a position of the neighboring virtual 

machine at a time ‘𝑡’, ‘m’ indicates a number of neighboring dragonflies. Secondly, 

the alignment process is carried out by matching the movement velocity of 

dragonflies and their neighborhood based on Equation 10 

                             𝛽 = ∑
𝑣𝑗 (𝑡)

𝑚
                                                                                           𝑚

𝑗=1 (10) 

From (10),𝛽indicates an alignment, 𝑣𝑗  (𝑡)represents a velocity of ‘neighboring 

dragonflies,   ′𝑚’ indicates a number of neighboring dragonflies. The third process is 

cohesion which is thetendency of dragonflies moving towards the middle of the mass 

of their neighborhood as per Equation 11.  

𝛾 =  ∑
𝑝𝑗(𝑡)−𝑝(𝑡)

𝑚

𝑚
𝑗=1                                                                                              (11) 

From (11), ‘𝛾’denotes a cohesion of the dragonfly,𝑝𝑗 (𝑡)be the position of the 

‘neighboring dragonfly, 𝑝(𝑡)represents a position of a current dragonfly, 𝑚denotes 

the number of neighborhoods.  Finally, the attraction towards food source is estimated 

as given in Equation 12,  

 𝜔 = 𝑝𝐹(𝑡) − 𝑝(𝑡)                                                                                             (12) 

Where,  𝜔indicates an attraction function, 𝑝𝐹(𝑡)indicates the position of the food 

source, 𝑝(𝑡)indicates the current position of a dragonfly. Finally, the position of the 

dragonfly gets updated to find the global best solution based on Equation 13.  

𝑝𝑡+1 = 𝑝(𝑡) + ∇𝑝𝑡+1                                                                                  (13) 

From (13),𝑝𝑡+1stand for the updated position of the dragonfly, 𝑝(𝑡)is the dragonfly 

current position, ∇𝑝𝑡+1indicates the step vector used to find the movement direction 

of the dragonfly as in Equation 14.  

∇𝑝𝑡+1 = {𝑏1𝛼 + 𝑏2𝛽 + 𝑏3𝛾 + 𝐹𝜔 } +  𝑊 ∗ 𝑝(𝑡)                                              (14) 



1310 S.Tamilsenthil and Dr. A. Kangaiammal 

Where,𝑏1designates a weight of separation (𝛼),  𝑏2indicates a weight of alignment 𝛽,  

𝑏3denotes a weight of cohesion 𝛾, ‘𝐹’represents a food vector, 𝜔indicates an 

attraction towards a food source, ‘𝑊’indicates an inertia weight used to controls the 

convergence behavior of optimization,  𝑝(𝑡) represents a current position of the 

dragonfly at time ‘t’.  As a result, the global best dragonfly is identified from the 

updated position of the dragonfly.  After identifying the global best virtual machine, 

the scheduler assigns the incoming user-requested task with higher efficiency. The 

algorithmic process of the proposed OLMDRODTS technique is described as given 

below,  

\\ Algorithm 1:  Oppositional learnt Multi-objective dragonfly Resource Optimized 

Dynamic Task Scheduling 

Input: users ‘𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑚} ;   Requestedtasks 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛}’,  

           virtual machines ‘𝑉𝑀 = {𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏}’,   task scheduler ‘𝑇𝑆 ‘ 

Output:  Improve the task scheduling efficiency 

Begin  

Step 1:  Collect the number of requestedtasks ‘𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛}  from users 

‘𝑢1, 𝑢2, … , 𝑢𝑚‘ 

Step 2:      for each ‘𝑇’ 

Step 3:        Initialize the virtual machine populations of𝑄 = {𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏} 

Step 4:         Initialize the opposite population of dragonfly𝑄′ 

Step 5:           For each  ‘𝑉𝑚’ in 𝑄 and 𝑄′ 

Step 6:               Compute multiple objective functions 𝑀𝐴𝑉𝐿, 𝐵𝐴𝑉𝐿,𝐶𝑃𝑈𝐴𝑉𝐿,𝐸𝐴𝑉𝐿 

Step 7:               Measure the fitness  ‘𝜑𝐹′ 

Step 8:          End for 

Step 9            Combines two populations 

Step 10:          Rank the virtual machines𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏 

Step 11:  Select local optimum’ 

Step 12:Calculate 𝛼, 𝛽, 𝛾, 𝜔 

Step 13:If (𝜑𝐹𝑖
> 𝜑𝐹𝑗

 )then 

Step 14: Update the position of the dragonfly 

Step 15:       End if 

Step 16:      If (max_ iter is reached) then 

Step 17:            Obtain global best dragonfly 

Step 18:          else 
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Step 19:            Go to step 7 

Step 20:End if 

Step 21:  Task Scheduler allocates the tasks to the optimal virtual machine 

Step 22:  End for 

End 

 

Algorithm 1 expresses the step by step process of Dynamic Task Scheduling using 

Oppositional learnt Multi-objective dragonfly optimization. At first, initializes the 

populations of the current and opposite populations of virtual machines. The fitness is 

calculated for each virtual machine in the current and opposite population-based on 

multiple objective functions. After that, two populations are combined and rank the 

dragonfly based on their fitness value. Finally, a local optimum solution is selected 

for further processing. Based on the fitness estimation, four different processes 

namely separation, alignment, cohesion, and attraction towards the food source are 

estimated. Finally, the position of the dragonfly gets updated and finds an optimal 

solution. Then the scheduler assigns the incoming tasks into the resource optimized 

virtual machine with higher efficiency. 

 

3. EXPERIMENTAL SETUP 

In this section, experimental evaluation of the proposed OLMDRODTS technique and 

existing CSSA [1] and HIGA [2] are implemented in the JAVA platform using 

CloudSim simulation. In order to conduct the experiments, the Personal Cloud 

datasets are taken from http://cloudspaces.eu/results/datasets. This dataset includes17 

attributes (i.e. columns) and it includes 66245 instances. The main aim of this dataset 

is to perform load and transfer tests. The 17 attributes are row id, account id, file size 

(i.e. task size), operation_time_start, operation_time_end, time zone, operation_id, 

operation type, bandwidth trace, node_ip, node_name, quoto_start, quoto_end, 

quoto_total (storage capacity), capped, failed and failure info.  Among the 17 

columns, two columns are not used such as time zone and capped. With this available 

informations, the user requested tasks are scheduled to the resource-efficient virtual 

machines in the cloud data center.   

 

4. PERFORMANCE RESULTS AND DISCUSSION 

In this section, the experimental results of the OLMDRODTS technique and two 

existing methods namely CSSA [1] and HIGA [2] are discussed with various 

performance metrics such as task scheduling efficiency, false-positive rate, 

computation overhead, and memory consumption with respect to the number of user 

tasks.  The performance of proposed and conventional optimization techniques are 

discussed using a table and graphical illustration in next section. 

http://cloudspaces.eu/results/datasets
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4.1. Task Scheduling Efficiency 

Task scheduling efficiency is measured as the ratio of the number of tasks that are 

correctly scheduled to the optimized virtual machines to the total number of tasks. 

The task scheduling efficiency is measured as in Equation 15. 

𝑇𝑆𝐸 = [
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑎𝑟𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑

𝑛
] ∗ 100                         (15) 

From (15), 𝑇𝑆𝐸  represents a task scheduling efficiency,‘𝑛’ indicates a total number 

of user-requested tasks.  The overall task scheduling efficiency is measured in terms 

of percentage (%). 

Table 1. Task scheduling efficiency 

 

Number of User-

requested Tasks 

Task Scheduling Efficiency (%) 

CSSA HIGA OLMDRODTS 

30 87 83 90 

60 88 85 92 

90 87 84 92 

120 86 82 90 

150 85 83 89 

180 86 84 90 

210 85 82 89 

240 87 83 92 

270 88 85 93 

300 86 83 91 

 

Table 1 summarizes the performance analysis of task scheduling efficiency using 

different methods namely the OLMDRODTS technique and two existing methods 

namely CSSA [1] and HIGA [2]. The observed results indicate that the 

OLMDRODTS technique provides superior performance in terms of achieving higher 

efficiency than the other methods. This is proved through the statistical analysis. In 

the first run, 30 tasks are considered for conducting the experiments.   By applying the 

OLMDRODTS technique, 27 tasks are correctly scheduled to the resource optimized 

virtual machine and their efficiency is90%. Whereas 26 and 25 tasks are correctly 

scheduled using CSSA [1] and HIGA [2] and the efficiency are 87% and 83% 

respectively. For each method, ten different results are obtained and the results are 

compared. The comparison results indicate that the task scheduling efficiency of the 

OLMDRODTS technique is increased by 5% when compared to [1] and 9% when 
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compared to [2].  The graphical representation of the OLMDRODTS technique is 

illustrated in figure 2.  

 

Figure 2 illustrates the task scheduling efficiency with respect to 300 user-requested 

tasks. These tasks dynamically arrived at the cloud server at different time. From the 

figure, the efficiency of the OLMDRODTS technique and existing CSSA [1] and 

HIGA [2] are represented by three different colors of cones such as green, blue, and 

red. Among the three methods, the OLMDRODTS technique outperforms well for 

achieving higher efficiency. This is because of the reason that the OLMDRODTS 

technique uses the multi-objective optimization technique for finding the optimal 

virtual machine. The multi-objective functions are CPU, bandwidth availability, 

memory availability, and energy. The task scheduler in the cloud server finds the 

global best solution among the population through fitness. The virtual machine with 

maximum availability of the resources is selected as the global best for executing a 

certain task. The scheduler assigns the tasks to a particular virtual machine with 

higher efficiency.  

 

4.2.False-Positive Rate  

It is measured as the ratio of a number of user-requested tasks that are in accurately 

scheduled to the total number of tasks taken as input. The formula for calculating the 

false-positive rate is expressed as in Equation 16,  

𝐹𝑃𝑅 = [
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑎𝑟𝑒 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑

𝑛
] ∗ 100                          (16)  

From (16),𝐹𝑃𝑅represents the false-positive rate, ‘𝑛’ represents the total number of 

user-requested tasks.  The false-positive rate is measured in percentage (%). 

 

 

  

Fig. 2.  Graphical Representation of Task Scheduling Efficiency  
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Table 2: False-Positive Rate 

Number of User-

Requested Tasks 

False-Positive Rate (%) 

CSSA HIGA OLMDRODTS 

30 13 17 10 

60 12 15 8 

90 13 16 8 

120 14 17 10 

150 15 18 11 

180 14 16 10 

210 15 18 11 

240 13 17 8 

270 12 15 7 

300 14 17 9 

 

Table 2 portrays the performance results of false-positive rate according to the 

number of user requests 30 to 300. The result indicates that the OLMDRODTS 

technique minimizes the incorrect task scheduling in a cloud environment than the 

other existing methods.  By considering 30user-requested tasks for experimentation in 

the first run, 3 tasks are incorrectly scheduled and the false positive rate is 10% using 

the OLMDRODTS technique. Followed by, the 4 and 5user-requested tasks are 

incorrectly scheduled using CSSA [1] and HIGA [2], and data false positive rate 

percentages are 13% and 17% respectively. Totally, ten runs are observed for each 

method with a different number of user tasks. Finally, the observed result of the 

proposed OLMDRODTS technique is compared with the results of existing methods. 

The average of comparison results indicates that the false positive rate of the 

OLMDRODTS technique is minimized by32% and 45% when compared to CSSA [1] 

and HIGA [2] respectively. The performance result of the false positive rate is shown 

in figure 3. 

Figure 3 given above demonstrates the comparative analysis of the false-positive rate 

of incorrect task scheduling in the cloud. As revealed in the chart, the ‘horizontal axis 

  

Fig. 3.  Graphical Representation of the False-Positive Rate  
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refers to the number of user-requested tasks and the vertical axis refers to the results 

of the false-positive rate. From the graphical plot, it is inferred that the false-positive 

rate of the OLMDRODTS technique is minimized than the other methods. This is 

because the OLMDRODTS technique uses the oppositional learning concept to the 

multi-objective dragonfly optimization for generating the opposite population along 

with the current population to improve the fault tolerance.   This process helps to find 

the global optimum in the search space for assigning the tasks. Then the task 

scheduler efficiently assigns the task to the virtual machine to minimize the false 

positive rate. 

4.3.Computation Overhead  

Computation overhead is measured as a time taken to schedule the given tasks into the 

resource optimized virtual machines. The computation overhead is measured using 

the following equation 17. 

𝐶𝑂 = 𝑛 ∗ 𝑡(𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑜𝑛𝑒 𝑡𝑎𝑠𝑘)                                                       (17) 

From (17), ‘𝐶𝑂′ indicates a computation overhead, 𝑛’ indicates a total number of 

tasks, and ‘𝑡’ denotes a time taken to schedule the single task. The computation 

overhead is measured in milliseconds (ms).  

Table 3: Computation Overhead 

Number of User-

Requested Tasks 

Computation Overhead (ms) 

CSSA HIGA OLMDRODTS 

30 22 24 19 

60 24 27 22 

90 27 30 25 

120 31 34 29 

150 35 36 32 

180 37 39 35 

210 40 42 38 

240 43 46 41 

270 46 49 44 

300 50 52 47 

 

Table 3 reports the performance of computation overhead using three different 

methods namely the OLMDRODTS technique and two existing methods CSSA [1] 

and HIGA [2] with respect to the number of users requested tasks. From the tabulated 

results, it is inferred that the computation overhead using the OLMDRODTS 

technique is comparatively lesser than the [1] and [2]. Initially, the experiment is 
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conducted with 30 tasks, OLMDRODTS technique consumes the time of 19𝑚𝑠 to 

schedule the tasks. Similarly, the time consumption of the existing methods are 22𝑚𝑠 

and 24𝑚𝑠. Likewise, the other remaining nine runs are carried out with different user-

requested tasks. The overall observed results indicate that the proposed 

OLMDRODTS technique minimizes the computation overhead by 7% and 13% when 

compared to existing methods. Figure 4 clearly illustrates the experimental results of 

computation overhead versus a number of tasks. For each method, ten varieties of 

results are observed. The time is found to be in the increasing trend for all the three 

methods while increasing the number of tasks.    But the results clearly show that the 

computation overhead is found to be considerably minimized using the 

OLMDRODTS technique as compared to existing scheduling techniques. This is due 

to the application of oppositional learning concept and ranking to the Multi-objective 

dragonfly optimization. The ranking method finds the local optimum from the 

population. In order to perform the scheduling with more virtual machines, the 

technique consumes more time. But the OLMDRODTS technique uses the ranking 

method to sort the virtual machines based on the fitness. Finally, the global optimum 

solution is determined from the local optimum.   This process takes a minimum time 

to find the resource-efficient virtual machine and it also reduces the scheduling time 

of large number of tasks.   

4.4.Memory Consumption 

Memory consumption is the amount of memory space taken by the virtual machine to 

schedule the user tasks. The overall memory consumption is estimated as given in 

Equation 18. 

  𝑀𝐶 = 𝑛 ∗ 𝑀 (𝑆𝑆𝑇)                                                                    (18) 

Where 𝑀𝐶 represents a memory consumption, ‘𝑛’ denotes a total number of user-

requested tasks, ‘𝑀 (𝑆𝑆𝑇)’ indicates the memory consumption to schedule the single-

user tasks and. Therefore, the overall memory consumption is measured in the unit of 

megabytes (MB). 

  

Fig. 4.  Graphical Representation of Computation Overhead  
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Table 4: Memory Consumption 

Number of User-

Requested Tasks 

Memory Consumption (MB) 

CSSA HIGA OLMDRO

DTS 

30 20 23 17 

60 23 25 21 

90 26 28 24 

120 29 31 26 

150 32 33 30 

180 34 36 32 

210 36 38 34 

240 38 41 36 

270 40 43 38 

300 42 45 40 

 

 

 

Table 4 and Figure 5 given describe the performance of memory consumption using 

three different methods namely the OLMDRODTS technique and two existing 

methods namely CSSA [1] and HIGA [2] with respect to the number of tasks. Among 

the three methods, the OLMDRODTS technique consumed lesser memory space for 

scheduling the given user request to the cloud server. Initially, the experiment is 

conducted with 30tasks, OLMDRODTS technique consumes the 17𝑀𝐵memory space 

during the scheduling process whereas the space consumption of the CSSA [1] and 

HIGA [2] are 20𝑀𝐵 and 23𝑀𝐵 respectively.  Similarly, the remaining nine runs are 

carried out and the results are compared. The average of ten results indicates the 

  

Fig. 5.  Graphical Representation of Memory Consumption  
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memory consumption of the OLMDRODTS technique is significantly reduced by 7% 

and 14% when compared to existing [1] and [2] respectively.  This is due to the 

proposed technique discovers the resource optimized virtual machine to schedule the 

multiple heterogeneous user tasks.   

 

5. CONCLUSION 

In this research work, an efficient technique called the OLMDRODTS technique is 

introduced for energy-efficient task scheduling process and dynamic resource 

allocation in cloud environments. In the proposed task scheduling technique, the 

oppositional learning concept is applied in the Multi-objective dragonfly optimization 

to find the global optimum resource-efficient virtual machine based on the CPU time, 

memory, bandwidth, and energy. The resource optimized virtual machine is selected 

based on the fitness measure. Finally, a task scheduler in a cloud server assigns the 

incoming tasks to the resource optimized virtual machine. Then the virtual machine 

executes the assigned tasks with the minimum response time.  To evaluate the 

performance of the OLMDRODTS technique and other scheduling techniques, a 

personal cloud dataset is implemented in the cloudsim simulator four different 

metrics.  The statistical analysis indicates that the OLMDRODTS technique provides 

better performance for dynamically scheduling a large number of tasks with higher 

efficiency and minimum overhead as well as memory consumption than the state-of-

the-art works. 
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