Advances in Dynamical Systems and Applications.

ISSN 0973-5321, Volume 16, Number 2, (2021) pp. 1303-1320
© Research India Publications
https://www.ripublication.com/adsa.htm

Oppositional Learnt Multi-Objective Dragonfly
Resource Optimized Dynamic Task Scheduling in Cloud

S.Tamilsenthil * and Dr. A. Kangaiammal?

Ph.D Research Scholar (Part Time), PG & Research Dept of Computer Science,
Government Arts College (Autonomous), Salem-7, India.

Assistant Professor, Dept of Computer Science, Padmavani Arts and Science College

for Women, Salem-11, India.
Assistant Professor, Dept of Computer Applications, Government Arts College

(Autonomous), Salem-7, India.

Abstract

Cloud Computing is the service provider model in which users submit their
requests to the server for execution. The cloud server schedules a variety of
requests and handles the resources efficiently. Scheduling becomes a
significant task in the cloud framework. Many scheduling algorithms have
been proposed in literature, but the time consumption and efficiency for
scheduling is a major problem. Therefore, an efficient algorithm is needed to
improve scheduling efficiency and reduced time consumption. A novel
technique called Oppositional Learnt Multi-objective Dragonfly Resource
Optimized Dynamic Task Scheduling (OLMDRODTS) is proposed with the
aim of increasing the efficiency and minimizing the time consumption. The
user dynamically submits multiple heterogeneous tasks to the cloud server.
The task scheduler in the cloud receives the incoming tasks and determines the
resource-efficient virtual machine for the scheduling process. The
Oppositional Learnt Multi-objective Dragonfly Optimization is used to find an
efficient virtual machine based on the different resources such as CPU time,
memory, bandwidth, and energy. By applying the optimization technique,
first, the population of the virtual machine is initialized. Based on the multiple
objective functions, the fitness is computed for each virtual machine in the
cloud server. The virtual machine with maximum resource availability is
chosen as a global optimum than the others. Then the scheduler assigns the
user-requested tasks to the resource-efficient virtual machine to minimize the
job response time and overhead. Experimental evaluation is conducted in
CloudSim simulator using a personal cloud dataset with different performance
metrics such as task scheduling efficiency, false-positive rate, computation

mailto:stalinsenthil@gmail.com

1304 S.Tamilsenthil and Dr. A. Kangaiammal

overhead, and memory consumption with respect to the number of user-
requested tasks. The observed results indicate that the proposed
OLMDRODTS technique outperforms well for achieving the higher task
scheduling efficiency with lesser computation overhead, false-positive rate as
well as memory consumption.

Keywords: Cloud; Task Scheduling; Resource Optimization; Oppositional
Learning; Multi-objective Dragonfly Optimization.

1. INTRODUCTION

Cloud Computing is a type of distributed technology that provides various
computational services such as storage services and other web-based applications.
With the increasing operation of data centers around the world, cloud computing is a
significant paradigm for large-scale applications. However, these cloud environments
face lots of challenges including resource optimized task scheduling.

A Chaotic Squirrel Search Algorithm (CSSA) was introduced in [1] for multitask
scheduling with efficient resource utilization. But the designed CSSA optimization
algorithm failed to find the greatest compromise solution with minimum time. A new
Harmony-Inspired Genetic Algorithm (HIGA) was designed in [2] for energy-
efficient task scheduling on the cloud data center. Through the algorithm reduces the
makespan and execution overhead, the scheduling efficiency was not improved.

An improved task scheduling method was introduced in [3] to increase the efficiency
and minimize the resource utilization. But the optimization technique was not applied
to solve the multi-objective problems. An Improved Particle Swarm Optimization
(PSO) algorithm was designed in [4] to minimize the job completion time. The
designed algorithm reduces the makespan but the fault tolerance was not achieved.

An Estimation of Distribution Algorithm and GA (EDA-GA) was developed in [5] to
efficiently minimize the task completion time and improve the load balancing
capability. However, the algorithm failed to solve multi-objective problems. An
Enhanced Multi-Verse Optimizer (EMVO) algorithm was developed in [6] to improve
the task scheduling efficiency with better resource utilization. However, the algorithm
failed to perform dynamic task scheduling with multiple tasks.

An efficient map-reduce framework and Genetic Algorithm based Whale
Optimization Algorithm (GA-WOA) was introduced in [7] for efficient task
scheduling with minimum time. However, the energy-based task scheduling remained
unaddressed. The Metaheuristics Whale Optimization Algorithm (WOA) was
developed in [8] for task scheduling with a multi-objective optimization to improve
the performance of a cloud system. But the algorithm failed to reduce the scheduling
overhead in the presence of large workloads. A Particle Swarm Optimization (PSO)
algorithm based task scheduling was performed in [9] to reduce the makespan. But,
the proposed PSO-based scheduler failed to schedule the workflow with multiple
optimization objectives in the cloud environment.

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized... 1305

A Multi-Criteria Decision-Making method was introduced in [10] for energy-
efficient task-scheduling with lesser resource utilization. The designed method failed
to analyze the efficiency of the proposed task scheduling method. A stochastic
approximation approach was introduced in [11] for task scheduling to decrease the
response time as well as makespan and also increases resource efficiency. However,
the overhead was not minimized.

AQ-learning based Task Scheduling approach was developed in [12] for energy-
efficient cloud computing and minimizing the task response time. But the approach
failed to further evaluate the scheduling approach in large scale cloud environments.
A Crow-Penguin Optimizer was introduced in [13] for task scheduling based on
multiple objective functions to minimize the execution time and makespan. But the
scheduling efficiency was not improved.

A Directed Acyclic Graph (DAG) based tasks scheduling was performed in [14] to
reduce the overall makespan and task execution time. But the approach failed to
perform the dynamic scheduling and it also failed to consider the energy consumption
of task scheduling. A Cuckoo Search (CS) and Particle Swarm Optimization were
developed in [15] to schedule the tasks to a virtual machine with lesser makespan.
However, the algorithm failed to optimize multiple resources.

A Multi-Faceted Optimization Scheduling Framework (MFOSF) was developed in
[16] for task scheduling with lesser resource utilization. But the framework was not
efficient to perform the scheduling with minimum overhead. A Resource-Constrained
Task Scheduling algorithm was designed in [17]. However, the algorithm failed to
consider the resource utilization and energy consumption of task scheduling in the
cloud.

An Energy-Aware, Time, and Throughput Optimization Heuristic Algorithm was
introduced in [18] for cloud environments to address the multi-objective optimization.
But the algorithm failed to support the memory and bandwidth for solving the multi-
objective optimization.

A new Hybrid Bio-Inspired Algorithm was introduced in [19] for task scheduling with
lesser resource utilization. The designed algorithm failed to perform dynamic
scheduling in the cloud environment. In order to dynamically schedule the tasks with
minimum execution time, a deep Reinforcement Learning Architecture (RLTS) was
introduced in [20]. However, the architecture failed to consider the multi-objective
task scheduling problem.

The above-said issues are addressed by introducing a novel technique called
OLMDRODTS. The overall contribution of the OLMDRODTS is summarized as
given below,

e To improve the task scheduling efficiency, the OLMDRODTS technique is
introduced for finding the resource-efficient virtual machine in the cloud. The
oppositional learning concept is applied in the multi-objective dragonfly
optimization for selecting the optimum virtual machine through the fitness
evaluation based on the CPU time, bandwidth, energy, and memory. Then the

1306 S.Tamilsenthil and Dr. A. Kangaiammal

scheduler dynamically assigns the incoming tasks to the global best virtual
machine for completing the certain task.

¢ To reduce the false-positive rate, Multi-Objective Dragonfly optimization uses the
oppositional learning concept for generating the opposite population with the
current population to achieve fault tolerance. This helps to find the global
optimum for scheduling the tasks.

e To minimize the computation overhead, the OLMDRODTS technique uses the
ranking method to find the local optimum from the current and opposite
population of the virtual machine. The local optimum virtual machine is selected
from the population-based fitness calculation. This helps to minimize the time
taken to find the global optimum as well as task scheduling time.

¢ Finally, an extensive experiment is conducted to evaluate the performance of our
OLMDRODTS technique and related works. The observed result demonstrates
that our OLMDRODTS technique outperforms well than the other optimization
methods

1.1. Organization of Paper

The paper is organized into five different sections. Section 2 describes the
OLMDRODTS technique for resource-efficient task scheduling in the cloud. In
section 3, experimental evaluation is conducted with a dataset and the performance of
various metrics is discussed in section 4. Finally, section 5 provides the conclusion of
the work.

2. METHODOLOGY

In cloud computing, task scheduling is a process in which user transmitted tasks that
needs to be executed to the available resources through the internet. To satisfy the
user requirements and application requirements, the cloud service provider uses a
resource allocation policy for particular tasks. The cloud service provider needs to
know about how much as well as which types of resources, the status of each resource
required to complete a particular task. When the user submits the task, the cloud
scheduler identifies the best virtual machine with an optimized resource to fit the task
from the available resources. Then the allocation of resources for the submitted tasks
is done through the task scheduler. Finally, the task is executed with the minimum
response time. Based on this concept, a novel OLMDRODTS technique is proposed.

2.1. Network Model

The cloud computing architecture is designed based on the following network model.
The architecture comprises ‘n’ independent tasks,

'T ={T,,T,, ..., T,} dynamically generated from the various users

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized... 1307

U = {uy, Uy, ..., Uy, } arrived in the queue and task scheduler ‘TS’ schedules a
set of ‘b’ virtual machines

Vm = {Vm,,Vm,, ..., Vmy} in a cloud server.

Figure 1 demonstrates the architecture of the proposed OLMDRODTS technique to
schedules multiple heterogeneous tasks into resource-efficient virtual machines in the
dynamic cloud environment. In the cloud, multiple users’ send their tasks to a cloud
server. After receiving the request from the cloud, the task scheduler in the cloud uses
the oppositional learnt Multi-objective dragonfly optimization to find the virtual
machine based on CPU, memory, bandwidth, and energy to schedule the tasks with
higher efficiency and lesser overhead. The process of the OLMDRODTS technique is
described in Section 2.2,

e |8 |0
& |2 [A 2

Cloud server

Ej Data center B
m
V., %

V. V.

Fig. 1. Architecture of proposed OLMDRODTS technique.

2.2. Oppositional Learnt Multi-objective Dragonfly Optimization

The proposed OLMDRODTS technique performs dynamic task scheduling using
Oppositional learnt Multi-objective dragonfly optimization. The cloud server consists
of a set of virtual machines for both computational and storage facilities. The Multi-
objective Oppositional Learnt Dragonfly Optimization is the meta-heuristic technique
employed to find an precisely good solution in the optimization problem. Multi-
objective represents the proposed optimization technique algorithm solves the
multiple objective functions such as CPU, memory, bandwidth, and energy. On the
contrary to existing optimization, the proposed technique uses oppositional based
learning concept to achieve the global best solution among the population with
minimum time consumption. Besides, the oppositional based learning optimization
algorithm increases the convergence speed, flexibility, error tolerance, and higher
accuracy.

The behavior of the dragonfly is moving and seeking its food source. Here the
dragonfly is related to the number of virtual machines and the food source is related to

1308 S.Tamilsenthil and Dr. A. Kangaiammal

multi-objective functions i.e. CPU, memory, bandwidth, and energy. The proposed
optimization algorithm worked based on the population (called a swarm). Initialize
the population of the dragonfly (i.e. virtual machines) and are moved around in the
search space.

Initialize the population of the virtual machines in the search space as in Equation 1.
Q = {leﬁ Ver "'lvmb} (l)

Where ‘Q’ indicates a current population of the virtual machinesVm,, Vm,, ...,Vm,,.
By applying the opposition based learning concept, the proposed technique generates
the opposite population with the current population to achieve a global best solution.
The opposition population generation is given in Equation 2.

Q' =mi+n—0Q)

Where, Q'denotes an opposite population generation based on the current population
‘Q’, m; and n;indicates a minimum and maximum value of the dimensions in the
current population ‘Q’. Therefore, the current and the opposite population are
generated in the search space. After the population generation, the multiple objective
functions are computed for each dragonfly (i.e. virtual machine) in the current as well
as the opposite population. The multiple objective functions such as availability of
CPU, memory, bandwidth, and energy are calculated. Initially, the CPU is measured
as the amount of time consumed by the virtual machine to complete a certain task.
Therefore, the availability of CPU is estimated as given in Equation 3,

CPUyuy, = [CPUT] — [CPUq] 3)

From (3), CPU,y; indicates the CPU availability of the virtual machine, CPU;
denotes a total CPU time of Vm, CPU_, represents as consumed time of Vm to
complete the particular task. Then the memory availability of the virtual machine is
measured as in Equation 4.

Mgy = [Mr] — [Mut] (4)

Where, M,,,;represents the memory availability of the virtual machine, M represents a
total memory of a virtual machine,M,,; indicates a utilized memory space of a virtual
machine. The bandwidth availability of the * Vm’ is calculated as given in Equation 5,

Bayw = [Br] — [But] 5)

Where, B, indicates an available bandwidth of Vm, Brindicates a total
bandwidth,B,,.represents an amount of bandwidth consumed by the Vm. At last, the
energy availability of the virtual machine is calculated as given in Equation 6,

Eavi = [Er] — [Ec] (6)

From (6), E,y;, indicates residual energy of the virtual machine, E; indicates a total
energy, E. denotes consumed energy. Based on the above-calculated resource
availability, the fitness is measured as given in Equation 7.

@r = argmax{(CPUy.)&&(Myy;) &&(Bandy;) && (EayL)} (7)

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized... 1309

Where, ¢, denotes a fitness function, arg max({}indicates an argument of maximum
function. After the fitness estimation, the current and opposite populations are
combined into one and rank the dragonflies according to their fitness value. The
virtual machine (V'm) has maximum resource availability is ranked first than the
others as per Equation 8.

Vm = @p(Vmy) > pp(Vmy) > ... > @p(Vmy) (8)

Finally, ‘n’ best virtual machines are selected from the combination to find the global
best solution. In order to find the global best dragonfly in the search space, four
different processes are employed such as separation, alignment, cohesion, and
attraction towards the food source based on their fitness. Initially, the separation
process is executed to find the current position of the dragonfly and its neighboring
position using Equation 9.

a=-— j=1(P (t) —pj (t)) 9)
From (9), ‘a’ indicates a separation process, p (t) indicates a current position of a
virtual machine at a time ‘t’, p; (t) indicates a position of the neighboring virtual
machine at a time ‘t’, ‘m’ indicates a number of neighboring dragonflies. Secondly,
the alignment process is carried out by matching the movement velocity of
dragonflies and their neighborhood based on Equation 10

v;i(t)
B =Xt~ (10)

m

From (10),Findicates an alignment, wv; (t)represents a velocity of ‘neighboring
dragonflies, 'm’ indicates a number of neighboring dragonflies. The third process is
cohesion which is thetendency of dragonflies moving towards the middle of the mass
of their neighborhood as per Equation 11.

p;j(©)—p(t)
y= 3y, 2o (11)
From (11), ‘y’denotes a cohesion of the dragonfly,p; (t)be the position of the

‘neighboring dragonfly, p(t)represents a position of a current dragonfly, mdenotes
the number of neighborhoods. Finally, the attraction towards food source is estimated
as given in Equation 12,

w = pp(t) —p(t) (12)
Where, windicates an attraction function, py(t)indicates the position of the food
source, p(t)indicates the current position of a dragonfly. Finally, the position of the
dragonfly gets updated to find the global best solution based on Equation 13.

Pe+1 = P(t) + VDeyq (13)

From (13),p;,,Stand for the updated position of the dragonfly, p(t)is the dragonfly
current position, Vp;.,,indicates the step vector used to find the movement direction
of the dragonfly as in Equation 14.

Vpesr = {b1a + by + b3y + Fo } + W * p(t) (14)

1310 S.Tamilsenthil and Dr. A. Kangaiammal

Where, b, designates a weight of separation (a), b,indicates a weight of alignment 3,
bsdenotes a weight of cohesion y, ‘F’represents a food vector, windicates an
attraction towards a food source, ‘W’indicates an inertia weight used to controls the
convergence behavior of optimization, p(t) represents a current position of the
dragonfly at time ‘t’. As a result, the global best dragonfly is identified from the
updated position of the dragonfly. After identifying the global best virtual machine,
the scheduler assigns the incoming user-requested task with higher efficiency. The
algorithmic process of the proposed OLMDRODTS technique is described as given
below,

\\ Algorithm 1: Oppositional learnt Multi-objective dragonfly Resource Optimized
Dynamic Task Scheduling

Input: users ‘U = {uy, Uy, ..., U} ; Requestedtasks T = {Ty, T, ..., T},
virtual machines ‘VM = {V'my,Vm,, ...,Vm;}’, task scheduler ‘TS °
Output: Improve the task scheduling efficiency

Begin

Step 1: Collect the number of requestedtasks ‘T = {Ty,T,,...,T,} from users
‘U, Uy ey, Uy

Step 2: for each ‘T~

Step 3: Initialize the virtual machine populations ofQ = {Vm,,Vm,, ...,Vm,}
Step 4: Initialize the opposite population of dragonflyQ’

Step 5: For each ‘Vm’in Q and Q'

Step 6: Compute multiple objective functions My, B4y,CPUyL,Eavy,
Step 7: Measure the fitness ‘@’

Step 8: End for

Step 9 Combines two populations

Step 10: Rank the virtual machinesVm,, Vm,, ...,Vm,

Step 11: Select local optimum’

Step 12:Calculate a, 8, v, @

Step 13:If (¢f; > P)then

Step 14: Update the position of the dragonfly
Step 15: End if

Step 16: If (max_ iter is reached) then
Step 17: Obtain global best dragonfly
Step 18: else

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized... 1311

Step 19: Go to step 7

Step 20:End if

Step 21: Task Scheduler allocates the tasks to the optimal virtual machine
Step 22: End for

End

Algorithm 1 expresses the step by step process of Dynamic Task Scheduling using
Oppositional learnt Multi-objective dragonfly optimization. At first, initializes the
populations of the current and opposite populations of virtual machines. The fitness is
calculated for each virtual machine in the current and opposite population-based on
multiple objective functions. After that, two populations are combined and rank the
dragonfly based on their fitness value. Finally, a local optimum solution is selected
for further processing. Based on the fitness estimation, four different processes
namely separation, alignment, cohesion, and attraction towards the food source are
estimated. Finally, the position of the dragonfly gets updated and finds an optimal
solution. Then the scheduler assigns the incoming tasks into the resource optimized
virtual machine with higher efficiency.

3. EXPERIMENTAL SETUP

In this section, experimental evaluation of the proposed OLMDRODTS technique and
existing CSSA [1] and HIGA [2] are implemented in the JAVA platform using
CloudSim simulation. In order to conduct the experiments, the Personal Cloud
datasets are taken from http://cloudspaces.eu/results/datasets. This dataset includes17
attributes (i.e. columns) and it includes 66245 instances. The main aim of this dataset
is to perform load and transfer tests. The 17 attributes are row id, account id, file size
(i.e. task size), operation_time_start, operation_time_end, time zone, operation_id,
operation type, bandwidth trace, node_ip, node_name, quoto_start, quoto_end,
quoto_total (storage capacity), capped, failed and failure info. Among the 17
columns, two columns are not used such as time zone and capped. With this available
informations, the user requested tasks are scheduled to the resource-efficient virtual
machines in the cloud data center.

4. PERFORMANCE RESULTS AND DISCUSSION

In this section, the experimental results of the OLMDRODTS technique and two
existing methods namely CSSA [1] and HIGA [2] are discussed with various
performance metrics such as task scheduling efficiency, false-positive rate,
computation overhead, and memory consumption with respect to the number of user
tasks. The performance of proposed and conventional optimization techniques are
discussed using a table and graphical illustration in next section.

http://cloudspaces.eu/results/datasets

1312 S.Tamilsenthil and Dr. A. Kangaiammal

4.1. Task Scheduling Efficiency

Task scheduling efficiency is measured as the ratio of the number of tasks that are
correctly scheduled to the optimized virtual machines to the total number of tasks.
The task scheduling efficiency is measured as in Equation 15.

Number of tasks are correctly scheduled

TSE:[

] %100 (15)

n

From (15), TSE represents a task scheduling efficiency,’n’ indicates a total number
of user-requested tasks. The overall task scheduling efficiency is measured in terms
of percentage (%).

Table 1. Task scheduling efficiency

Task Scheduling Efficiency (%)
Number of User- CSSA | HIGA | OLMDRODTS
requested Tasks
30 87 83 90
60 88 85 92
90 87 84 92
120 86 82 90
150 85 83 89
180 86 84 90
210 85 82 89
240 87 83 92
270 88 85 93
300 86 83 91

Table 1 summarizes the performance analysis of task scheduling efficiency using
different methods namely the OLMDRODTS technique and two existing methods
namely CSSA [1] and HIGA [2]. The observed results indicate that the
OLMDRODTS technique provides superior performance in terms of achieving higher
efficiency than the other methods. This is proved through the statistical analysis. In
the first run, 30 tasks are considered for conducting the experiments. By applying the
OLMDRODTS technique, 27 tasks are correctly scheduled to the resource optimized
virtual machine and their efficiency is90%. Whereas 26 and 25 tasks are correctly
scheduled using CSSA [1] and HIGA [2] and the efficiency are 87% and 83%
respectively. For each method, ten different results are obtained and the results are
compared. The comparison results indicate that the task scheduling efficiency of the
OLMDRODTS technique is increased by 5% when compared to [1] and 9% when

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized... 1313

compared to [2]. The graphical representation of the OLMDRODTS technique is
illustrated in figure 2.

> 95 -
e
2
S 90 -
w
2 85 HCSSA
< HIGA
D~
S 80 - "
5 14 OLMDRODTS
(9p]
~ 75 - ;
% O O O O O O O o O o
M O© O N IO 0 A < I~ O
- — 4 N NN ™
Number of User Requested Tasks

Fig. 2. Graphical Representation of Task Scheduling Efficiency

Figure 2 illustrates the task scheduling efficiency with respect to 300 user-requested
tasks. These tasks dynamically arrived at the cloud server at different time. From the
figure, the efficiency of the OLMDRODTS technique and existing CSSA [1] and
HIGA [2] are represented by three different colors of cones such as green, blue, and
red. Among the three methods, the OLMDRODTS technique outperforms well for
achieving higher efficiency. This is because of the reason that the OLMDRODTS
technique uses the multi-objective optimization technique for finding the optimal
virtual machine. The multi-objective functions are CPU, bandwidth availability,
memory availability, and energy. The task scheduler in the cloud server finds the
global best solution among the population through fitness. The virtual machine with
maximum availability of the resources is selected as the global best for executing a
certain task. The scheduler assigns the tasks to a particular virtual machine with
higher efficiency.

4.2 False-Positive Rate

It is measured as the ratio of a number of user-requested tasks that are in accurately
scheduled to the total number of tasks taken as input. The formula for calculating the
false-positive rate is expressed as in Equation 16,

Number of tasks are incorrectly scheduled

FPR = %100 (16)
[|

n

From (16),FPRrepresents the false-positive rate, ‘n’ represents the total number of
user-requested tasks. The false-positive rate is measured in percentage (%).

1314 S.Tamilsenthil and Dr. A. Kangaiammal

Table 2: False-Positive Rate

Number of User- False-Positive Rate (%)

Requested Tasks CSSA | HIGA | OLMDRODTS
30 13 17 10
60 12 15 8
90 13 16 8
120 14 17 10
150 15 18 11
180 14 16 10
210 15 18 11
240 13 17 8
270 12 15 7
300 14 17 9

Table 2 portrays the performance results of false-positive rate according to the
number of user requests 30 to 300. The result indicates that the OLMDRODTS
technique minimizes the incorrect task scheduling in a cloud environment than the
other existing methods. By considering 30user-requested tasks for experimentation in
the first run, 3 tasks are incorrectly scheduled and the false positive rate is 10% using
the OLMDRODTS technique. Followed by, the 4 and 5user-requested tasks are
incorrectly scheduled using CSSA [1] and HIGA [2], and data false positive rate
percentages are 13% and 17% respectively. Totally, ten runs are observed for each
method with a different number of user tasks. Finally, the observed result of the
proposed OLMDRODTS technique is compared with the results of existing methods.
The average of comparison results indicates that the false positive rate of the
OLMDRODTS technique is minimized by32% and 45% when compared to CSSA [1]
and HIGA [2] respectively. The performance result of the false positive rate is shown
in figure 3.

ra\ 20 T

S

E 15 - x l

2 10 H I] ‘ uCSSA

g | | TR (AR | | |

2 TR AR TR AT AR TR (A A T | =i

% ol I 'l Il

[| | |

L 0 OLMDRODTS
30 60 90 120150180 210240270300

Number of User Requested Tasks

Fig. 3. Graphical Representation of the False-Positive Rate

Figure 3 given above demonstrates the comparative analysis of the false-positive rate
of incorrect task scheduling in the cloud. As revealed in the chart, the ‘horizontal axis

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized... 1315

refers to the number of user-requested tasks and the vertical axis refers to the results
of the false-positive rate. From the graphical plot, it is inferred that the false-positive
rate of the OLMDRODTS technique is minimized than the other methods. This is
because the OLMDRODTS technique uses the oppositional learning concept to the
multi-objective dragonfly optimization for generating the opposite population along
with the current population to improve the fault tolerance. This process helps to find
the global optimum in the search space for assigning the tasks. Then the task
scheduler efficiently assigns the task to the virtual machine to minimize the false
positive rate.

4.3.Computation Overhead

Computation overhead is measured as a time taken to schedule the given tasks into the
resource optimized virtual machines. The computation overhead is measured using
the following equation 17.

CO = n * t(schedule one task) (17)

From (17), ‘CO" indicates a computation overhead, n’ indicates a total number of
tasks, and ‘t’ denotes a time taken to schedule the single task. The computation
overhead is measured in milliseconds (ms).

Table 3: Computation Overhead

Number of User- Computation Overhead (ms)

Requested Tasks = se A THIGA | OLMDRODTS
30 22 24 19
60 24 27 22
90 27 30 25
120 31 34 29
150 35 36 32
180 37 39 35
210 40 42 38
240 43 46 41
270 46 49 44
300 50 52 47

Table 3 reports the performance of computation overhead using three different
methods namely the OLMDRODTS technique and two existing methods CSSA [1]
and HIGA [2] with respect to the number of users requested tasks. From the tabulated
results, it is inferred that the computation overhead using the OLMDRODTS
technique is comparatively lesser than the [1] and [2]. Initially, the experiment is

1316 S.Tamilsenthil and Dr. A. Kangaiammal

conducted with 30 tasks, OLMDRODTS technique consumes the time of 19ms to
schedule the tasks. Similarly, the time consumption of the existing methods are 22ms
and 24ms. Likewise, the other remaining nine runs are carried out with different user-
requested tasks. The overall observed results indicate that the proposed
OLMDRODTS technique minimizes the computation overhead by 7% and 13% when
compared to existing methods. Figure 4 clearly illustrates the experimental results of
computation overhead versus a number of tasks. For each method, ten varieties of
results are observed. The time is found to be in the increasing trend for all the three
methods while increasing the number of tasks. But the results clearly show that the
computation overhead is found to be considerably minimized using the
OLMDRODTS technique as compared to existing scheduling techniques. This is due
to the application of oppositional learning concept and ranking to the Multi-objective
dragonfly optimization. The ranking method finds the local optimum from the
population. In order to perform the scheduling with more virtual machines, the
technique consumes more time. But the OLMDRODTS technique uses the ranking
method to sort the virtual machines based on the fitness. Finally, the global optimum
solution is determined from the local optimum. This process takes a minimum time
to find the resource-efficient virtual machine and it also reduces the scheduling time
of large number of tasks.

60 -

a1
o
1

N
o

| | uCSSA
I - ‘_ “_ — ..“‘|_. ‘i_.. ﬂ_.
A LA

|0 AN AR R I

N
o
1

mHIGA

[y
o
\

Y

— 1T T 1

4 OLMDRODTS

o
L

Computation C&\)/erhead (m
o

30 60 90 120 150 180 210 240 270 300
Number of User Requested Tasks

Fig. 4. Graphical Representation of Computation Overhead

4.4.Memory Consumption

Memory consumption is the amount of memory space taken by the virtual machine to
schedule the user tasks. The overall memory consumption is estimated as given in
Equation 18.

MC =nx*M (SST) (18)

Where MC represents a memory consumption, ‘n’ denotes a total number of user-
requested tasks, ‘M (SST)’ indicates the memory consumption to schedule the single-
user tasks and. Therefore, the overall memory consumption is measured in the unit of
megabytes (MB).

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized...

Table 4: Memory Consumption

Number of User- Memory Consumption (MB)
Requested Tasks | ' cssA | HIGA | OLMDRO
DTS
30 20 23 17
60 23 25 21
90 26 28 24
120 29 31 26
150 32 33 30
180 34 36 32
210 36 38 34
240 38 41 36
270 40 43 38
300 42 45 40
o 50 1
=
Z 40 -
g
E 30 CUECTHE THE T | scssa
g 20 - | ‘I Wl |‘| | LI
g 10 1IN w11 FW%W[— W 4OLMDRODTS
% 0. | |
30 60 90 120 150 180 210 240 270 300
Number of user requested tasks

Fig. 5. Graphical Representation of Memory Consumption

1317

Table 4 and Figure 5 given describe the performance of memory consumption using
three different methods namely the OLMDRODTS technique and two existing
methods namely CSSA [1] and HIGA [2] with respect to the number of tasks. Among
the three methods, the OLMDRODTS technique consumed lesser memory space for
scheduling the given user request to the cloud server. Initially, the experiment is
conducted with 30tasks, OLMDRODTS technique consumes the 17 MBmemory space
during the scheduling process whereas the space consumption of the CSSA [1] and
HIGA [2] are 20MB and 23MB respectively. Similarly, the remaining nine runs are
carried out and the results are compared. The average of ten results indicates the

1318 S.Tamilsenthil and Dr. A. Kangaiammal

memory consumption of the OLMDRODTS technique is significantly reduced by 7%
and 14% when compared to existing [1] and [2] respectively. This is due to the
proposed technique discovers the resource optimized virtual machine to schedule the
multiple heterogeneous user tasks.

5. CONCLUSION

In this research work, an efficient technique called the OLMDRODTS technique is
introduced for energy-efficient task scheduling process and dynamic resource
allocation in cloud environments. In the proposed task scheduling technique, the
oppositional learning concept is applied in the Multi-objective dragonfly optimization
to find the global optimum resource-efficient virtual machine based on the CPU time,
memory, bandwidth, and energy. The resource optimized virtual machine is selected
based on the fitness measure. Finally, a task scheduler in a cloud server assigns the
incoming tasks to the resource optimized virtual machine. Then the virtual machine
executes the assigned tasks with the minimum response time. To evaluate the
performance of the OLMDRODTS technique and other scheduling techniques, a
personal cloud dataset is implemented in the cloudsim simulator four different
metrics. The statistical analysis indicates that the OLMDRODTS technique provides
better performance for dynamically scheduling a large number of tasks with higher
efficiency and minimum overhead as well as memory consumption than the state-of-
the-art works.

REFERENCES

[1] M.S.Sanaj, P.M.Joe Prathap, “Nature inspired chaotic squirrel search algorithm
(CSSA) for multi objective task scheduling in an IAAS cloud computing
atmosphere”, Engineering Science and Technology, an International Journal,
Volume 23, Issue 4, 2020, Pages 891-902

[2] Mohan Sharma and Ritu Garg, “HIGA: Harmony-inspired genetic algorithm for
rack-aware energy-efficient task scheduling in cloud data centers”, Engineering
Science and Technology, an International Journal, Elsevier, Volume 23, Issue 1,
2020, Pages 211-22.

[3] J. Praveenchandar and A. Tamilarasi, “Dynamic resource allocation with
optimized task scheduling and improved power management in cloud computing”,
Journal of Ambient Intelligence and Humanized Computing, Springer, 2020,
Pages 1-13.

[4] Seema A. Alsaidy, Amenah D. Abbood, Mouayad A. Sahib, “Heuristic
initialization of PSO task scheduling algorithm in cloud computing”, Journal of
King Saud University - Computer and Information Sciences, Elsevier, 2020,
Pages 1-13.

Oppositional Learnt Multi-Objective Dragonfly Resource Optimized... 1319

[5] Shanchen Pang, Wenhao Li, Hua He, Zhiguang Shan, Xun Wang, “An EDA-GA
Hybrid Algorithm for Multi-Objective Task Scheduling in Cloud Computing”,
IEEE Access, Volume 7, 2019, Pages 146379 — 146389.

[6] Sarah E. Shukri, Rizik Al-Sayyed, Amjad Hudaib, Seyedali Mirjalili, “Enhanced
multi-verse optimizer for task scheduling in cloud computing environments”,
Expert Systems with Applications, 2020, Pages 1-30

[7] M.S.Sanaj and P.M.Joe Prathap, “An efficient approach to the map-reduce
framework and genetic algorithm based whale optimization algorithm for task
scheduling in cloud computing environment”, Materials Today: Proceedings,
Elsevier, 2020, Pages 1-10

[8] Xuan Chen, Long Cheng, Cong Liu, Qingzhi Liu, Jinwei Liu, Ying Mao, John
Murphy, “A WOA-Based Optimization Approach for Task Scheduling in Cloud
Computing Systems”, IEEE Systems Journal , Volume 14, Issue 3, 2020, Pages
3117 - 3128

[9] Xingwang Huang, Chaopeng Li, Hefeng Chen & Dong An, “Task scheduling in
cloud computing using particle swarm optimization with time varying inertia
weight strategies”, Cluster Computing, Springer, Volume 23, 2020, Pages 1137—
1147

[10] Reihaneh Khors and Mohammadreza Ramezanpour, “An energy-efficient
task-scheduling algorithm based on a multi-criteria decision-making method in
cloud computing”, International Journal of Communication Systems, Wiley,
Volume 33, Issue 9, 2020 , Pages 1-17

[11] Seyedakbar Mostafavi & Vesal Hakami, “A Stochastic Approximation
Approach for Foresighted Task Scheduling in Cloud Computing”, Wireless
Personal Communications, Springer, Volume 114, 2020, Pages 901-925.

[12] Ding Ding, Xiaocong Fan, Yihuan Zhao, Kaixuan Kang, Qian Yin, Jing
Zeng,“Q-learning based dynamic task scheduling for energy-efficient cloud

computing”, Future Generation Computer Systems, Elsevier, Volume 108,
2020,Pages 361-371.

[13] Harvinder Singh, Sanjay Tyagi, Pardeep Kumar, “Crow—penguin optimizer
formultiobjective task scheduling strategy in cloud computing”, International
Journal of Communication Systems, Wiley, Volume 33, Issue 14, 2020, Pages 1-
18.

[14] Belal Ali Al-Maytami, Pingzhi Fan, Abir Hussain, Thar Baker, Panos Liatsis,
“A Task Scheduling Algorithm With Improved Makespan Based on Prediction of

Tasks Computation Time algorithm for Cloud Computing”, IEEE Access, Volume
7, 2019, Pages 160916 — 160926.

[15] T. Prem Jacob & K. Pradeep, “A Multi-objective Optimal Task Scheduling in
Cloud Environment Using Cuckoo Particle Swarm Optimization”, Wireless
Personal Communications, Springer, Volume 109, 2019, Pages 315-331.

1320 S.Tamilsenthil and Dr. A. Kangaiammal

[16] Mitali Bansal and Sanjay Kumar Malik, “A multi-faceted optimization
scheduling framework based on the particle swarm optimization algorithm in
cloud computing”, Sustainable Computing: Informatics and Systems, Elsevier,
Volume 28, 2020, pages 1-8.

[17] Ligiong Chen, Kun Guo, Guoging Fan, Can Wang, Shilong Song,
“ResourceConstrained Profit Optimization Method for Task Scheduling in Edge
Cloud”,IEEE Access Volume 8, 2020, Pages 118638 — 118652.

[18] Yi Gu and Chandu Budati, “Energy-aware workflow scheduling and
optimizationin clouds using bat algorithm”, Future Generation Computer Systems,
Volume 113, 2020, Pages 106-112.

[19] Shridhar G. Domanal, Ram Mohana Reddy Guddeti, Rajkumar Buyya, “A
HybridBio-Inspired Algorithm for Scheduling and Resource Management in

Cloud Environment”, IEEE Transactions on Services Computing, Volume 13,
Issue 1, 2020, Pages 3 — 15.

[20] Tingting Dong, Fei Xue, Chuangbai Xiao, Juntao Li, “Task scheduling based
ondeep reinforcement learning in a cloud manufacturing environment”,
Concurrency and Computation: Practice and Experience, Wiley, Volume 32,
Issue 11, 2020, Pages 1-12.

