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Abstract

It has been shown in recent decades that grouping strategies can help reduce the
spectral radius of the generated matrix resulting from the discretization of partial
differential equations (PDEs) using finite difference techniques. As a result of this
reduction of the spectral radius, the convergence rates of the iterative algorithms
were increased. This paper will present the development and formulation of nine
explicit groups SOR/AOR methods for solving Elliptic PDEs. The convergence
analysis of the proposed method will be introduced. In addition, numerical
experiments will be conducted to show the most superior Explicit Group method
for solving PDEs of Elliptic Type.

Keywords: Poisson’s and Laplace’s equations; SOR and AOR Methods; Nine-
Point Group Method.

2021 MSC: 34A08; 34B15; 34A12; 47H10.

1. INTRODUCTION:

The partial differential equations arise in many applications, such as elasticity, fluid
mechanics, and many other areas [1]-[5]. In the last few years, improved techniques
have been developed to resolve the linear systems resulting from the discernment of the
partial differential equations by using explicit group methods derived from the standard
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and rotated finite differential operators [6]-[12]. For improving the convergence
rate of these group methods, many strategies and iterative methods mentioned in
the literature have been used [13]-[15]. The investigation of the effectiveness of 4-
point Explicit Group Successive Over-Relaxation (EGSOR), 4-point Explicit Group
Accelerated Over- Relaxation (EGAOR) have been done in recent years [16]. This study
introduced the combination of 4 explicit groups with SOR and AOR methods, giving
us encouraging results. It found that AOR is superior to SOR despite computational
effort more than SOR due to the look completion and iteration and execution time
reduction. This research will focus on the development formulation of a nine-point
explicit group with the AOR iterative method. Furthermore, we will compare our results
with a precise study that uses an explicit group with SOR to solve the two-dimensional
elliptic (Laplace and Poisson) equations.

Consider 2D-Poisson equation as:

∇
2u =

∂ 2u
∂x2 +

∂ 2u
∂y2 = f (x,y), (x,y) ∈ Ω. (1.1)

with specific Dirichlet boundary conditions U(x,y) = g(x,y), (x,y) ∈ ∂Ω. At the point
(xi,y j), equation (1.1) can be roughly approximated. Suppose a rectangular grid at
this point (xi,y j) plane with equal grid spacing h is used in both directions x = ih,y =
jh(i, j = 0,1, . . .N) by neglecting the terms of O(h2), we get the simplest approximation
of (1.1), known as the five-point standard formulation:

ui, j+1 +ui, j−1 +ui+1, j +ui−1, j −4ui j = h2 fi j. (1.2)

An accurate analysis of convergence properties of the SOR and AOR methods is
possible if the matrix A is consistently ordered in the following sense

Definition 1.1. A matrix A is a generalized (q,r)-consistently ordered matrix (a
GCO(q,r)-matrix) if ∆ = det(αqE +α−rF − kD) is independent of α for all α ̸= 0 and
for all k. Here, D = diag A and E and F are strictly lower and strictly upper triangular
matrices, respectively, such that: A = D−E −F.

Definition 1.2. [21] A matrix A of the form eq(3.1) is said to be generally consistently
ordered (π ,q,r) or simply GCO (π ,q,r), where q and r are positive integers, if for the
partitioning π of A the diagonal submatrices A(ii), i = 1,2, .., p(≥ 2), are non-singular,
and the eigenvalues of BJ(α) = αrL+α−qU are indpendent of α , for all α ̸= 0, where
L and U are strict blocks lower and upper triangular parts of A, respectively.

This work aims to find the most efficient group method for solving elliptic partial
differential equations. For this purpose, the formulation of nine explicit groups (NEG)
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with the AOR iterative method will be presented. Furthermore, we will compare the
four-point group and nine-point group SOR iterative methods with the four-point group
and nine-point group AOR iterative methods.

The following is the contour of this paper: Section 2 provides an overview of the
Improvement of the accuracy of the differential equation. Then, convergence analysis
related to the studied group methods will be introduced in section 3. In section 4,
the formulation of nine explicit groups SOR methods will be given to solve Poisson’s
Equation. The formulation of nine explicit groups AOR method will be introduced in
section 5. In section 6, illustrative examples to justify the results will be presented. The
final remarks, discussion, and conclusions will be given in sections 7 and 8, respectively.

2. IMPROVEMENT OF THE ACCURACY:

The accuracy of the differential equation can also be enhanced by using a higher-
order finite-difference approximation that minimizes truncation error[17]. Laplace’s
and Poisson’s equations were introduced and listed in[18]. Its derivative mode
is indicated below by establishing a nine-point finite difference approximation to
Poisson’s equation, which has a truncation error of order h4.
Denote the Laplacian

∇
2u =

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0, (x,y) ∈ Ω (2.1)

and let

ξ = h
∂

∂x
,η = h

∂

∂y
,ϑ

2 = h
∂ 2

∂x∂y
,

So that

ξ
2 +η

2 = h2
∇

2, ξ η = h2
ϑ

2,

ξ
4 +η

4 =
(
ξ

2 +η
2)2 −2ξ

2
η

2 = h4 (
∇

4 −2ϑ
4) .

As Taylor’s series can be written as

U(x+h) = (1+h
d
dx

+ . . .+
hn

n!
dn

dxn + . . .)U (x) =
(

eh(d/dx)
)

U (x) ,

It follows that

U1 = eξU0,U2 = eηU0,U3 = e−ξU0,U1 = eξU0,U5 = eξ+ηU0, ... .

Since in their derivatives the equation of Poisson is symmetric, the following
symmetrical sums are determined;

S1 =U1 +U2 +U3 +U4,S2 =U5 +U6 +U7 +U8,



1482 Abdulkafi Mohammed Saeed, Najah Mohammad Fahad AL-harb

and

S3 =U9 +U10 +U11 +U12.

It can be shown that U1,U2 . . . is substituted by U0 as the following

S1 = 4U0 +h2
∇

2U0 +
1

12
h4 (

∇
4 −2ϑ

4)U0 +
1

360
h6(∇6 −3ϑ

2
∇

2)U0 + . . . ,

S2 = 4U0 +h2
∇

2U0 +
1
6

h4 (
∇

4 +4ϑ
4)U0 +

1
180

h6(∇6 +12ϑ
4
∇

2)U0 + . . . ,

S3 = 4U0 +4h2
∇

2U0 +
4
3

h4 (
∇

4 −2ϑ
4)U0 +

8
45

h6(∇6 −3ϑ
4
∇

2)U0 + . . . ,

(2.2)

Between S1 and S2 is eliminated of ϑ 4U0 , resulting in

∇
2U0 =

4S1 +S2 −20U0

6h2 − 1
12

h2
∇

4U0 +O
(
h4) .

The second term at the right for Poisson’s equation is known as ∇2U = f , so∇4U =

∇2 f . The coefficients of h2 and h4 disappear from Laplace’s equation. Thus, a finitely
different representation of Laplace’s equation of nine points is more precise since the
order of the error truncates it in S1 −4u0 = 0 is of order h2. The most convenient way
of exhibiting this nine-point formula approximating Poisson’s equation ∇2u = f , is by
the ’molecular’ display 1 4 1

4 −20 4
1 4 1

u = 6h2 f +
1
2

h4
∇

2 f .

3. CONVERGENCE ANALYSIS

In this section, we will introduce several preliminary relevant theorems and lemmas,
which are needed to prove the convergence properties of the solution resulting from
the mentioned iterative methods. The spectral radius of a matrix is denoted by ρ(.) ,
which is defined as the largest of the moduli of the eigenvalues of the iteration matrix.
This spectral radius of a matrix plays an important role in studying these convergence
properties [19]-[20].

It can be seen that the resulted coefficient block matrix A of AU=B obtained from
the discretization of 4- and 9- point group iterative methods can be partitioned in the
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following block form :

Am =



Am11 Am12

Am21 Am22 Am23

Am32 Am33
. . .

. . . . . . Am(p−1)p

Amp(p−1) Ampp


(3.1)

with p = (N-2), where Amii ∉⊂
ni,ni
π,p , i = 1,2,. . . ,p, and ∑

p
i=1 ni = n. Let Am = Dm −Em −

Fm, where Dm = diag(Am11,Am22, ...,Ampp) and

Em = Emi j =

{
−Ami j for j < i
0 for j ≥ i,

, Fm = Fmi j =

{
−Ami j for j > i
0 for j ≤ i,

(3.2)

Are block matrices consisting of the block diagonal, strict block lower triangular,
and strict block upper triangular parts of A. Here, the diagonal entries Amii are
nonsingular. The block Jacobi iteration matrix is BJ(Am) = Dm

−1(Em+Fm) = Lm+Um,

where Lm = D−1
m Em, Um = D−1

m Fm, while the block Gauss-seidel iteration matrix is
BGS(Am) = (Im −Lm)

−1Um. The Block Successive Over-Relaxation method (BSOR)
iteration matrix is therefore

Tℓw = (Im −wLm)
−1{(1−w)Im +wUm} (3.3)

The general form of BSOR is called the Block Accelerated Over-Relaxation (BAOR)
method, and it can be written as:

Tℓr,ω = (Im − rDm
−1Lm)

−1
[(1−ω)Im +(ω − r)Dm

−1Lm +ωDm
−1Um] (3.4)

Since the matrix A of Eq.( 3.1) is π- consistently ordered and possesses property A(π),
the theory of block SOR is valid for this iterative method and, therefore, convergent [6].

Lemma 3.1. [22] Suppose Am = Im–Lm–Um is a GCO(π ,q,r), where –Lm and –Um are
strictly lower and upper triangular matrices, respectively. Let Tℓw be the block iteration
matrix of the SOR method given by Eq (3.3). If 1 < w < 2, then the block SOR method
converges, that is. ρ(Tℓw)< 1.

Proof. Let the matrix A with partitioning π be given as in (3.1) and let the block SOR
iteration matrix Tℓw be given as in (3.3),
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Set B′
ℓw

= (I −|wLm|)−1{|1−w| Im + |w| |Um|}
Clearly, we can see that |Tℓw| < B′

ℓw
and hence we can conclude that ρ(Tℓw) ⩽ ρ(B′

ℓw
).

By assumption that B′
ℓw
= M̄−1

m N̄m, it can be proved that ρ(B′
ℓw
)< 1. Hence, ρ(Tℓw)< 1,

which completes the proof.

Theorem 3.1. [23] Let A be the coefficient matrix of the following system of equations

Ax = b (3.5)

, and be an element of the matrix set G of G={A∈Cn,n/|BA|= |L|+ |U | is aGCO(s,q)−
matrix}, Then, for any r and ω satisfying:{

0 < ω < 2
(|1−ω + r|+ |1− r|)q(1+ |1−ω|)s

µ̄ p < π(2−ω)p,
(3.6)

where p := s+ q and µ̄ := ρ(BA), the block AOR method, applied to the matrix of
equation Eq (3.5) ,converges (ρ(Tℓr,ω )< 1).

Proof. The block AOR method, applied to the matrix equation Ax = b,is, as usual,
defined by


x(m+1) = ℓr,ωx(m)+ cr,ω , m = 0,1,2, ...
ℓr,ω ≡ ℓA

r,ω := (I − rL)−1[(I −ω)I +(ω − r)L+ωU ]

cr,ω := ω(I − rL)−1D−1b
(3.7)

when (r,ω) = (0,1),(1,1) and (ω,ω) the AOR method is reduced to Jacobi, Gauss-
Seidel, and SOR methods, in that order.

ℓr,ω = I −ω(I − rL)−1D−1Aandcr,ω = (I − ℓr,ω)A−1b (3.8)

The convergence domains for the following preconditioned iterative methods,

ℑr = (I − rL)−1D−1 A = (I − rL)−1(I −L−U) (3.9)

can be determined if and only if λ andτ are eigenvalues of ℓr,ω and ℑr respectively with,

λ = 1−ωτ (3.10)

Moreover, it can be seen that

ρ(ℓr,ω)≺ 1i f f τ ̸= 0and |1−ωτ| ≺ 1. (3.11)
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Let the matrices M,N,M̃andÑ be defined by
M := I − zL− ẑU
N := (1− z)L+(1− ẑ)U
M̃ := I −|z| |L|− |ẑ| |U |
Ñ := |1− z| |L|+ |1− ẑ| |U |

(3.12)

where zand ẑ are any complex-valued parameters. Satisfying

(|z|+ |1− z|)q(|ẑ|+ |1− ẑ|)s
µ̄

p ≺ 1, (3.13)

there holds

ρ(M−1N)≤ ρ(M̃−1Ñ)≺ 1, (3.14)

assuming now that z satisfies

z = 1− (1− ẑ)(1− r), ẑ ̸= 1 (3.15)

it is thus apparent that, for all zandẑ satisfying (3.12) and (3.14), indicates that∣∣∣∣∣ 1− τ

1+ ẑ
1−ẑτ

∣∣∣∣∣≺ 1, (3.16)

for any eigenvalue τo f ℑr of (3.9), this relationship implies that τ ̸= 0 and that, for
ẑ ≺ 1,

2Re(τ)

|τ|2
≻ 1− ẑ

1− ẑ
. (3.17)

A combination of (3.11) and (3.17) yields that, for all satisfying
(|z|+ |1− z|)q(|ẑ|+ |1− ẑ|)s

µ̄ p < 1
z = 1− (1− ẑ)(1− r)
ẑ ≤ (1−ω)/(2−ω), 0 < ω < 2,

(3.18)

when zandẑ is set, z = 1−ω+r
2−ω

and ẑ = 1−ω

2−ω
observe that (3.18) holds for all randω

satisfying (3.6), and hence the proof follows.

4. FORMULATION OF NINE EXPLICIT GROUP SOR METHOD

In the group 9-point method, the mesh points are grouped in blocks of nine. The points
involved in updating are also using the standard five-point formula. The solution domain
is divided into groups of nine points. In matrix notation, the system of nine equations
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can be written as

4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4





ui j

ui+1, j

ui+2, j

ui, j+1

ui+1, j+1

ui+2, j+1

ui, j+2

ui+1, j+2

ui+2, j+2


=



ui−1, j +ui, j−1 −h2 fi j

ui+1, j−1 −h2 fi+1, j

ui+2, j−1 +ui+3, j −h2 fi+2, j

ui−1, j+1 −h2 fi, j+1

−h2 fi+1, j+1

ui+3, j+1 −h2 fi+2, j+1

ui−1, j+2 +ui, j+3 −h2 fi, j+2

ui+1, j+3 −h2 fi+1, j+2

ui+3, j+2 +ui+2, j+3 −h2 fi+2, j+2


(4.1)

The inverse form of the above system is:

ui j

ui+1, j

ui+2, j

ui, j+1

ui+1, j+1

ui+2, j+1

ui, j+2

ui+1, j+2

ui+2, j+2


=



67
224

22
224

7
224

22
224

14
224

22
224

22
224

22
224

22
224

11
112

37
112

11
112

7
112

14
112

7
112

3
112

5
112

3
112

7
224

22
224

67
224

6
224

14
224

22
224

3
224

6
224

7
224

11
112

7
112

3
112

37
112

14
112

5
112

11
112

7
112

3
112

1
16

2
16

1
16

2
16

6
16

2
16

1
16

2
16

1
16

3
112

7
112

11
112

5
112

14
112

37
112

3
112

7
112

11
112

7
224

6
224

3
224

22
224

14
224

6
224

67
224

22
224

7
224

3
112

5
112

3
112

7
112

14
112

7
112

11
112

37
112

11
112

3
224

6
224

7
224

6
224

14
224

22
224

7
224

22
224

67
224





ui−1, j +ui, j−1 −h2 fi j

ui+1, j−1 −h2 fi+1, j

ui+2, j−1 +ui+3, j −h2 fi+2, j

ui−1, j+1 −h2 fi, j+1

−h2 fi+1, j+1

ui+3, j+1 −h2 fi+2, j+1

ui−1, j+2 +ui, j+3 −h2 fi, j+2

ui+1, j+3 −h2 fi+1, j+2

ui+3, j+2 +ui+2, j+3 −h2 fi+2, j+2


Hence, the explicit 9-point group iterative equations are given by:

ui j =
1

224
[67t1 +22t2 +7t7 −14t0 +6t5 +3t6],

ui+1, j =
1

112
[37t19 +11t8 +7t9 −14t0 +5t20 +3t10],

ui+2, j =
1

224
[67t3 +22t13 +7t18 −14t0 +6t14 +3t4],

ui, j+1 =
1

112
[37t21 +11t15 +7t16 −14t0 +5t22 +3t17],

ui+1, j+1 =
1
16

[2t11 −6t0 + t12],

ui+2, j+1 =
1

112
[37t22 +11t17 +7t16 −14t0 +5t21 +3t15],

ui, j+2 =
1

224
[67t4 +22t14 +7t18 −14t0 +6t13 +3t3],

ui+1, j+2 =
1

112
[37t20 +11t10 +7t9 −14t0 +5t19 +3t8],

ui+2, j+2 =
1

224
[67t6 +22t5 +7t7 −14t0 +6t2 +3t1]

(4.2)

where:

t0 = h2 fi+1, j+1, t1 = ui−1, j +ui, j−1 −h2 fi+1, j+1,
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t2 = ui+1, j−1 +ui−1, j+1 −h2 fi+1, j −h2 fi, j+1, t3 = ui+2, j−1 +ui+3, j −h2 fi+2, j,

t4 = ui−1, j+2 +ui, j+3 −h2 fi, j+2, t5 = ui+3, j+1 +ui+1, j+3 −h2 fi+2, j+1 −h2 fi+1, j+2,

t6 = ui+3, j+2 +ui+2, j+3 −h2 fi+2, j+2, t7 = t3 + t4,

t8 = t1 + t3, t9 = ui+3, j+1 +ui−1, j+1 −h2 fi+2, j+1 −h2 fi, j+1,

t10 = t4 + t6, t11 = t2 + t5,

t12 = t8 + t10, t13 = ui+1, j−1 +ui+3, j+1 −h2 fi+1, j −h2 fi+2, j+1,

t14 = ui−1, j+1 +ui+1, j+3 −h2 fi, j+1 −h2 fi+1, j+2, t15 = t1 + t4,

t16 = ui+1, j−1 +ui+1, j+3 −h2 fi+1, j −h2 fi+1, j+2, t17 = t3 + t6,

t18 = t1 + t6, t19 = ui+1, j−1 −h2 fi+1, j,

t20 = ui+1, j+3 −h2 fi+1, j+2, t21 = ui−1, j+1 −h2 fi, j+1,

t22 = ui+3, j+1 −h2 fi+2, j+1.

The nine-point group was also performed by Evans & Yousif [10]. This method
proceeds with an iterative evaluation of the solution in nine points throughout the
entire solution domain using all nine equations (4.2). The process is continued until
convergence is achieved. It is well known that the AOR method is a general form of
SOR method due to the two accelerating parameters which including in its scheme. In
the following section, the combination of nine-point group scheme with AOR method
will be formulated to obtain more superior method than the original one.

5. FORMULATION OF NINE EXPLICIT GROUP AOR METHOD

In this section, we present the construction of a nine-point group AOR iterative
scheme. We know that AOR iterative scheme can easily be generated if we know the
corresponding SOR iterative scheme. For example, from equation (4.2), we can build
the nine-point SOR iterative scheme as follows:

u(k+1)
i j =

1
224

[ω(67t1 +22t2 +7t7 −14t0 +6t5 +3t6)]+(1−ω)u(k)i j ,

u(k+1)
i+1, j =

1
112

[ω(37t19 +11t8 +7t9 −14t0 +5t20 +3t10)]+(1−ω)u(k)i+1, j,

u(k+1)
i+2, j =

1
224

[ω(67t3 +22t13 +7t18 −14t0 +6t14 +3t4)]+(1−ω)u(k)i+2, j,

u(k+1)
i, j+1 =

1
112

[ω(37t21 +11t15 +7t16 −14t0 +5t22 +3t17)]+(1−ω)u(k)i, j+1,

u(k+1)
i+1, j+1 =

1
16

[ω(2t11 −6t0 + t12)]+(1−ω)u(k)i+1, j+1,

u(k+1)
i+2, j+1 =

1
112

[ω(37t22 +11t17 +7t16 −14t0 +5t21 +3t15)]+(1−ω)u(k)i+2, j+1,

u(k+1)
i, j+2 =

1
224

[ω(67t4 +22t14 +7t18 −14t0 +6t13 +3t3)]+(1−ω)u(k)i, j+2,
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u(k+1)
i+1, j+2 =

1
112

[ω(37t20 +11t10 +7t9 −14t0 +5t19 +3t8)]+(1−ω)u(k)i+1, j+2,

u(k+1)
i+2, j+2 =

1
224

[ω(67t6 +22t5 +7t7 −14t0 +6t2 +3t1)]+(1−ω)u(k)i+2, j+2,

(5.1)

where

t0 = h2 fi+1, j+1, t1 = u(k+1)
i−1, j +u(k+1)

i, j−1 −h2 fi, j,

t2 = u(k+1)
i+1, j−1 +u(k+1)

i−1, j+1 −h2 fi+1, j −h2 fi, j+1, t3 = u(k+1)
i+2, j−1 +u(k)i+3, j −h2 fi+3, j −h2 fi+2, j,

t4 = u(k+1)
i−1, j+2 +u(k)i, j+3 −h2 fi, j+2, t5 = u(k)i+3, j+1 +u(k)i+1, j+3 −h2 fi+2, j+1 −h2 fi+1, j+2,

t6 = u(k)i+2, j+2 +u(k)i+2, j+3 −h2 fi+2, j+2, t7 = t3 + t4,

t8 = t1 + t3, t9 = u(k)i+3, j+1 +u(k+1)
i−1, j+1 −h2 fi+2, j+1 −h2 fi, j+1,

t10 = t4 + t6, t11 = t2 + t5,

t12 = t8 + t10, t13 = u(k+1)
i+1, j−1 +u(k)i+3, j+1 −h2 fi+1, j −h2 fi+2, j+1,

t14 = u(k+1)
i−1, j+1 +u(k)i+1, j+3 −h2 fi, j+1 −h2 fi+1, j+2, t15 = t1 + t4,

t16 = u(k+1)
i+1, j−1 +u(k)i+1, j+3 −h2 fi+1, j −h2 fi+1, j+2, t17 = t3 + t6,

t18 = t1 + t6, t19 = u(k+1)
i+1, j−1 −h2 fi+1, j,

t20 = u(k)i+1, j+3 −h2 fi+1, j+2, t21 = u(k+1)
i−1, j+1 −h2 fi, j+1,

t22 = u(k)i+3, j+1 −h2 fi+2, j+1,

The coefficient for expressions u(k+1)
i−1, j ,u

(k+1)
i+1, j−1,u

(k+1)
i+1, j−1,u

(k+1)
i+2, j−1,u

(k+1)
i−1, j+2 and u(k+1)

i−1, j+1
contained in L. To construct the AOR scheme, we have to change these expressions to
u(k)i−1, j,u

(k)
i+1, j−1,u

(k)
i+1, j−1,u

(k)
i+2, j−1,u

(k)
i−1, j+2 and u(k)i−1, j+1. After that, add expressions αr(u(k+1)

i−1, j −
u(k)i−1, j),αr(u(k+1)

i, j−1 −u(k)i, j−1),αr(u(k+1)
i+1, j−1 −u(k)i+1, j−1),

αr(u(k+1)
i+2, j−1 − u(k)i+2, j−1),αr(u(k+1)

i−1, j+2 − u(k)i−1, j+2) and αr(u(k+1)
i−1, j+1 − u(k)i−1, j+1) correspond the SOR

iterative scheme, where the coefficient is for those expressions. Hence, nine-point group
AOR iterative scheme can be written as:

u(k+1)
i j =

1
224

[ω(67t1 +22t2 +7t7 −14t0 +6t5 +3t6)+ r(67c7 +22c8 +7c9]+ (1−ω)u(k)i j ,

u(k+1)
i+1, j =

1
112

[ω(37t19 +11t8 +7t9 −14t0 +5t20 +3t10)+ r(37c3 +11c10 +7c4 +3c6]+ (1−ω)u(k)i+1, j,

u(k+1)
i+2, j =

1
224

[ω(67t3 +22t13 +7t18 −14t0 +6t14 +3t4)+ r(67c5 +22c3 +7c7 +6c4 +3c6]+ (1−ω)u(k)i+2, j,

u(k+1)
i, j+1 =

1
112

[ω(37t21 +11t15 +7t16 −14t0 +5t22 +3t17)+ r(37c4 +11c12 +7c3 +3c5]+ (1−ω)u(k)i, j+1,

u(k+1)
i+1, j+1 =

1
16

[ω(2t11 −6t0 + t12)+ r(2c8 + c11]+ (1−ω)u(k)i+1, j+1,

u(k+1)
i+2, j+1 =

1
112

[ω(37t22 +11t17 +7t16 −14t0 +5t21 +3t15)+ r(11c5 +7c3 +5c4 +3c12]+ (1−ω)u(k)i+2, j+1,
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u(k+1)
i, j+2 =

1
224

[ω(67t4 +22t14 +7t18 −14t0 +6t13 +3t3)+ r(67c6 +22c4 +7c7 +6c3 +3c5]+ (1−ω)u(k)i, j+2,

u(k+1)
i+1, j+2 =

1
112

[ω(37t20 +11t10 +7t9 −14t0 +5t19 +3t8)+ r(11c6 +7c4 +5c3 +3c10]+ (1−ω)u(k)i+1, j+2,

u(k+1)
i+2, j+2 =

1
224

[ω(67t6 +22t5 +7t7 −14t0 +6t2 +3t1)+ r(7c9 +6c8 +3c7]+ (1−ω)u(k)i+2, j+2

(5.2)

where

t0 = h2 fi+1, j+1, t1 = u(k)i−1, j +u(k)i, j−1 −h2 fi, j,

t2 = u(k)i+1, j−1 +u(k)i−1, j+1 −h2 fi+1, j −h2 fi, j+1, t3 = u(k)i+2, j−1 +u(k)i+3, j −h2 fi+3, j −h2 fi+2, j,

t4 = u(k)i−1, j+2 +u(k)i, j+3 −h2 fi, j+2, t5 = u(k)i+3, j+1 +u(k)i+1, j+3 −h2 fi+2, j+1 −h2 fi+1, j+2,

t6 = u(k)i+2, j+2 +u(k)i+2, j+3 −h2 fi+2, j+2, t7 = t3 + t4,

t8 = t1 + t3 t9 = u(k)i+3, j+1 +u(k)i−1, j+1 −h2 fi+2, j+1 −h2 fi, j+1,

t10 = t4 + t6, t11 = t2 + t5,

t12 = t8 + t10, t13 = u(k)i+1, j−1 +u(k)i+3, j+1 −h2 fi+1, j −h2 fi+2, j+1,

t14 = u(k)i−1, j+1 +u(k)i+1, j+3 −h2 fi, j+1 −h2 fi+1, j+2, t15 = t1 + t4,

t16 = u(k)i+1, j−1 +u(k)i+1, j+3 −h2 fi+1, j −h2 fi+1, j+2, t17 = t3 + t6,

t18 = t1 + t6, t19 = u(k)i+1, j−1 −h2 fi+1, j,

t20 = u(k)i+1, j+3 −h2 fi+1, j+2, t21 = u(k)i−1, j+1 −h2 fi, j+1,

t22 = u(k)i+3, j+1 −h2 fi+2, j+1, c1 = u(k+1)
i−1, j −u(k)i−1, j,

c2 = u(k+1)
i, j−1 −u(k)i, j−1, c3 = u(k+1)

i+1, j−1 −u(k)i+1, j−1,

c4 = u(k+1)
i−1, j+1 −u(k)i−1, j+1, c5 = u(k+1)

i+2, j−1 −u(k)i+2, j−1,

c6 = u(k+1)
i−1, j+2 −u(k)i−1, j+2, c7 = c1 + c2,

c8 = c3 + c4, c9 = c5 + c6,

c10 = c5 + c7, c11 = c10 + c6,

c12 = c6 + c7.

After constructing the AOR scheme for each method, we see that the nine-point group
iterative scheme is the most complicated scheme. This is because it involves many
variables and expressions. However, as mentioned in section 2, this proposed scheme
has more accuracy than the other four-point group scheme. Furthermore, the superiority
of the 9-point EGAOR scheme for solving the 2D Poisson and Laplace equations in
terms of the number of iterations and execution time will be justified from the following
numerical experiments.
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6. ILLUSTRATIVE EXAMPLES

To compare the four-point group and nine-point group iterative methods, some
numerical experiments have been performed. These methods were implemented to two
model examples like the following,

Example 6.1. Consider the Poisson equation,

∇
2u =

∂ 2u
∂x2 +

∂ 2u
∂y2 = (x2 + y2)exy, (6.1)

with u(x,0) = u(0,y) = 1, u(x,1) = ex,u(1,y) = ey,0 ≤ x,y ≤ 1.
The exact solution for this problem is u(x,y) = exy.

Example 6.2. Consider the Laplace equation,

∇
2u =

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0, (x,y) ∈ Ω, (6.2)

with the Dirichlet boundary conditions

u(x,0) = sinπx 0 ≤ x ≤ 1,

u(0,y) = u(1,y) = u(x,1) = 0 0 ≤ x,y ≤ 1,

The exact solution for this problem is u(x,y) = sinπx{coshπy−
(coshπ

sinhπ

)
sinhπy}.

The tolerance used was ε = 10−5 , and the parameter acceleration ω was chosen to
give the smallest number of iterations between 1 and 2.The computer processing unit
was Intel(R) Core(TM) i7- 7500U CPU with a memory of 8 Gb, and the software used
to implement and generate the results was MATLAB. We have computed the average
absolute errors and record the number of iterations and elapsed time for convergence
with different sizes of grids. Furthermore, the spectral radius of the resulted matrices
will be calculated for all tested group iterative methods. Due to the Matlab program’s
use, a larger number of processors were used in this experiment 12, 46,86, 106, 146,
186, 226, 350, and 426.
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Table 1: Comparison of four-point EGSOR and nine-point EGSOR iterative methods
of the Poisson equation (Example 1)

Four-Point Group (SOR) Nine-Point Group (SOR)

N ω k t ρ(J) E ω k t ρ(J) E
12 1.3520 22 0.021156 0.9184 6.2312e−06 1.3520 13 0.0135 0.8776 3.5391e−06
46 1.7846 76 0.040845 0.9951 9.6553e−06 1.7846 51 0.0197 0.9927 6.9877e−06
86 1.8797 138 0.106233 0.9986 9.3103e−06 1.8797 111 0.0454 0.9980 8.7251e−06
106 1.9015 169 0.174041 0.9991 8.1532e−06 1.9015 117 0.0700 0.9987 8.2433e−06
146 1.9277 227 0.181077 0.9995 9.1567e−06 1.9277 182 0.2253 0.9993 8.0770e−06
186 1.9429 287 0.227092 0.9997 9.7462e−06 1.9429 206 0.3259 0.9996 9.4477e−06
226 1.9528 344 0.309206 0.9998 9.6445e−06 1.9528 252 0.3628 0.9997 9.6069e−06
350 1.9693 528 0.796697 0.9999 9.5333e−06 1.9693 418 0.7957 0.9999 9.7627e−06
426 1.9747 644 2.142877 0.9999 9.3794e−06 1.9747 476 1.5589 0.9999 9.5685e−06

Table 2: Comparison of four-point EGAOR and nine-point EGAOR iterative methods
of the Poisson equation (Example 1)

Four-Point Group (AOR )

N ω r k t ρ(J) E
12 1.4331 1.4537 17 0.0085s 0.9184 9.7737e−06
46 1.792−1.763 1.8270 69 0.0261s 0.9951 9.8840e−06
86 1.847−1.853 1.9050 124 0.0920s 0.9986 9.9985e−06
106 1.880−1.867 1.9220 152 0.0990s 0.9991 9.8045e−06
146 1.903−1.843 1.9430 208 0.1782s 0.9995 9.8531e−06
186 1.919−1.917 1.9550 263 0.2521s 0.9997 9.9905e−06
226 1.931−1.927 1.9620 318 0.4317s 0.9998 9.9684e−06
350 1.954−1952 1.9753 488 0.9133s 0.9999 9.9444e−06
426 1.935−1.929 1.9800 587 1.9163s 0.9999 9.9413e−06
Nine-Point Group (AOR)
N ω r k t ρ(J) E
12 1.365−1.305 1.3780 13 0.0016s 0.8776 0
46 1.779−1.760 1.7780 48 0.0346s 0.9927 9.9268e−06
86 1.800−1.846 1.8840 100 0.0473s 0.9986 9.9778e−06
106 1.871−1.895 1.9000 111 0.1890s 0.9987 9.2575e−06
146 1.901−1.879 1.9300 166 0.3660s 0.9987 9.9082e−06
186 1.939−1.900 1.9410 194 0.5760s 0.9997 9.1504e−06
226 1.898−1.895 1.9510 231 0.6791s 0.9997 9.9932e−06
350 1.915−1913 1.9710 384 0.9233s 0.9999 9.6516e−06
426 1.905−1.861 1.9740 404 2.7046s 0.9999 9.9758e−06
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Table 3: Comparison of four-point EGSOR and nine-point EGSOR iterative methods
of the Laplace equation (Example 2)

Four-Point Group (SOR) Nine-Point Group (SOR)

N ω k t ρ(J) E ω k t ρ(J) E
12 1.3520 17 0.020608 0.9184 8.9420e−06 1.3520 12 0.0111 0.8776 5.8474e−06
46 1.7846 59 0.024852 0.9951 9.3668e−06 1.7846 48 0.0249 0.9927 9.3343e−06
86 1.8797 109 0.074012 0.9986 8.8669e−06 1.8797 91 0.0616 0.9980 7.0504e−06
106 1.9015 136 0.195734 0.9991 9.6677e−06 1.9015 113 0.1426 0.9987 9.3321e−06
146 1.9277 187 0.350675 0.9995 8.9961e−06 1.9277 152 0.2990 0.9993 9.8924e−06
186 1.9429 238 0.370068 0.9997 8.7862e−06 1.9429 195 0.5102 0.9996 9.3307e−06
226 1.9528 288 0.485994 0.9998 9.4881e−06 1.9528 240 0.6482 0.9997 9.9608e−06
350 1.9693 445 0.917831 0.9999 9.7127e−06 1.9693 371 1.1700 0.9999 9.2169e−06
426 1.9747 545 2.520613 0.9999 9.6303e−06 1.9747 448 2.6002 0.9999 9.9481e−06

Table 4: Comparison of four-point EGAOR and nine-point EGAOR iterative methods
of the Laplace equation (Example 2)

Four-Point Group (AOR )

N ω r k t ρ(J) E
12 1.4331 1.4537 16 0,0310 0.9184 9.7737e−06
46 1.792−1.763 1.8270 60 0.0267s 0.9951 9.8840e−06
86 1.847−1.853 1.9050 107 0.0707s 0.9986 9.9985e−06
106 1.880−1.867 1.9220 130 0.1971s 0.9991 9.8045e−06
146 1.903−1.843 1.9430 165 0.3293s 0.9995 9.8531e−06
186 1.919−1.917 1.9550 216 0.3606s 0.9997 9.9905e−06
226 1.931−1.927 1.9620 254 0.7630s 0.9998 9.9684e−06
350 1.954−1952 1.9753 384 1.1427s 0.9999 9.9444e−06
426 1.935−1.929 1.9800 456 2.3024s 0.9999 9.9413e−06
Nine-Point Group (AOR)
N ω r k t ρ(J) E
12 1.365−1.305 1.3780 13 0.0469s 0.8776 5.5395e−06
46 1.779−1.760 1.7780 46 0.0696s 0.9927 9.2977e−06
86 1.800−1.846 1.8840 83 0.0645s 0.9986 9.6766e−06
106 1.871−1.895 1.9000 101 0.1478s 0.9987 9.9325e−06
146 1.901−1.879 1.9300 139 0.3278s 0.9987 9.6865e−06
186 1.939−1.900 1.9410 186 0.6307s 0.9997 9.0283e−06
226 1.898−1.895 1.9510 204 0.6413s 0.9997 9.9028e−06
350 1.915−1913 1.9710 327 1.1698s 0.9999 9.9259e−06
426 1.905−1.861 1.9740 366 2.4964s 0.9999 9.8728e−06

Tables 1 and 3 represent the Comparison of 4-point EGSOR and 9-point EGSOR, and
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Table 2,4 represents the Comparison of 4-point EGAOR and 9-point EGAOR, where
N: the number of squares, r: the second parameter of AOR, k: the number of iterations,
e: the maximum errors and T represents CPU time. The convergence of the iteration
methods relies on the spectral radius, which is the largest moduli of the iteration matrix’s
eigenvalues. Through figures 1,2,3, and 4, the progress of the nine-point EGAOR
iterative method in reducing time and number of iterations among the other studied
methods becomes clear.

(a) (b)

Figure 1: Comparison of the CPU time (t) for Standard Five-Point SOR, Four-point
EGSOR, and Nine points EGSOR iterative methods of the Poisson equation.

(a) (b)

Figure 2: Comparison of the CPU time (t) for Standard Five-Point AOR, Four-point
EGAOR, and Nine points EGAOR iterative methods of the Poisson equation.
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(a) (b)

Figure 3: (a) approximation solution of EGSOR for N=86,(b) approximation solution
EGAOR for N=86 of the Poisson equation.

(a) (b)

Figure 4: (a) approximation solution of EGSOR for N=86,(b) approximation solution
EGAOR for N=86 of the Laplace equation.

7. DISCUSSION OF RESULTS

The results in tables 1 and 3 reveal that the nine-point group SOR is superior to the
four-point group SOR in solving both Laplace and Poisson equations. Furthermore, we
included our experiments with the standard five-point to further illustrate the progress
of group methods. Fig.1 compares the number of iterations between these methods. The
figure explained the minimum number of iterations given in the prerequired nine-point
group SOR method, and the difference became apparent when the value of N increased.
Tables 2, 4, and Fig.2 show that the 4-pointEGAOR scheme is slightly higher than the
nine-point EG in terms of the number of iterations and execution time, indicating that
the 9-point EGAOR is more efficient than the corresponding 4-point EGAOR method.
It can be observed that among the two group methods presented, the 9-pointEGAOR
scheme requires lesser execution timings than the existing 4-pointEGAOR method.
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The experiments above show the superiority of the 9-pointEGAOR scheme for solving
the 2D Poisson and Laplace equations. Furthermore, the surveillance in Tables 1,2,3
and 4 shows that the 9-pointEGAOR method has the best convergent rate compared
with the 4-point EGSOR, 9-pointEGSOR, and 4-pointEGAOR scheme when applied to
the examples. It is noticeable through all experiments that the spectral radius is always
less than one, which is consistent with the convergence theories of these methods in
previous studies [20].

8. CONCLUSIONS

The results presented in Tables 1,2,3, and 4, along with the results in Fig1,2,3and 4,
indicate a significant reduction of the total computing effort of the 9-point EGAOR
method for solving elliptic PDEs. Therefore, we can conclude that the 9-point EGAOR
approach provides significant economies for solving several PDEs. This paper provides
an alternative group iterative method that can solve more complex problems useful to
study in the future.
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