Flow and Heat Transfer Analysis of H₂O-Al₂O₃ Nanofluid Over a Stretching Surface with Electrified Nanoparticles and Viscous Dissipation

Subhashree Panda¹, Ashok Misra^{2*}, Saroj Kumar Mishra³, Aditya Kumar Pati⁴, Kamal Kumar Pradhan⁵

Centurion University of Technology and Management, Odisha, India.

²*Corresponding Author: Ashok Misra

Abstract

A steady-state flow of H₂O-Al₂O₃ nanofluid containing electrified nanoparticles over a stretchingsurface with viscous dissipation have been carried out. The boundary layer equations of the flow field in the form of coupled nonlinear partial differential equations are reduced to nonlinear ODEs using similarity transformation. The locally similar solutions of non-dimensional velocity, normalized temperature and dimensionless concentration distribution are obtained using bvp4c of MATLAB software. The numerical method is validated by comparing the results of previous investigators with the present one as a particular case by neglecting nanoparticle electrification. It is observed that the nanoparticle electrification is favorable to enhance the rate of non-dimensional mass transfer of nanoparticles and to reduce the rate of non-dimensional heat transfer of nanofluid.

Keywords. Nanoparticle Electrification, Nanofluid, Viscous dissipation

NOMENCLATURE:

Roman		
С	\rightarrow	Concentration of the nanoparticles (Mole.m ⁻³)
Cfr	\rightarrow	Skin friction coefficient (Pa)
D_B	\rightarrow	Brownian coefficient
D_T	\rightarrow	Thermophoresis diffusion coefficient

e	\rightarrow	Charge per particle (C)
E	\rightarrow	Electric field (Nm)
Ec	\rightarrow	Eckert number
k_{nf}	\rightarrow	Thermal conductivity of particle phase (Wm/K)
M	\rightarrow	Non-dimensional Electrification Parameter
Nb	\rightarrow	Dimensionless Brownian Motion Parameter
Nc	\rightarrow	Dimensionless Concentration Ratio
N_F	\rightarrow	Dimensionless Momentum Transfer Number
N_{Re}	\rightarrow	Dimensionless Electric Reynold's Number
Nt	\rightarrow	Dimensionless Thermophoresis Parameter
Nur	\rightarrow	Dimensionless Nusselt number
Pr	\rightarrow	Prandtl number
q_w	\rightarrow	Surface heat flux (W/m ²)
Re	\rightarrow	Reynold's number
Shr	\rightarrow	Sherwood's Number
S	\rightarrow	Dimensionless Concentration
Sc	\rightarrow	Schmidt Number
T	\rightarrow	Temperature of fluid (K)
T_w	\rightarrow	Wall Temperature
T_{∞}	\rightarrow	Temperature of free steam
(u, v, w)	\rightarrow	Velocity components for the fluid phase in x , y and z -directions respectively(m/s)
(x, y, z)	\rightarrow	Space co-ordinates i.e. distance along the perpendicular to plate $\operatorname{length}(m)$

Gree	ek symbols	
α	\rightarrow	Thermal diffusivity (m ² /S)
μ	\rightarrow	Dynamic Viscosity of Nanofluids (kg/(ms))

ν	\rightarrow	Kinematic Viscosity of Nanofluids (m ² /s)
$ au_w$	\rightarrow	Skin friction (Shear stress for clear fluid)
θ	\rightarrow	Dimensionless Temperature
δ	\rightarrow	Boundary layer thickness
ε	\rightarrow	Diffusion parameter
$ ho_f$	\rightarrow	Density of Nanofluids (kg/m³)
$(\rho c)_{nf}$	\rightarrow	Heat capacity of nanofluids (kg/(m.S²)
τ	\rightarrow	Ratio of heat capacity of the nanoparticle and heat capacity of the fluid
φ	\rightarrow	Nanoparticle volume fraction
ψ	\rightarrow	Stream Function
η	\rightarrow	Similarity Variable

Superscripts

* : Non-dimensional value

: Derivative with respect to η

1. INTRODUCTION

Due to the global demand, many industries are trying to develop fluids with significantly higher thermal conductivities as compared to the ordinary base fluids. This is because ordinary base fluids possess very less thermal conductivity. Water, oil, and ethylene glycol etc. are some of the examples of the ordinary fluids. Choi and Eastman [1] have added nano-sized particles to the ordinary base fluids for enhancing their thermal conductivity. There are various applications of the problem of nanofluid flow over a moving plate in polymer industries, metal extrusion, hot rolling industry and copper wire industry. Bachok et al. [2] have investigated the boundary layer flow of nanofluid over a moving surface in a flowing fluid. Similarly, Ishak et al. [3] and Olanrewaju et al. [4] have studied the boundary layer flow of nanofluid over a moving surface in the presence of radiation. Buongiorno [5] has studied the non-homogeneous model of nanofluid flow focusing on Brownian diffusion and thermophoresis to enhance the thermal conductivity of nanofluid. Similarly, Kuznetsov and Nield [6] have followed Buongiorno's model to understand the influence of natural convective nanofluid passing over a vertical plate.

The electrification effect of suspended nanoparticles has been analysed by Soo [7]. He found out its influence on the dynamics of the considered particulate system. Electrification generally caused due to collision of particles within themselves and also with the wall at low temperature. This leads to produce a drag force on the ions of the system. This drag force has significant effect on the transfer of heat and concentration of the particles in the flow system. Similarly, Pati et al. [8, 10] and Patnaik et al. [9] have shown the effect of nanoparticle electrification on the boundary layer flow of nanofluid with different flow conditions. Gebhart [11] has first investigated viscous dissipation in free convection flow of nanofluid. Mohamed et al. [12] have analyzed the effect of viscous dissipation on forced convection nanofluid flow over a moving plate. A very amount of work has been focused on to study the influence of electrification of the nano-sized particles on the boundary layer flow of a nanofluid past a stretchingsurface with viscous dissipation.

Hence in the present study, the boundary layer flow of H₂O-Al₂O₃ nanofluid passed a stretching surface with the inclusion of viscous dissipation and electrification of nanoparticles is analysed to especially show the effect of electrification of nanoparticles on various flow parameters of nanofluid as well as on the heat transfer of nanofluid and concentration distribution of nanoparticles.

2. MODELLING OF THE PROBLEM

A steady state 2D boundary layer flow of $H_2O-Al_2O_3$ nanofluid over a stretchingsurface is modelled. At ambient temperature of T_∞ the sheet is dipped into nanofluids. Let, T and T_w be the temp of nanofluid within the boundary layer and on the plate, respectively. The velocity of the sheet is given by: $U_w(x) = \varepsilon U(x)$, where U is the free stream velocity of nanofluid and ε is the stretching parameter. Let C is the concentration distribution of nanoparticles which is a function of x, y and t and t0 be the volume concentration of nanoparticles on the sheet and in the free stream respectively. The flow geometry is shown in Fig. 1.

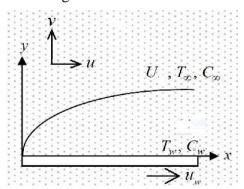


Fig. 1.Geometry of the problem

Including the phenomena of electrification of nanoparticles and viscous dissipation in

the Buongiorno's model [5], the governing equations of the flow field corresponding to the above physical model are given by:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{1}$$

$$u\frac{\partial C}{\partial x} + v\frac{\partial C}{\partial y} = D_B \frac{\partial^2 C}{\partial y^2} + \frac{D_T}{T} \frac{\partial^2 T}{\partial y^2} + \left(\frac{q}{m}\right) \frac{1}{F} \left(\frac{\partial (CE_X)}{\partial x} + \frac{\partial (CE_Y)}{\partial y}\right) \tag{2}$$

$$\rho_{nf} \left[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right] = -\frac{\partial p}{\partial x} + \mu_{nf} \frac{\partial^2 u}{\partial y^2} + C \rho_s \left(\frac{q}{m} \right) E_X \tag{3}$$

$$\frac{\partial p}{\partial y} = O(\delta) \tag{4}$$

$$(\rho c)_{nf} \left[u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right] =$$

$$k_{nf}\frac{\partial^{2}T}{\partial y^{2}} + \rho_{s}c_{s}D_{B}\frac{\partial c}{\partial y}\frac{\partial T}{\partial y} + \frac{\rho_{s}c_{s}D_{T}}{T}\left(\frac{\partial T}{\partial y}\right)^{2} + \left(\frac{q}{m}\right)\frac{c\rho_{s}c_{s}}{F}\left(E_{X}\frac{\partial T}{\partial x} + E_{y}\frac{\partial T}{\partial y}\right) + \mu_{nf}\left(\frac{\partial u}{\partial y}\right)^{2}$$
 (5)

subjected to the boundary conditions as given below:

$$y = 0, u = U_W = \varepsilon U, v = 0, T = T_W, C = C_W$$

$$y = \infty, u = U = const, v = 0, T \to T_\infty, C \to C_\infty$$
(6)

The E-field can be written as:

$$\frac{\partial E_{x}}{\partial x} + \frac{\partial E_{y}}{\partial y} = \frac{\rho_{s}}{\varepsilon_{0}} \frac{q}{m} \tag{7}$$

where, ε_0 is the permittivity. Similarly, the transverse electric field is given by:

$$\frac{\partial E_{y}}{\partial y} = \frac{\rho_{s}}{\varepsilon_{0}} \frac{q}{m} \tag{8}$$

2.1 Similarity Transformation

Introducing the following similarity transformations [8, 9, 12]:

$$\eta = y \sqrt{\frac{U}{2\nu_f x}}, \theta = \frac{T - T_{\infty}}{T_W - T_{\infty}}, u = Uf', v = -\sqrt{\frac{\nu_f U}{2x}} (f - \eta f''), \psi = \sqrt{2\nu_f U x} f(\eta), S$$

$$= \frac{C - C_{\infty}}{C_W - C_{\infty}}$$

the equation (1) is satisfied and theequations(2), (3) and (5) along with the boundary conditions (6) are converted into:

$$S'' + ScfS' + \frac{Nt}{Nb}\theta'' - MSc\eta S' + 2Sc \frac{N_F}{N_{Re}(S + N_C + \eta S')}$$

$$\tag{9}$$

$$\phi_1 f''' + f f'' + 2 \frac{MN_b}{N_F} Sc \phi_2 S = 0 \tag{10}$$

$$\frac{\Phi_{3}\Phi_{4}}{\Pr}\theta^{"} + f\theta^{'} + \Phi_{3}N_{b}\theta^{'}S^{'} + \Phi_{3}Nt(\theta^{'})^{2} + \left(2\frac{N_{F}}{N_{Re}} - M\right)ScN_{b}\Phi_{3}(S + N_{c})\eta\theta^{'} + \Phi_{5}Ec(f^{"})^{2} = 0$$
(11)

subjected to the boundary conditions,

$$\eta = 0, f(0) = 0, f'(0) = \varepsilon, \theta(0) = 1, S(0) = 1
\eta = \infty, f'(\infty) = 1, \theta(\infty) = 0, S(\infty) = 0$$
(12)

Considering, $\frac{T_W - T_\infty}{T_\infty} \ll 1$

where, $M = \left(\frac{q}{m}\right) \frac{1}{FU} E_x, N_F = \frac{U}{Fx}, \frac{1}{N_{\text{Re}}} = \left(\left(\frac{q}{m}\right)^2 \frac{\rho s x^2}{U^2 \varepsilon_0}\right), N_b = \frac{\tau D_B \left(C - C_\infty\right)}{\mathbf{v}_f}, N_t = \frac{\tau D_T \left(T - T_\infty\right)}{\mathbf{v}_f T_\infty}$ $\text{Pr} = \frac{\mathbf{v}_f}{\alpha_f}, Sc = \frac{\mathbf{v}_f}{D_B}, N_C = \frac{C_\infty}{C_W - C_\infty}, \tau = \frac{\rho_s c_s}{\rho_f c_f} \quad Ec = \frac{U^2}{c_s \left(T_s - T_\infty\right)}$

Again using the Maxwell model [13] for thermal conductivity, the thermo physical constants $\phi_1, \phi_2, \phi_3, \phi_4, \phi_5$ are obtained as:

$$\phi_{1} = \frac{1}{(1 - C_{\infty})^{2.5}} \frac{1}{\left[(1 - C_{\infty}) + C_{\infty} \frac{\rho_{s}}{\rho_{f}} \right]}, \phi_{2} = \frac{\rho_{s}}{\rho_{f}} \frac{1}{\left[(1 - C_{\infty}) + C_{\infty} \frac{\rho_{s}}{\rho_{f}} \right]}$$

$$\phi_3 = \frac{1}{(1 - C_{\infty}) + C_{\infty}\tau}, \phi_4 = \frac{k_s + 2k_f - 2C_{\infty}(k_f - k_s)}{k_s + 2k_f + C_{\infty}(k_f - k_s)}, \phi_5 = \frac{1}{(1 - C_{\infty})^{2.5}}$$

3. DISCUSSION OF RESULTS

For getting a solution of equations 9-11, these equations are converted to 1st order ordinary differential equations. Then an iterative algorithm known as Shooting technique is used to identify appropriate initial conditions f''(0), $\theta'(0)$ and S'(0) for the resulting initial value problems (IVP) that provides the solutions to the original boundary value problems (BVP) given by equations 9-11, subjected to the boundary conditions (12). Then MATLAB bvp4c package is used to solve the BVP 9-11.

A comparative study has been carried out in Tables 1 and 2 for the validation of results. The variations of the numerical values of non-dimensional skin friction coefficient (f''(0)), non-dimensional rate of heat transfer $(-\theta'(0))$, non-dimensional rate of mass transfer -S'(0) with different values of the parameters M, N_b, N_t and E_c are presented in Table 3. Similarly, the variations of $f'(\eta)$ and $\theta(\eta)$ of H₂O-Al₂O₃ nanofluid and dimensionless concentration distribution of nanoparticle $S(\eta)$ with different values of M, N_b, N_t and E_c are depicted through the Figures 2-13. In Table 1, the present numerical values of $\frac{-\theta'(0)}{\sqrt{2}}$ have been compared with that of Mohamed et al. [12] for different P_r and are observed to be in good agreement.

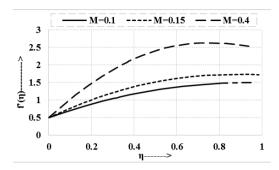
Table. 1.Comparison of present values of $\frac{-\theta'(0)}{\sqrt{2}}$ with that of Mohamed et al. [12] for different P_r when $N_b = N_t = E_c = M = 0$.

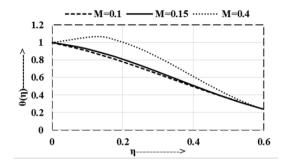
Pr	Mohamed et al.[12]	Present analysis		
0.7	0.29268	0.292678		
0.8	0.306917	0.306919		
1.0	0.332057	0.332057		
5.0	0.576689	0.576695		
10.0	0.78141	0.728150		

In Table 2, the computed values of f''(0), $-\theta'(0)$ and -S'(0) in the present study have been compared with those values of Mohamed et al. [12] for different ε when $N_b = N_f = N_t = E_c = 0.1$, $S_c = 10$, M = 0.0, $P_r = 7.0$ and both are observed in good agreement.

Table. 2. Comparison of present values of $f''(0), -\theta'(0)$ and -S'(0) withthat of Mohamed et al. [12]

	Mohamed	et al. [12]	Present Analysis				
ε	N_{ur}	S_{hr}	C_{fr}	N_{ur}	S_{hr}	C_{fr}	
0	0.3747	1.1672	0.4696	0.37458	1.16700	0.46960	
0.1	0.4705	1.3369	0.4625	0.47043	1.33674	0.46251	
0.5	0.7875	1.8657	0.3288	0.78739	1.86545	0.32874	
1.0	1.0717	2.3805	0	1.07170	2.38050	0	
2.0	1.2994	3.3099	-1.0190	1.29904	3.30899	-1.01906	


From Table 3, it is found that f''(0) is enhanced with the increase of the parameters M, N_b, N_t and it is reduced with the increase of parameter E_c. It is observed that $-\theta'(0)$ shows a completely decreasing trend whereas -S'(0) shows a completely increasing trend with the higher values of M, N_b, N_t and E_c.


Table. 3. Computed results of f''(0), $-\theta'(0)$ and -S'(0) for different values of M, Nb, Nt and Ec.

ε	Ec	φ	Sc	Pr	N _F	N _b	Nt	N _{Re}	Nc	M	f"(0)	$-\theta'(0)$	-S'(0)
0.5	0.1	0.01	1	6.2	0.1	0.1	0.1	2.0	0.1	0.0	0.31990	1.09949	-0.0594
										0.1	2.10404	0.80139	0.49057
										0.15	2.81519	0.49351	0.85612
										0.4	5.57789	- 1.56941	3.303107
0.5	0.1	0.01	1	6.2	0.1	0.05	0.1	2.0	0.1	0.1	1.56565	1.05635	-0.34020
						0.1					2.10404	0.80139	0.49057
						0.2					3.08091	0.22100	0.97599
						0.5					5.59287	- 1.63780	1.36483
0.5	0.1	0.01	1	6.2	0.1	0.1	0.05	2.0	0.1	0.1	1.90596	0.97524	0.50212
							0.1				2.10404	0.80139	0.49057
							0.2				2.41449	0.47374	0.93565
							0.5				2.82514	0.22122	4.53042
0.5	0.05	0.01	1	6.2	0.1	0.1	0.1	2.0	0.1	0.1	2.12777	1.08255	0.22378
	0.1										2.10404	- 0.80139	0.49057
	0.4										1.96599	- 0.72067	1.93004
	0.6										1.87773	- 1.58983	2.74728

1. Profiles off'(η), $\theta(\eta)$ and $S(\eta)$ for different values of Electrification Parameter (M):

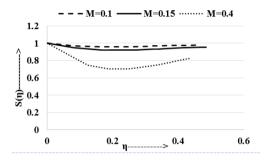
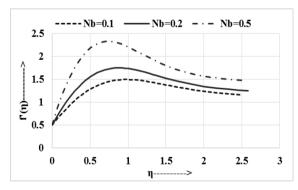
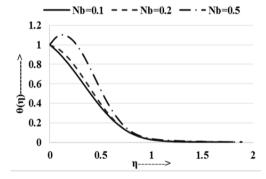

The effect of M on $f'(\eta),\theta(\eta)$ and $S(\eta)$ are shown in Figs. 2-4. Increasing parameter M has an impact in raising the profiles of $f'(\eta)$ and $\theta(\eta)$ and in reducing the profile of $S(\eta)$. These variations in the profiles of the parameters is due to the presence of Lorentz force, which acts as an accelerating force by reducing the resistance occurred due to friction. As the frictional resistance reduces the temperature of the particles also reduces.

Fig. 2. Variation of $f'(\eta)$ with M


Fig. 3. Variation of $\theta(\eta)$ with M


Fig. 4. Variation of $S(\eta)$ with M

2. Profiles off' (η) , $\theta(\eta)$ andS (η) for different values of diffusion parameter (N_b) :

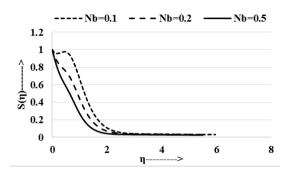
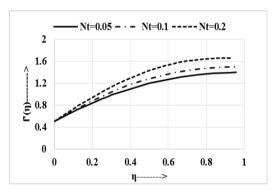

In Figs. 5-7, the effect of N_b on $f'(\eta), \theta(\eta)$ and $S(\eta)$ have been depicted. The profiles of $f'(\eta), \theta(\eta)$ show an increasing trend, whereas $S(\eta)$ shows an opposite trend with the higher values of N_b . This happens due to the effect of Brownian motion on Nb and fluid particles. The motion will be greater for small diameter particles and vice-versa. This also leads to acceleration the flow of particles.

Fig. 5. Variation of $f'(\eta)$ with N_b


Fig. 6. Variation of $\theta(\eta)$ with N_b

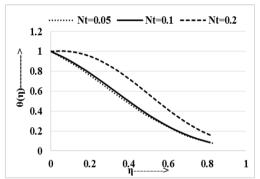


Fig. 7. Variation of $S(\eta)$ with N_b

3. Profiles off'(η), $\theta(\eta)$ andS(η) for different values of Thermophoretic Parameter (N_t):

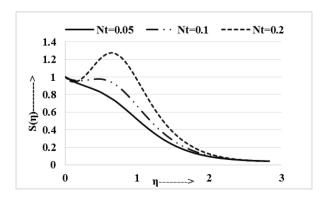
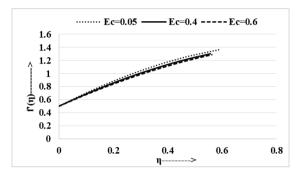
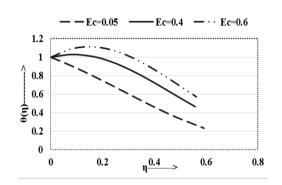

The effect of N_t on $f'(\eta),\theta(\eta)$ and $S(\eta)$ are shown in Figs. 8-10. It is concluded that $f'(\eta),\theta(\eta)$ and $S(\eta)$ are completely showing an increasing trend with increasing values of N_t . Thermophoresis inhibits for the reduction in temperature of the particles. The diffusion of nanoparticles in the presence of temperature gradient shows that the concentration increases with increase of N_t a little away from the plate.

Fig. 8. Variation of $f'(\eta)$ with N_t


Fig. 9. Variation of $\theta(\eta)$ with Nt


Fig. 10. Variation of $S(\eta)$ with N_t

4. Profiles of $f'(\eta), \theta(\eta)$ and $S(\eta)$ with different values of Eckert number (Ec):

Figures 11-13 show the effect of Ec on $f'(\eta), \theta(\eta)$ and $S(\eta)$. Higher values of Ec cause in raising $\theta(\eta)$. It is due to the fact that heat energy is stored in the fluid due to the frictional heating. But it has been observed that $f'(\eta)$ and $S(\eta)$ show a reverse trend for higher values of Ec.

Fig. 11. Variation of $f'(\eta)$ with E_c

Ec=0.05 — · - Ec=0.4 - - - Ec=0.6

1.2
1
0.8
0.6
5
0.4
0.2
0
0
0.2
0.4
0.5
0.6
0.8

Fig. 12. Variation of $\theta(\eta)$ with E_c

Fig. 13. Variation of $S(\eta)$ with E_c

4. CONCLUSION

The present study deals with the effect of charged nanoparticles on the nanofluid flow over a stretching surface with viscous dissipation. The effect of various dimensionalless parameters like Diffusion parameter (N_b), electrification parameter (M_b), Thermophoretic parameter (N_t), Eckert number (Ec) on non-dimension velocity profile, normalized temperature profile of water- Al_2O_3 nanofluid, dimensionless concentration distribution of nanoparticles, non-dimensional skin friction coefficient, non-dimensional heat transfer of nanofluid and non-dimensional concentration distribution of nanoparticles have been analyzed through graphs and tables. The highlighted results are summarized below:

i. The higher electrification parameter M has an effect to enhance the dimensionless velocity and temperature profile of nanofluid whereas to reducenon-dimensional concentration distribution of nanoparticles.

- ii. The dimensionless velocity and temperature profile shows an increasing trend, whereas the non-dimensional concentration distribution of nanoparticles show a decreasing trend with the increasing of N_b.
- iii. The increasing N_t has an effect to increase dimensionless velocity and temperature of nanofluid as well as the non-dimensional concentration distribution of nanoparticles.
- iv. Eckert number (E_c) plays an important role to increase the dimensionless temperature and to decrease the dimensionless velocity and concentration distribution of nanoparticles.
- v. The non-dimensional skin friction coefficient is enhanced with the increase of M, N_b , N_t and it is reduced with the increase of parameter E_c . again the non-dimensional heat transfer of nanofluid shows a completely decreasing trend whereas non-dimensional concentration distribution of nanoparticles shows a completely increasing trend with the higher values of M, N_b , N_t and E_c .

REFERENCES

- [1] Choi, S.U., Eastman, J. A.: Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab., IL (United States) (1995). https://www.osti.gov/servlets/purl/196525.
- [2] Bachok, N., Ishak, A. and Pop, I.: Boundary-layer flow of nanofluids over a moving surface in a flowing fluid, International Journal of Thermal Sciences, 49(9), 1663-1668 (2010). https://doi.org/10.1007/s10409-012-0014-x
- [3] Ishak, A., Yacob, N.A. and Bachok, N.: Radiation effects on the thermal boundary layer flow over a moving plate with convective boundary condition, Meccanica, 46(4), 795-801 (2011). https://doi.org/10.1007/s11012-010-9338-4.
- [4] Olanrewaju, P. O, Olanrewaju, M. A. and Adesanya, O.A.: Boundary layer flow of nanofluids over a moving surface in a flowing fluid in the presence of radiation, Int. J. of App. Sci. and Tech., 2(1), 1-12 (2012).
- [5] Buongiorno, J.: Convective transport in nanofluids, (2006).
- [6] Kuznetsov, A.V. and Nield, D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate, International Journal of Thermal Sciences, 49(2), 243-247 (2010).
- [7] Soo, S.L.: Effect of Electrification on Dynamics of a Particulate System, Industrial & Engineering Chemistry Fundamentals, 3(1), 75-80 (1964).
- [8] Pati, A.K., Misra, A. and Mishra, S.K.: Heat and mass transfer analysis on natural convective boundary layer flow of a cu-water nanofluid past a vertical flat plate with electrification of nanoparticles, (2019).
- [9] Pati, A.K., Misra, A. and Mishra, S.K.: Effect of electrification of nanoparticles

- on heat and mass transfer in boundary layer flow of a copper water nanofluid over a stretching cylinder with viscous dissipation, (2019).
- [10] Pattnaik, R., Misra, A. and Mishra, S.K.: Effect of electrification on natural convection boundary layer flow of nanofluid past a vertical plate with heat generation, JP journal of heat and mass transfer, 17, 577-595 (2019).
- [11] Gebhart, B.: Effects of viscous dissipation in natural convection, Journal of fluid Mechanics, 14(2), 225-232 (1962).
- [12] Mohamed, M.K.A., Noar, N.A.Z., Salleh, M.Z. and Ishak, A.: Mathematical model of boundary layer flow over a moving plate in a nanofluid with viscous dissipation, Journal of Applied Fluid Mechanics, 9(5), 2369-2377 (2016).
- [13] Maxwell, J.C.: A treatise on electricity and magnetism (Vol. 1). Oxford: Clarendon Press, (1873).
- [14] Roşca, N.C. and Pop, I.: Unsteady boundary layer flow of a nanofluid past a moving surface in an external uniform free stream using Buongiorno's model, Computers and Fluids, 95, 49-55 (2014).