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Abstract

Higher order topological indices have gained a lot of traction in recent years
due to their stronger association with a variety of chemical characteristics. The
leap Zagreb index is one of them, and it is based on both degree and distance.
The second and third leap Zagreb indices of some nanostructures are
computed in this research.
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INTRODUCTION

Let G be a connected, finite, simple, undirected graph. The length of the “shortest
path between any two vertices u and v of a graph G” is denoted by d; (u, v). The open
k-neighborhood of v in a graph G represented by N, (v/G) and is stated as N, (v/
G) ={ueV(G):d(u,v) = k} foravertex v € V(G) and a positive integer k.

The number of k-neighbors of a vertex v in G is indicated by d;(v/G) and is stated
as di(v/G) =|N,(v/G) |. Foreveryv € V(G), d,(v/G) = d;(v).

A chemical graph or molecular graph is a representation of a chemical compound’s
structural formula in terms of graph theory used in chemical graph theory and
mathematical chemistry. Chemical graph theory is an area of mathematical chemistry
that has a significant impact on the advancement of chemical science. The edges and
vertices corresponds to the chemical bonds and atoms respectively.
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A topological index of that graph is a single number that can be used to characterise a
molecule’s attributes. Numerous molecular descriptors, sometimes known as
topological indices [2], have found use in theoretical chemistry, particularly in
QSPR/QSAR research. Different topological indices were calculated by the authors in
the studies [3, 4, 5]. Harold Wiener [9] a chemist, was the first to use a topological
index in 1947. In terms of carbon-carbon bonds, Wiener defined path number as the
total of distances between any two carbon atoms in a molecule. Wiener based his
index (W) on trees and investigated how it may be used to correlate physico-chemical
properties of alkanes, alcohols, amines, and their similar compounds. Biochemistry,
nanotechnology, and pharmacology are just a few of the fields where it can be used.

A chemical compound’s bond energy is a measurement of its bond strength. The bond
length is the distance between two atoms. The lower the bond length between those
atoms, the higher the bond energy. The oldest vertex-degree-based graph invariants are
the Zagreb indices. They debuted in the 1970s [7, 8]. The newly discovered 2-degree
based topological invariants, known as leap Zagreb indices, are analogous to
innovative graph invariants (Zagreb indices) and can be used to examine binding
energy between atoms in a molecular graph of a chemical molecule.

Naji et al. [1] developed a new distance-degree-based topological indices based on the
second degrees of vertices, known as leap Zagreb indices of a graph G in 2017. The
second and third Zagreb leap indices are as follows

LM, (G) = ZveV(G)[dZ(v/G )?].

LMy(G) = Yuwer [(dou/G)d(v/G)].

M) = ) [([du/6) +dy(v/G))]

UVEE

Several chemical applications exist for the leap Zagreb indices. Surprisingly, physical
properties of chemical compounds such as accentric factor, accentric factor, boiling
point, HVAP and DHVAP have a very good correlation with the “first leap Zagreb index”
[6]. Wediscuss 2D-L attice, nanotorus and nanotube of TU C,Cg(p, q) in this paper. Here
g and p signify the number of rows of squares and the number of squares in a row,
respectively. The examples of 2D-lattice, nanotube, and nanotorus of TUC4Cs[4, 3],
are shown in Figure 1 (a), (b) and (c) respectively.

(a) (b) (c)

Fig-1
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2. MAIN RESULTS

A TUC,Cg(p, q) nanotube is a “mathematically beautiful object” constructed from
squares and octagons. The nanotube is made by wrapping the lattice in such a way
that each hanging edge from the left side connects to the row’s rightmost vertex. In
one layer of the nanotube, the number of squares and octagons is equal to p + 1. Here
(p + 1) and (g + 1) denotes total cardinality of squares in rows and columns
respectively in the 2D lattice of TUC,Cg(p, ) nanotorus.

3-D Structure of TUC4C8(p,q) nanotorus

Fig-3
Graph Number of vertices | Number of edges
2D lattice of TUC,C5(p, q) 4pq 6pg-p-q
TUC,Cs(p, q) nanotube 4pq 6pg-p
TUC,Cg(p, q) nanotorus 4pq 6pq
Theorem 2.1. The second leap zagreb index of 2D-lattice TUC,Cg(p, q) is given by,
—115p — 115q + 150pq + 68 ifp>1, g>1
LM,(G) =4 45p—49 ifp>1,g=1andp=1,q>1
4 ifp=1,q=1

Proof. Consider a 2D-lattice TUC,Cg(p, q) with ’q’ rows and ’p’ squares in each row.
“Let E;; denotes the number of edges connecting the vertices of 2 degree i and
2 degree j”.
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CASE 1:

If q>1p>1, It has 6 type of edges
{E_(2,2),E_(2,4),E_(3,4),E_(4,4),E_(4,5),E_(5,5)} that are enumerated in
following table. For convenience these edge types are colored by yellow, black, blue,
green, pink and red respectively as shown in the following figure-4.

%
\\

1

2 3 \4/ -__..jp-/_/

\
Fig-4
d,(u/G),d,(v/G) | 22) | 24 | (B4 (4,4) (4,5) (5,5)
Number of edges 4 8 4p+4q-16 | 2p+2q | 4p+4q-16 | 6pg-11p-11q+20

IM,6) = ) [d/6)dy(v/6)]

UVEE

= ) W/ /6 ) (@) hE/6]+ ) [dw/6)dy(v/6)]

uUEEZ'z(G) U.UEEZA,(G) quE3’4(G)

+ ) BEOLEOI+ ) [d@/6)d/6)

quE4,4(G) quE4_5(G)

£ ) [h@/6) dyw/6)]

UVEEs 5(G)
= |Ep|(2 X 2) + |Epa|(2 X 4) + |E34|(3 X 4) + |Eyq|(4 X 4) + |Ey5|(4 X 5) + |Es 5/ (5 % 5)

=4(4)+8(8)+ (4p + 49 — 16)(12) + (2p + 2q)(16) + (4p + 4q — 16)(20)
+ (6pg — 11p — 11q + 20)(25).

= —115p — 115q + 150pq + 68.

~ LM,(G) = —115p — 115q + 150pq + 68 p>1, q>1
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CASE 2:

If ¢ =1, p>1, It has 3 type of edges {ELZ,EM,E&3 }these edges are colored in
orange, brown and blue respectively as shown in the following figure-5 and also the
number of edges are represented in the table given below.

.
§‘1 2 3 R p-1 i/)
"

Fig-5

da(u/G ), dr(v/G) 1.2 (2,3) 3.3)

Number of edges 4 4 5p-9

M@ = ) [ (/6 )y (v/G)]

UVEE

[dy(u/G) dy(v/G )]

UVEE; 7(G)

) LW G+ ) [dw/6) dyw/6)]

UVEE; 3(G) UVEE3 3(G)

|E12|(1 % 2) + |E55|(2 % 3) + |E5 5| (3 x 3).

=4(2) +4(6) + (5p — 9)(9).
= 45p — 49.
o LM,(G) = 45p — 49 p>1, q=1

CASE 3:
If ¢ =1, p=1, we have only 4 edges of the type E£1,1 as shown in the below figure-6:

<> dy(u/G),dy(v/G) | (L,1)

] Number of edges 4
Fig 6 J
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M@ = ) [y (/6 )y (v/G)]

UVEE

_ Z [dy(u/G ), dy(v/G )]

UVEE, 1(G)

|E11|(1 x 1)

= 4(1).

= 4.

“LMy(G) =4 p=1 q=1

Theorem 2. 2. The third leap zagreb index of 2D-lattice TUC,Cg(p, q) is given by,

—30p — 30q + 60pq + 8 ifp>1, g>1
LM;(G) =4 30p—22 ifp>1,q=1
8 ifp=1, gq=1

Proof. Consider a 2D-lattice TUC,Cg(p, q) with ’q’ rows and ’p’ squares in each row.
Let E;; denotes the number of edges connecting the vertices of 2 degree i and

2 degree j.

CASE 1:

If gq>1,p>1, It has 6 type of edges {E;,, Ez4, Es4 E44,Ess Ess} that are
enumerated in following table. For convenience these edge types are colored by yellow,
black, blue, green, pink and red respectively as shown in the following figure-4.

d(u/G), d,(v/G) | 22) | 24| B4H | 4D | (“5) (5,5)

Number of edges 4 8 |4p+4q-16 | 2p+2q | 4p+4q-16 | 6pg-11p-11q+20




Second and third leap Zagreb indices of some nanostructures 1659

IM3(@) = ) [da(u/6) +do(v/6))]

UVEE
_ Z [dy,(u/G) + dy(v/G)]
UVEE; 7(G)

+ @)+ @/ Y [dw/6)+dv/6)]

quEZA_(G) 'U,UEE3'4(G)

b /6 + /6] Y [dw/6) +dy®/6))]

UVEE, 4(G) UVEE, 5(G)

+ ) [d@/6) +dy(v/6)]

UVEEs5 5(G)
= |Epa| (2 +2) + |Epa| 2+ 4) + |E5a| B+ 4) + |Ega| (4 +4) + |Ess|(4 +5) + |Ess|(5+5)

= 4(4) + 8(6) + (4p + 4q — 16)(7) + (2p + 2¢)(8) + (4p + 4q — 16)(9)
+ (6pq — 11p — 11q + 20)(10).

= —115p — 115q + 150pq + 68.
~ LM3(G) = —30p — 30q + 60pq + 8 p>1, q> 1

CASE 2:

If ¢ =1 p > 1, It has 3 type of edges {ELZ,EZ,3,E3,3} these edges are colored in
orange, brown and blue respectively as shown in the following figure-5 and also the
number of edges are represented in the table given below.

dp(u/G),d,(w/G) | (1,2) | (2,3) | 3,3)
Number of edges 4 4 5p-9

M@ = ) [d/6) + dy(v/6)]

UVEE

_ Z [d,(u/G) + dy(v/G)]

UVEE; 7(G)

F L)+ hE/6]+ ) [dw/6)+dyw/6)]

UVEE, 3(G) UVEE3 3(G)

= |Epo|(1 +2) + |E23|(2 + 3) + |E5 5| (3 + 3).
= 4(3) + 4(5) + (5p — 9)(6).

= 30p — 22.

.~ LM, (G) = 30p — 22. p>1, q=1
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CASE 3:
If ¢ =1, p=1, we have only 4 edges of the type £1,1 as shown in the below figure-6:

dZ(u/G )' dZ(v/G ) (11 l)

Number of edges 4

M) = ) [ (w/6)+dy(v/6)]

UVEE

_ Z [d, (/G ) + dy(v/G)]

quELl(G)

|E11|(1 + 1)

= 4(2).
= 8.

“LMy(G)=8 p=1  q=1

Theorem 2.3. The second leap zagreb index of TUC,Cg(p, q) nanotube is given by,

—115p + 150pq + 68 ifp>1, g>1

_ 45p ifp>1qg=1
LM,(G) = 37q — 47 ifp=1q9>1
0 ifp=1q>1

Proof. CASE 1:

If g>1,p>1, Ithas4type of edges Es 4, E,5,, E44, Ess that are enumerated in
following table. For convenience these edge types are colored by green, blue, red and
black respectively as shown in the following figure-7.
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q

L

dp(u/G),d,(v/G) (3, 4) (4, 5) (4, 4) (5 5)

Number of edges 4p 4p 2p 6pg-11p

M,(6) = ) [d(w/G) dy(v/6)]

UVEE

= Z [d,(u/G) dy(v/G)] + z [d2(u/G) dy(v/G )]

quE3'4(G) U,UEE4’5(G)

+ ) 1B@/6)dm/6)]+ ) [dy@/6) dy(v/6)]

UVEE, 4(G) UVEEs 5(G)
= |E34|(3 %X 4) + |E45|(4 X 5) + |E4|(4 X 4)|Es5|(5 % 5)
= 4p(12) + 4p(20) + (2p)(16) + (6pg — 11p)(25).

= —115p + 150pq.

~ LM,(G) = —115p + 150pq p>1, q> 1
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CASE 2:
Ifg=1 p>1,wehave E; 3 = 5p as shown in figure- 8.

{ 2 3\——\/\pﬁ

Fig-8

M) = ) [dy(u/G) dy(v/G)]

UVEE

_ Z [dy(w/G ) dy(v/G)]

UVEE3 3(G)

= |E53|(3 x 3).
= 5p(9).
= 45p.
&~ LM,(G) = 45p p>1, q=1.

CASE 3:

If ¢>1 p=1,Ithas 3 type of edges E11, E13, E23, E22 and Es3 these edges are
colored in green, red, black, orange and pink respectively as shown in the following
figure-9 and also the number of edges are represented in the table givenbelow

— 9 —
e

<;> dp(u/G),d,(v/G)| (1, 1) | (1,3) | (2,3) | (2,2) | (3,3)

Number of edges 6 4 49-8 | Q-2 g-1

Fig-9
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M) = ) [dy(u/G) dy(v/G)]

UVEE

= D LW G+ ) [da@/6) dy(v/6)]

UVEE]1(G) UVEE 3(G)
+ ) [da@/6) dy(v/6)]
UVEE; 3(G)
LD CACVOEACD E S CACY YA D)
UVEE; »(G) UVEE3 3(G)

= |Ep1|(1 x 1) + |Ey3|(1 % 3) + |E55](2 X 3) + |Ep2|(2 X 2) + |E55[(3 % 3)
=6(1) +4(3) + (49 = 8)(6) + (¢ — 2)(4) + (¢ — D(9).
= 37q — 47.

“LMy(G)=37q—-47 p=1 q>1.

CASE 4:

If ¢ =1, p=1we have the edges of the type E; , and E, , as shown in the figure 10
and the number of edges are represented in the following table

<> dp(u/G),d,(v/G) | (1,0) | (0,0)

Fig-10

Number of edges 4 1

M,(6) = ) [d(2/G) dy(v/6)]

UVEE

= Z [d,(u/G) dy(v/G)] + Z [d2(u/G) d,(v/G )]

UVEE1,0(G) UvEE( o(G)
= |E1,0|(1 x0) + |Eo,0|(0 x 0)
= 4(0) + 1(0).
=0.

“IM(6)=0 p=1 g=1
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Theorem 2. 4. The third leap zagreb index of TUC,Cg(p, q) nanotube is given by,

—30p + 60pq ifp>1, g>1

) 30p ifp>1,qg=1
LM2(G) =9 304 - 26 ifp=1qg>1
4 ifp=19g>1

Proof. CASE 1:

If q>1,p>1, Ithas4type of edges E54,E,5,, E44, Ess that are enumerated in
following table. For convenience these edge types are colored by green, blue, red and
black respectively as shown in the following figure-7.

dp(u/G),d,(v/G) (3, 4) (4, 5) (4, 4) (5, 5)

Number of edges 4p 4p 2p 6pg-11p

My(6) = ) dy(w/G) + dy(v/6)

UVEE

= D L6+ G/ + Y [da/6)+ dy(v/6)]

UVEE3 4(G) UVEE, 5(G)

+ Z [do(u/G ) + dy(v/G)] + z [dz(E)deZ(z)]

UVEE, 4(G) uveEs 5(G) G G
= |Es4|(3+4) + |Ess|(4 +5) + |E4s|(4 + 4)|Ess|(5+5)
= 4p(7) + 4p(9) + (2p)(8) + (6pq — 11p)(10).
= —30p + 60pgq.

%~ LM3(G) == —30p + 60pq. p>1, q>1
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CASE 2:

Ifg=1 p>1,wehave E;; = 5p as shown in figure- 8 .

IM3(6) = ) dy(/G) +dy(v/G)

UVEE

- Z [d,(u/G ) + dy(v/G )]

uv€ES 3(G)

= |E33|(3 +3).
= 5p(6).

= 30p.

.~ LM5(G) = 30p p>1, q =1

CASE 3:

1665

If ¢ > 1 p=1,Ithas 3 type of edges E11, E13, E23, E22 and E33 these edges are
colored in green, red, black, orange and pink respectively as shown in the following

figure-9 and also the number of edges are represented in the table givenbelow

dp(u/G),d,(v/G) (1. 1) (1,3) (2,3)

(2,2)

3.3)

Number of edges 6 4 40-8

g-2

g-1

IM3(6) = ) dy(/G) + dy(v/6G)

UVEE

= D (B + /O] + ) [da/6)+ dy/6))]

UVEE7 1(G) UVEE; 3(G)

+ ) [da@/6)+ dy(v/6)]

UVEE; 3(G)

+ ) [du/6) +d(w/6)] +

quEle(G) quE3’3(G)

[dy(u/G) + d(v/G)]

= |E1’1|(1 + 1) + |E1,3|(1 + 3) + |E2’3|(2 + 3) + |E2,2|(2 + 2) + |E3,3|(3 + 3)

=6(2) +4(4) + (4q - 8)(5) + (¢ — 2)(4) + (¢ — 1)(6).
= 30q — 26.

#LM3(G) =30g—26. p=1  gq>1.
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CASE 4:

If ¢ =1, p=1we have the edges of the type E; , and E, , as shown in the figure 10
and the number of edges are represented in the following table

dZ(u/G )r dZ(v/G ) (1’ 0) (01 0)

Number of edges 4 1

IM3(0) = ) d(/G) +dy(v/G)

= D L@ +LE/6]+ ) [dw/6)+ dy/6)]
UVEE o (G) UVEE( o(G)

= |E1|(1 + 0) + |Eg|(0 + 0)
= 4(1) + 1(0).
= 4,

~LM;(G)=4 p=1 q=1.

Theorem 2.5. The second leap zagreb index of TUC,Cg(p, q) nanotorus is given by,

150pq ifp>1, g>1
37p ifp>1,qg=1

LM, (G) =
2(6) 0 ifp=1q=1

Proof. CASE 1:
If g >1,p>1, wehave E55 = 6pq as shown in the figure-11
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M) = ) dy(u/G) dy(v/G)

UVEE

- Z [dy (/G ) dy(v/G)]

Uv€EEs 5(G)
= |E5,5|(5 X 5)
= 6pq(25)
= 150pq.

~ LM, (G) = 150pq p>1, q> 1

CASE 2:

1667

If g =1, p > 1, ithas 3 type of edges Ej3, E;,, E5 3 that are enumerated in following
table. For convenience these edge type are colored by green, red and black

respectively as shown in figure 12

dy(u/G),d,(v/G) (2, 3) (2, 2)

3. 3)

Number of edges 4p p

P

IM,(0) = ) dy(/G) dy(v/G)

UVEE

= D [B@E) b@/]+ D [dw/6) dw/6)]

UveE; 3(G) UVEE; 7(G)

+ ) 1d/6) dw/6)]

UVEE3 3(G)
= |Ey3|(2 X 3) + |E22|(2 x 2) +.|E5 3|3 % 3).
= 4p(6) +p(4) +p(9).
= 37p.

~ LM,(G) = 37p p>1, q=1.
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CASE 3:

when g =1, p = 1, we have Eo,0=6 as shown in the below figure-13
A

Fig-13

M) = ) dy(u/G) dy(v/G)

UVEE

— Z [dy(u/G ) dy(v/G)]

UVEE( o(G)
= |Eo,|(0 x 0)
= 6(0).
=0
~ LM,(G) =0 p=1, q=1

Theorem 2.6. The third leap zagreb index of TUC,Cg(p, q) nanotorus is given by,

150pq ifp>1, g>1
37p ifp>1,qg=1

LM, (G) =
2(6) 0 ifp=1q=1

Proof. CASE 1:
If g >1,p>1, wehave E55 = 6pq as shown in the figure-11

LMy(6) = ) dy(u/G) + dy(v/6)

UVEE
= ) [d@/6) +dy/6)]
quEs_s(G)
= |E5’5|(5 + 5)
= 6pq(10)
= 60pgq.
~ LM3(G) = 60pq p>1, q> 1.
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CASE 2:

If =1, p > 1, ithas 3 type of edges E,3, E;,, E33 that are enumerated in following
table. For convenience these edge type are colored by green, red and black
respectively as shown in figure 12

dZ(u/G )' d2 (U/G ) (2’ 3) (2’ 2) (31 3)
Number of edges 4p p Y

IMy(@) = ) dy(u/6) + dy(v/G)

= D (L6 +w/6]+ ) [dw/6)+ dy(/6)]
UVEE; 3(G) UVEE; 7 (G)

+ ) [d@/6)+ dy(v/6)]

UVEE3 3(G)

= |E3|(2 + 3) + |E,2|(2 + 2) +.|E55|(3 + 3).

= 4p(5) + p(4) + p(6).
= 30p.
=~ LM3(G) = 30p p>1, q=1

CASE 3:
when g =1, p = 1, we have Eo,0=6 as shown in the below figure-13

>

Fig-13

IMy(@) = ) do(u/6) + dy(v/G)

UveE
= ) [d@/6)+ dy(v/6)]
UVEE( o(G)
= |Ep,|(0 +0)
= 6(0).
=0
=~ LM3(G) =0 p=1, q=1
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CONCLUSIONS

In this article we have calculated leap Zagreb indices of TUC,Cg(p,q) without
using computer.
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