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Abstract

We establish homogenization results of a stochastic variational inequality
semilinear PDE with a nonlinear Neumann boundary condition. Our approach
is entirely probabilistic, and extends the result of Pardoux and Ouknine published
in [8].
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1. INTRODUCTION

The theory of homogenisation has developed considerably in recent years and is a
discipline in its own right. In their book Bensoussan, Lions and Papanicolaou [2]
have shown that this can be done by probabilistic methods (see also [5]). Since then,
this approach has developed in parallel with the analytical approach.The objective of
this paper is to study the homogenisation of Inequality Variations Semilinear second
order parabolic semilinear (IVS) with periodical coefficients. Our purely probabilistic
approach generalises the work of Pardoux and Ouknin [8] to the case considered in
based on the interpretation of IVS solutions in terms of the solutions of the EDSRs
considered (cf. Pardoux-Rascanu [7]). The paper is organised as follows: Section 2
contains some reminders and hypotheses for the rest. We deal with the convergence
of the family of processes (Y¢, Z¢, U¢) solution of on BSDEs reflected in Section 3.
In Section 4, we give an application for the homogenisation of a parabolic IVS with
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periodic coefficients. We consider the following semi-linear partial differential equation

(PDE) in a domain D = {(:1:1, To,...,0q) ERY 1 1y > 0}, with non-linear Neumann
boundary condition on 0 D. For each € > 0, we consider,
( Ou®
—(t
M (1) — Lo (1,2)
1 T
) ( )—; (; %)) €06 (w(t,x), w € D, 0 <t "
Pu(t:c)+h<f (t,x))E@ng( “(t,z)), xe€dD,0<t
u?(0,2) = g(x), r € 0D

where

e ¢: R? x R — R is a measurable mapping, which is periodic, of period one in
each direction in the first argument, continuous in the second argument uniformly
with respect to the first, and satisfies :

/ e(z,y)m(dx) =0, Vy € R (2)
Td

when m is the unique invariant measure on the torus T¢.
Suppose e be twice continuously differentiable in y, uniformly with respect to x,
and there exists a constant K such that :

0 0?

N < d
aye(z,y) o —5e(ry)| <K, VzeR% yeR 3)

le(z, )| +

* fRIXR—R,g:R! — Rand h : R? x R — R are sufficiently smooth
functions. Equivalently the coefficients can be seen as periodic functions with
respect to the first variable with period one in each direction on R¢ and are such
that for some ¢ > 0,p >0, u € R, 3 < 0,and allz € R%, y,9/ € R :

lg(z)] < (1+|93|p) (4)
|f(z,y)] < (5)
(v—y)[f(z,y) = f (=, )]<u!y Yl (6)
(v—y) [h(z,y) = h(z.y)] < Bly— ] (7)
|h(z,y)] < e (8)

Assumptions and definitions
Let (2, F,P) be a probability space on which a d-dimensional Brownian motion
(B L Bd) is defined. Let [E be the corresponding expectation operator.
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The differential operator L. inside D is given by :

d d
LEZ%Z%J( >8x$j Zb ( >8x1+202< >8$Z 2

2,7 1=

This operator is the generator of the reflected (L., I'.)-diffusion (see Tanaka [13]) :

ax; = o (S2) dBy+ 2o (2 de e (2 >ﬁ+ﬁ<

th’g > 0, ° is continuous and increasing, / X1 det =0, 0<t, (10)
0

)dgot, 0<t,

X, ==
where X' denotes the first component of the process X¢. We recall that D =

R7 x R1 so that X¢ lives is D, that is, X remains non-negative and (° increases
when and only when X ' is zero, just to keep it non-negative.

The associated differential operator on 0D is defined as :

=30 () an

The function v : 9D (= R?) — R? is smooth and periodic of period one in each
direction and satisfies : 7' (x) = 1.

We suppose that o : R? — R¥4 b : R? — R%and ¢ : RY — RY are smooth and
periodic of period one in each direction.
L is uniformly elliptic and the matrix a(z) = (a;;()) can be factored as o'(x)o(x)/2.

Let us define Xf = X

S, and ©f = -5, then we get with a new standard d-

I3 1>
dimensional Brownian motion {B; : ¢ > 0}, which in fact depends on ¢:
de::J<Xf)dB§+b<Xf)dt+ec(Xf)dt+w(if>d¢;()<t,

t
tl’a > 0, ¢ is continuous and increasing, / Xbedps =0,0<t, (12)
0

lnd x
g __
Xo=-

£

From now, we consider the T?-values process X which operator is given by :

1 82 d
:;Za 8I$]+Z

i=1

reT? (13)

Cz

8:17,
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This operator converges to L. where
d 82 d

1 o )
L:= ;Zam (x) 7.z, + Zbi (x) 0z, xreT (14)

i?j

2. WEAK CONVERGENCE (SDE AND BSDE)

By a simple adaptation of the results in Pardoux and Ouknine [8], one can observe
that the T%values X¢, is an homogeneous Feller process with values in a compact
set, and this process has a unique invariant measure whose density is strictly positive.
Thereafter, we set m the invariant measure associated of L on T¢ and we set m, the
invariant measure associated of the differential operator on T~ .

Throughout, we suppose that

/Td b(x)m(dz) =0 (15)

Let b be the solution of Poisson equation : Lb = —b, and let us introduce the process
X'f defined as:

- B(2) )
ok [[(1+90) 0 (Z)amr [ (1+90)e(E)as o)
+/0t (1+Vb) 7 (=) des
Let us write (16) in coordinate form :
=t [ (e vh) o () aste [ (14 9h)e () i
w [ (14 9) (2)
and

Kt =ay e [ (149 () ami [ (1 98,) ¢ () as

forall j7=2,...,d

(17)

Then there exists a bounded and smooth solution 7 of the PDE with Neumann-type
boundary condition :

Ln=0 in D

vV = (1 + V51> - / (1 + Vl;1> (x)mo(dxz) on D (18)
Td—1
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Taking such a solution 7, we have by It6 :
t

() ()] = f 7 (2 [ ()

t . (19)
+/0 (1 + V?n) (X—) do — o /?r (1 + V?n) (x)mo(dz)
Putting (19) into the first component of (17) we have
X1 =z + /Ot (1 + Vi)l) o1 (X) dB! + /Ot (1 + V131> ¢ (X> ds
+ o5 /le (1 + Vl;1> (x)mo(dz) 20)

j/OtVnJ<i§)st—/otvnc<§> s+ [0 (%) _”<'>]

~~

A (t)

From (19) and with a well knowing Skorohod problem (see Pilipenko [12] or Tanaka
[13]) it is easy to show that the term

limE{maX |A5(t)|} =0 (21)

£—0 0<t<T

Before proceeding, we introduce some definition :

ao = /Td (1 + w) a (1 + Vb) (2)m(dz),
co = / <[ + Vi)) c| (x)m(dx),

Td

d d

1 0> ;0
LO - ;ZJZ:1 (ao)ij axzaxj + ; Coa_xi
Fo=7%-V with = /d <I + VB) v | (z)mo(dx).

Td—1

As in [8], we have the

Theorem 2.1. Under the condition (15), the (L.,T'.)-reflected diffusion process X¢
converges in law to the (Lg,y)-reflected diffusion process X as € | 0. Moreover, on
the space C ([O, T], R2d+1) equipped with the sup-norm topology,

(X5, M, ¢%) — (X, MY, )

where

. MtXE:/t (I+v6)a(§) dB,
; -
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o MX is the martingale part of X

o © (resp. ¢°) is the local time of X! (resp. X1¥)

It follows moreover easily from the result in Tanaka ([13]) that

Remark 2.2. Under the conditions of the (2.1) ,forany p < 1

supE (| X7 [P + ¢f) < +o0.
15

Let X denote the unique diffusion process with values in the d-dimensional torus T¢,
whose generator is the operator L.

We now consider a BSDE, for each fixed (¢,z) € [0,7] x D,
let { (Y2, 25,U);0< s < T} be the solution of the BSDE

t € t €
ye :g(X,f)+/ f(XT,}f)errl/ e () dr

t A t t
+ / n (%) dot - / Z°dB, — / Usdr (22)

(Y2, U%) € Gr(0¢)dP x dt on Qx [0,1].

Where g is continuous, with polynomial growth and values in a bounded and convex
open © in R? and

¢(r) =

{0 if 1€© 03

+0o0 else.

99 (u) = {u* € R?: (u*, v —u) + ¢(u) < ¢(v) , Yo € R}
Dom (9¢ (u)) = {u € R*: 9¢ (u) # 0}

Gr (0¢ (v)) = {(u,u*) € R**: v € Dom (¢ (v)) and u* € 06 (u)}

We check that ¢ is a convex, s.c.i. function, proper with Dom (9¢ (u)) = © and that
¢ (x) ={y" €R: (y,x—2)>0,V,2€ O forz € O}
For each fixed y € R, let set € be the solution of the Poisson equation :

Lé(z,y) +e(r,y) =0, 2T yeR (24)
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More precisely by (2), € is centred with respect to the invariant measure m and is given
by the formula

é(r,y) = / E%e (Yt,y) dt. (25)
0
0 2
Note that, see [10], ¢ € C*? (T, R) and é(., y), a—é(.,y), ﬁé(" y) € W2? (T?) , for
Y Y
any p > 1 there exists K’ such that for all y € R

82

+ 8_y26<'7y)

W?m(Td)

<K' (26)
w2 (T4)

0
el )lhasray + | 5800

0€O. (27)

Our objective is to show the family (X<, M*" %, Y= M? K?) converge in loi on
(X, M¥,¢,Y, M, K) such that

t
Xy =x+ cot + / bo(Ys)ds
0
+v/a@0 Bt + o

T
Yimgln)+ [ h(Yds
. t
+/ ho(Y;)dQOS + Mt — MT -+ KT — Kt
t

where

bo(y) = [ | (1+90) 0Ll ()| (2)mian).
Td 0x0y

i) = [ (W + (5o r) ) (@hmofd) ,
foly) = /w (f(-,y) + <§(~,y)76> - (2—5(-&) X €(~,y))

o%e oéy
ot welgy) C9)] | @mide).

Choose that Z; such that Zf = H;o (X /<) and we introduce the notation

t t
Mfz/HfdMTXs ; Mt:/HTdMTX, 0<t<T
0 0

¢ ¢
Kf:/ Usdr Kt:/ Udr, 0<t<T
0 0
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3. MAIN RESULT

Theorem 3.1. Under the condition on the space C ([O, t], RMH) x D ([O, t], R2> where
we equip the first factor with the sup-norm topology and the second factor with the S-
topology of Jakubowski ,

(X, M™*, 05, Y5, M K®) = (X, M™,0,Y,M,K)

Moreover ,
Yy — Yy in R.

Proof. Let us proceed step by step.

x Step 1: Transformation of the BSDE
— 1
Let Y=Y —eé(X,,Y5) and X; = — X7,

We deduce from the It6’s formula that:

~ — t oée
Ve el (RL 00 =g+ [ (< Vabies T (v

t
- (1 X <Xr,1f,f>) (h<xr,Y:>d¢; (X, YE)dr )
s )

! 8 3 € 82 € €2
+ \ 1_88 (XNY;) Ud + aQ(XmY;)’Zr’dr
1 [* 9% c L oe
- X Ye Zio(X X ye Z:dB,
[ G (XY 250 r>dr+e/s XL Z5d

[ (Va0 7100(0) - 2 ),

We now define :
78 =75 — V(X Y)o(X,),0< s <t

CRa-]

and note that the difference between Z - and Z; is a uniformly bounded process.
It then follows that

R

v (1 ~eot <XT,Y:>) (h(Xme)dsOf« A,V )dr )

Vi 42 (600, Y7) - e(XLY9)) = g(X7)

t ~ 2 A
+/ <<Vxe c>—%e+ e avxé>(Xr,K€)d

oy 0xdy
t 82A 62A )
/ Z <dB - a a (Xw}/r)d?n) o a Q(XNY;)‘Zr’ dr

t
+5/ 3 (X.,Y5)Z5dB, +/ (1—52—(XT,Y;€)>der.
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We next let
5 S aQA
B, = B, —
0 8938y

o (X2, Y7)dr.

rtr

It follows from Girsanov’s theorem that there exists a new probability measure P
equivalent to [P under which B,isa martingale.

Let X¢ = X¢ + eb(X ), we have (¢. = ¢(X ), and similary for (I + Vb), a, 0, )

2

dX: = (1 + V?))E (cads + edgt + 0.dB, + a. 88 5 (X7, Y;)ds)

~ ~ T
X5 =z+¢eb(-).
£
and
Yi+e AX,&,Y*: o(X2Y7)) = 9(X7)

+ ER S
of
+

(
(1 Xr,Yf)) (h(XrJ/f)dwi + f(X, Yy)dr )

/ oé %

< Vgé,c> _a_y e+ 890—8yavmé*} (X, YE)dr
Lo%e ! oé

/ ZeaB, + S (XY ar +/ (1 o (Xr,Yf))der

t oe

te | GELYOZ

2/\

8 €
dB, "t Sudy o(X,, Yy )dr

Since 2 B a is bounded, then for any p > 0 , sup, E || Xz ||

sup, E [|g(X7)|* < +oo.

< 400, hence for any k£ > 0,

« Step 2: A priori estimate for (Y¢, Z%)
We need to bound appropriate moments Y© and Z° under P.
We first go back to our unperturbed BSDE under the mew martingale B;.

€ € ! 82/\ €
Yts :g(Xs)+ dr — ra 8 (ery;")d

t _ t
+ [ nL g - / 245, - [ vsar

Lo YE) + £ X Y)

Ty Ty
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3 with v > 0 we have

Applying Itd’s formula to develop ¢”*|Y 2
t
Y [ e IV 31 X 1 ZEP) dr
S
t t
=g (X P+ 2 [ emyelve (G ve dr s [ ey ives (%52 dr
S S

t - t aZ/\
+3/ el/?“’}/;a‘}/;ah (Xi,}/ra) d(pi_3/ el/?”’}/;a‘}/;nazg €
S S

X..ve

YT

t B t
3 / TV E|VEZEdB, — 3 / eIV E|YEUEdr.
S S

It follows from an argument in Pardoux and Peng ([9]) that the expectation of the above
stochastic integral is zero. Moreover from (4 to 8), we have

t t
z—:E/ \YE||ZE)2dr < ¢ {g +E (/ Y12 dr + ¢ (s — @S))} : (28)

Let us assume for the moment the following lemma :

Lemma 3.2. Under the conditions of the (2.1) ,we have

t
supE/ |UE|dr < +oo.
€ s

Let Yo = Y7 — s<é(7§, Y))
We deduce from It6’s formula and the last relation in the step 1:

2 t
<
s

t 5 - 25 o
+2/ Y[ < Vgé,c> —%.e +(1- 5%)]‘ + ;U;gavmé*] (X, Y5)dr

2
dr = |g(X3) — e6(X2, YY)

ERA]

Zs — gz,f@(f YE)

2
ay rytr ‘

7

oy oy
2

ZE| dr

t~a~a o) LoPe —- ey e
2 [ ViZidB,+e [ SS(XLYOY,
s s Oy

t N
- 2/5 (1 — ggz(xi, Yf)) Usdr

L g, 0 |
Vi1 —eo)h+ = | (X,,Y])dy;
+2/ T |:( an)h—i_ 6x7:| ( T T)d(p’l”

+2 /t ?eZa—é (X6 Y’S)[dé + 72é (XE Y. )dr
€ " o(X,,Y;
s | Toy T 0xdy

Exploiting estimations (28) and (4 to 8)) together with the fact that 1 — 5(‘3—5

small enough, and standard inequalities, there exists A > 0 such that

N 1 t 2 t
sup]E|Y,f|2+—/ dr+)\/
0<s<t 2 s S

v
|

for

~ 12
Yo de < C.

Z;
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and, finally, from this last inequality, the above identity and the David-Burkholder

2 t
d7°+/
0

Gundy’s inequality is strict.

sup ]E( sup |YZ|* + /
0<e<eg 0<s<t
x Step 3: Tightness
Let Ff = F/X°
We write our reflected BSDE in the form

YE

r

2
dei ) < o0

YE=g(X7) + Af — AT+ My — M+ Dy — DS

. s . oe D?é .
As_/o {<Vxe,c>—a—ye+axayav ](XT,YT)d

ht 2 }(X YE)dgt + /fXT,Yf

M§:/ Z5dB, K;‘:-/ Usdr
0 0

€ $ 0%
D} == (00 — (X0 v0) 5 | 55 (0 v
5 96 aﬂA
X Ye zZ; B, X Y®
v [ GOYZE|dB, + 5o (R

0
oée
+ e Xy U‘Sdr
/an< )

ve [ YN Y+ = [ SR YR V)

It is easy to check that

E sup |D:| — 0
0<s<t

hence , supy.,<, | D5| tends to zero in @,probability, or equivalently in law.
According to the lemma (3.2) we have

E[|K:-K{[*)] <Cls—t|, Y0<s<t (29)

and consequently the tension of the family { K¢ : ¢ > 0} is obtained by using the Aldous
criterion ([1]) (see also [4]).

In order to treat the other terms, we adopt the point of view of the S-topology. We define
the conditional variation of the process A° on the interval [0, t] as the quantity

v s S5, 417)] )
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where the sup is over all the partitions of the interval [0, t] .
Clearly,

_ t t
CVi(A7) < E(/ f(Xiyf)dSﬂL/ h(Xi,Kg)dw‘i)
0 0

t
/ Z:dB; ) < 00
0

t
hence, the sequences { (Yj, / ZSEdBS) ,0<s< t} satisfy Meyer-Zheng’s tightness
0

and it follows from step 2 that

sup (C’Vt(AE) + sup E[Y7|+ sup E

€ 0<s<t 0<s<t

criterion for quasimartingales under P.

x Step 4: Passage to the limit

After extraction of a suitable subsequence, which we omit as an abuse of notations, we
have that

t
{(XE,ME,gpa,YE,/ Zjdés,m) 0<s< t} = {(X,M,,Y,M,K)}
0

weakly on C ([0, ¢]; R¥*1) x D ([0, t]; R?) equipped with the product of the topology of
uniform convergence on the first factor, and the S-topology on the second factor.
It remains to recall the two next results:

Lemma 3.3. ¢ : RY x R — R be measurable and locally bounded, periodic of period

one in each direction, continuous with respect to its second argument, uniformly with

s Xé&
respect to the first. Then the sequence of processes { / @ (—r, Yf) dr;0 <r < S}
0 €

converges in law under P

to {/ o (V) dr;0 <r < 3}, where
0

eo(0) = [ elaym{da)

Proof. (see [8]). O

Lemma 3.4. ¢ : R? x R — R be measurable and locally bounded, periodic of period
one in each direction with respect to its first argument, continuous with respect to its
second argument, uniformly with respect to the first. Then

/Os<z> (iY) a5 — /0 N

—0

sup
0<s<T
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in I?P;pmbability as € — 0 ,where

do(y) = P(z, y)mo(dz).

Td-1

x Step 3: Identification of the limit
Let <?, U) denote the unique solution of the BSDE

7 T T
Y, =g (Xr) + / fo (V) ds + / ho (V) des

T T
- / ZdMX — / U,ds 30)
t t

L (Y,U) € Gr(99¢)

satisfying ,
t
IETr/ Zyd < MX >, 7 < o0
0

It follows from the lemma (3.2) that {K*°:e > 0} the process is bounded in
L? (Q,H' ([0,¢],RY)) with H'([0,¢],R?) is the Sobolev space of absolutely
continuous functions with derivatives in L? ([0,¢]). Therefore {U,,0 < s <t} the
process is boundedly continuous with derivative such that

t
/ U, |*dr < +o0
0

s t
and let M, = / UdMYX |, K, = — / Usds.
0 0

Since Y and U are F;X adapted and M is a .EX’Y—martingale , so is also M. It follows

from Tt6’s formula for possibly discontinuous semimartingales that
|V~ V. + B (M - 3], - (M- ¥1])
2 [ (¥, V1 00) ~ ST i
+28 [ Ve~V h(Y) — H(V) e
+ 2E/t (Y, =Y, dK, — dK,)

t
< 2,u/ E|Yr —Yr}zdr.
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t

Therefore / (Y, =Y,,dK, — dK,) < 0 (we use the fact that 5 < 0).

Hence fromsGronwall’s lemma
Y.=Y, , M,=M, and U,=U, 0<s<t

Before proving the lemma (3.2), let us recall some results concerning the method of
penalty method (see Menaldi [5])

alx) = %gmd (min {|z — y|,y € ©})

Note that there exists a € R? and 3 > 0 such that
(r —a)a(z) > fla], Vo € RY,
As aresult, the
(An(x),x —a) > 6| A, (x)]. (31)
Let’s say A, (YS) = n(Y: — Prg (Ys)) , where Prg is the projection of ®. By an

approximation technique(Gegout [6]), we can assume that ® is bounded convex and
regular ie

p(z) = d*(2,0) = |z — Pr(z)|*

, is convex twice differentiable and © = {z € R?, p> 0} ;00 = {z € R?, p =0}
,note that

Vo(z) = 2a(x) = 2 (z — Pr(z))".

Proof of the lemma (3.2):
Let (Y,*™, Z&™) is unique solution of the BSDE

t
YEm =g(X2) + /
S
0%
ZE n X YE 7’L A YE TL
/s r Gacay /

t
+ [ L v - / ZemdB,
S S

1 — —
S YEM) 4 f(r, X, YA L dr
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let a € R? verifying (31), it follows from Ito’s formula that

t
VN a4 [T IV < aft 4 Y a2 ) dr
S

YT

3 t
—eslg (X5 42 [ Ve <ol (V" a)e (R5,¥7) dr
€ S
t
+3 / TS — alYEf (X, Y, dr
S

t
+ 3/ ew‘Y;,E’n _ a‘YTa,nh (Yi n&,n) d@i
st 82/\
- 3/ VI —al (V" — a) ZP" o (X, Y dr
. 9y

t o~
3 / eIYER — af (VO — a) ZE"dB,
S

t
=3 [ eIV = al (V" - 0, Ay (V) dr
S
Based on the assumptions made above,

|};Ta,n - CL‘ (Yf’n o CL) f (Yi,Y}S’n) < ‘Yf’n _ a’3 +e
YT = al (V" — 0, An (V7)) < 0] A (V) ||V —a] <0

Let 77 = V7 — (4065, 07).
‘We deduce from It6’s formulla

2

0é —.
Zin = ez (XYM dr

~ 2 Ly
’Yf’n—a’ +/
S

¢ it ~ ~
=[g(x7) — (X3, Y[ -2 / (Ve ~a) ZmaB,
S

t - A
+2/ <Yf” — a) [< Vi€, c> —%.e
s Iy

de 0%é

aV } (X, YoM dr

+2s/t (17,?7”—@ Z”a (X, YE”)[dB + =L

5 o (X2, Y5 ”)dr}

ox 8
! ven oe ae ~€ en 5
as (27), A, (17,55") = A, (Y;"") moreover

(Ve —a,an (Vo)) 2 0140 (VE) | = 0140 (™) |
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Exploiting estimations (28) together with the fact that

1
1—e% > _ 5 for € small enough, standard inequalities and the Gronwall lemma we have

- ¢ 2 ¢ 2
sup supE (|Yf" —al? +/ dr —|—/ dgpi)
0<s<t e,n s s (32)

t
+5/ |A, (YE™) |Pdr < 4-o0.

Oy

Zemn €M
ZT‘7 Yr7

Now by It6’s formula , the convex of the function p ,
Y =Y — eé(X,, YE™), we have

p (V2" = 26(X3,YE™) < p (9(X7) - 26(X;,¥7™)

2
+ - /Y€”[<Vxec>—aee
s dy

A~ 2/\
+(1 — s%)f aaa avxé*} (X, Y™ dr

2 (P o~ - t92e
_E i Y;E7nZ§7ndBT+ a —

2 ¢ 0é —- en Gen)* en
- (1—say<XT,Yr >>An(YT ) An (V2" dr

ae 82é —c
X, Y™ |dB, + ——o(X,, Yo"
X )|dB + 00y ” X0 Y )ar|

&, yemyven | Zen| ar

2 [t .
L% A, (Yre,n) Zem

t ~ ~
w2 [ (F) [a-egom Goa| (L vEmag

Together with the fact that 1 — a —and (27),we have

[\

o (V) + [ 14 P

<—|—2/tA (Yo <Vec>—%e
>~ . n r T ay

de 0%é e
1—e— X, Y>™"d
+( 88 )f a a V ‘|( ryoTr ) r
t . . taQé . . 2
_2/ An (Y;s,n) Zf,”dBr + 25/ W(XT’ Y;E’H)An (Y;E,n) Zf’n dr
s s 0¥
' Ven 6naé C yen 0*é 3 ven
2 / A (¥em) 20 T (L) [dB + o (K Y ar]

t
o [ anen) [ 1—e?>h+ o } (X0, Vo) dgs
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If we want to find a majoration of this last integral, we have

~ 1 [t
p <Y5n> + 5/ trace (Z*"Z*" Hess (p (Y®"))) dr

t 1 —c c — e € 82€ € £ g,n
:/5 <g€ (XraYr)—i_f(Xr?}/r)_ZraxayU(XmK«)) vp(Y;" )dT

t t
+ [ Vo n (Y2 g - [ Votven) Zinab,

t
- / Vp (YE") Ay (YE") dr

It follows from It6’s formula that

3 t
6usp3/2 (Yf’n) + Zl / trace (Za,nZe,n*Hess (p1/2 (Ya,n))) p (Y;,E’n) dr
t 3 t
+/ Veyrp3/2 (Ye,n) dr + g\/' eur|Ze,n|2|vp (KF’”) |2p—1/2 (Ys,n) dr

3 [ 1 -
_5/ e’ (ge (XWY;"E’”) +f (XMY;E’”)
o*e

_gemn 75 yen Vo (Yen 1/2 Yyen) d
gt T YEn) ) W (2 2 ()

3 [t .
=5 [ T o (b ()

3 t
=5 [ VeqEn Zg e (v db,

2
3 ! eg,n eg,mn g,n
=5 [ VI AL 9 (v dr
Furthermore,| A, (Y=") | = ng (Y2") and p/2 (z) = |z — Pr(z)| we have

3 t
neusp3/2 (YSE,’H,) + 2/ trace (Za,nZa,n*Hess <pl/2 (Ya,n)>) p (Y;E,n) dr
s

t t
3
+n/ Veyrp?)/Q (]f&,n) dr 2/ eyr‘ Z€7n‘2’An (Yra,n) ’d?“
s s

_dn [*

2 |, (1 (X5, YEm) + f (X, Y77)

_gem o0%e
" Oxdy

t
=5 [ TR B (e (R ) d

S

AL YE) Vo (0F) 2 ()

t _ t
—n [ Vo) 2 (v By - [ A, (e Par
S n S
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We have,
82A 1/2
ZE X an v YE,’n YE,TL
n 0%
Y zen Vo (Y& 2
<5l |axay Vp (V") |
7% || (12" PV (V)|
, r Vo (YEn 3
8x8yoo( +0lVp (Y,7") |
0% o%e
Zs,nZA YEn Vp (Y, K
axaym’”' ( )y+ 9207 \p(r)l
9% 20 82/\
_ Ze’n2An yen o An yen 3
S Oo|r|| (Y™ |+ 920 OOI (Yo" |
By choosing o1 hat — || 222 <  and
y choosing o larger so that @‘ 920y g
0 || a2¢ 3
n2 ||9=9y|| . = op

nf (Yi’ Y;s,n) Vp (Y;s,n) p1/2 (Y;s,n)

e,n) |2 e,n
SHK(!W(? E ot >\)

K K|p (Y=
S(E|An(y;g’n)|2+n ’p<27» )|)

nh (77‘1 Y;z—:,n) Vp (Y;e,n> p1/2 (Ys,n)

r

e,n) |2 e,n
SnK(!Vp(YT ) e )\)

2 2

< (£ antvery oy 4 2

Finally, for v well chosen, n large enough and the relation (32), we have

- [t 1~ [t 1
2 / \An<1¢fv">|25“drsc(1+nE / (Ka’”)Perrn(wi—wi)) (33)

For n large enough and £ small enough taking into account the inequalities and (32)
we have

sup]E/ |A, (YE) |Pdr < oo,

Now available at
lim E ( sup |Ko™ — K§> = 0.

n—oo 0<s<t
S

where K&" = —/ A, (Y2™) dr (see [7]).

0
Inequality (33) and Fatou’s lemma gives the result. O]
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4. HOMOGENIZATION OF SEMILINEAR PDES
Let u be the IVS solution

%(t,x) — Lou(t,x) — fo (u(t,z)) — b (u(t,x)) Vu(t,z) € ¢ (u*(t,z)), x € D, 0 < t
Tou(t, z) + ho (u(t, z)) € ¢ (u(t,z)), x € 0D, 0 < t (4

u(0,z) = g(z), x € 0D

Where Lg, 'y, by; fo and hq as defined in section(2). We deduce from the smoothness
of the solution v and uniqueness of limiting BSDE that Y = u(t, z).

Theorem 4.1. Under the above assumptions, ¥(t,z) € R, x D we have

u*(t,x) — u(t,x) in R as ¢—0.
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