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ABSTRACT 

𝖬𝖣𝖲 symbol-pair codes form an optimal class of symbol-pair codes for their 

high error-correction capability. Let ℛ = 𝔽𝑝𝑚[𝑢]/⟨𝑢
2⟩ be the finite 

commutative chain ring with unity. 𝛾-constacyclic codes of length 𝑝𝑠 over ℛ, 

where 𝛾 is a nonzero element of the field 𝔽𝑝𝑚, had been classified into four 

types. Let 𝒞3 = ⟨(𝑥 − 𝛾0)
𝛿 + 𝑢(𝑥 − 𝛾0)

𝑡ℎ(𝑥)⟩ be a code of 𝖳𝗒𝗉𝖾 𝟥, where 

ℎ(𝑥) is a unit, 0 ≤ 𝑡 < 𝛿, and 1 ≤ 𝛿 ≤ 𝑝𝑠 − 1. In this paper, we derive 

necessary and sufficient conditions under which 𝒞3 is a maximum distance 

separable (𝖬𝖣𝖲) code with respect to the symbol-pair metric. 

Keywords: Repeated-root codes; constacyclic codes; MDS codes; symbol-pair 

distance; finite chain rings. 

   

1 INTRODUCTION 

Let us consider the code alphabet 𝛴 with 𝑞 elements, whose elements are called 

symbols. In symbol-pair read channels, a codeword 𝐱 = (𝑥0, 𝑥1, … , 𝑥𝑛−1) is 

represented as 

𝜋(𝒙) = ((𝑥0, 𝑥1), (𝑥1, 𝑥2), … , (𝑥𝑛−1, 𝑥0)) ∈ (𝛴
2)𝑛.                                   (1) 

Every vector 𝐱 ∈ 𝛴𝑛 has a unique pair representation 𝜋(𝐱). For any two symbol pairs 

(𝑎, 𝑏) and (𝑓, 𝑔), say (𝑎, 𝑏) = (𝑓, 𝑔) if both 𝑎 = 𝑓 and 𝑏 = 𝑔. An important parameter 

of symbol-pair codes is the symbol-pair distance. In 2010, Cassuto and Blaum [1]  gave 

the definition of the symbol-pair distance as the Hamming distance over the alphabet 
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(𝛴, 𝛴). Given 𝐱 = (𝑥0, 𝑥1, … , 𝑥𝑛−1), 𝐲 = (𝑦0, 𝑦1, … , 𝑦𝑛−1), the symbol-pair distance 

between 𝐱 and 𝐲 is defined as 

𝑑𝑠𝑝(𝒙, 𝒚) = 𝑑𝐻(𝜋(𝒙), 𝜋(𝒚)) = |{𝑖 ∈ ℤ𝑛 ∣ (𝑥𝑖, 𝑥𝑖+1) ≠ (𝑦𝑖, 𝑦𝑖+1)}|,                        (2) 

where ℤ𝑛 denotes the ring ℤ/𝑛ℤ. The symbol-pair distance of a symbol-pair code 𝐶 is 

defined as 

𝑑𝑠𝑝(𝐶) = 𝑚𝑖𝑛{𝑑𝑠𝑝(𝒙, 𝒚) ∣ 𝒙, 𝒚 ∈ 𝐶, 𝒙 ≠ 𝒚}.                                          (3) 

The symbol-pair weight of a vector 𝐱 is defined as the Hamming weight of its symbol-

pair vector 𝜋(𝐱): 

𝑤𝑡𝑠𝑝(𝒙) = 𝑤𝑡𝐻(𝜋(𝒙)) = |{𝑖 ∈ ℤ𝑛 ∣ (𝑥𝑖, 𝑥𝑖+1) ≠ (0,0)}|.                        (4) 

If the code 𝐶 is linear, its symbol-pair distance is equal to the minimum symbol-pair 

weight of nonzero codewords of 𝐶: 

𝑑𝑠𝑝(𝐶) = 𝑚𝑖𝑛{𝑤𝑡𝑠𝑝(𝒙) ∣ 0 ≠ 𝒙 ∈ 𝐶}.                                                    (5) 

Inspired by reading restrictions in high-density data storage systems, symbol-pair codes 

desired to protect against a certain number of pair-errors were first introduced by 

Cassuto and Blaum [1]. They provided constructions and decoding methods of symbol-

pair codes. Again, they established the relationship between the symbol-pair distance 

and the Hamming distance by [2]. In 2011, by using algebraic methods, Cassuto and 

Litsyn [3] constructed cyclic symbol-pair codes. Recently, in [4], Yaakobi et al. 

considered and gave a lower bound on the symbol-pair distances for binary cyclic 

codes. By giving the definition of parity-check matrix for symbol-pair codes, a new 

syndrome decoding algorithm of symbol-pair codes is given by Hirotomo et al. [5]. In 

particular, in 2015, Kai et al. [6] extended the result of Cassuto and Litsyn [3] for the 

case of simple-root constacyclic codes. 

It is well-known that, for any fixed code of length 𝑛 and dimension 𝑘, the maximum 

distance separable (briefly, 𝖬𝖣𝖲) codes have the best possible error correcting 

capability. Thus, constructing 𝖬𝖣𝖲 codes has become one of the central topics in coding 

theory. 𝖬𝖣𝖲 symbol-pair codes can be considered as a generalization of 𝖬𝖣𝖲 codes for 

the classical case. This is the reason why many researchers evaluated 𝖬𝖣𝖲 symbol-pair 

codes (for example, [6; 7; 8; 9; 10]). 

In engineering, constacyclic codes are most preferred since they can be efficiently 

encoded using shift registers, due to their rich algebraic structure. For a unit element 𝜆 

in a commutative ring 𝑅, a code 𝐶 of length 𝑛 over 𝑅 is said to be 𝜆-constacyclic if 

(𝑐0, 𝑐1, … , 𝑐𝑛−1) ∈ 𝐶 implies that (𝜆𝑐𝑛−1, 𝑐0, … , 𝑐𝑛−2) ∈ 𝐶. A 𝜆-constacyclic code of 

length 𝑛 over 𝑅 can be classifed as an ideal in 𝑅[𝑥]/⟨𝑥𝑛 − 𝜆⟩. When 𝜆 = 1, the class 

of 𝜆-constacyclic codes are known as cyclic codes. The case when the code length 𝑛 is 

divisible by the characteristic 𝑝 of the residue feld 𝑅, the constacyclic codes are called 
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repeated-root constacyclic codes. Let 𝛾 be a nonzero element of the field 𝔽𝑝𝑚. All 𝛾-

constacyclic code of length 𝑝𝑠 over ℛ = 𝔽𝑝𝑚 + 𝑢𝔽𝑝𝑚 are classified into 4 distinct types 

and their detailed structures are also established in [11]. Let 𝒞3 = ⟨(𝑥 − 𝛾0)
𝛿 + 𝑢(𝑥 −

𝛾0)
𝑡ℎ(𝑥)⟩ be of 𝖳𝗒𝗉𝖾 𝟥, as in [11], where ℎ(𝑥) is a unit, 0 ≤ 𝑡 < 𝛿, and 1 ≤ 𝛿 ≤ 𝑝𝑠 − 1. 

In [12], Dinh et al. obtained 𝖬𝖣𝖲 symbol-pair 𝛾-constacyclic codes of prime power 

length over 𝔽𝑝𝑚, by satisfying the Singleton bound of symbol-pair codes. To continue 

the line of study, in this paper, we derive necessary and sufficient conditions under 

which 𝒞3 is a 𝖬𝖣𝖲 symbol-pair code. 

The organization of this paper is as follows. In Section 2, some preliminary results that 

are needed to derive our main results are discussed. In Section 3, we give the symbol-

pair distance 𝑑𝑠𝑝(𝒞3) of the code 𝒞3 obtained in [13]. In Section 4, we derive necessary 

and sufficient conditions under which 𝒞3 is a 𝖬𝖣𝖲 symbol-pair code. We mention a 

brief conclusion and discuss some interesting open problems in this direction  

in Section 5. 

 

2 PRELIMINARIES  

All rings are commutative rings with identity. A ring 𝑅 is called principal ideal ring if 

its ideals are principal. 𝑅 is called a local ring if 𝑅 has a unique maximal ideal. Finally, 

𝑅 is called a chain ring if the set of all ideals of 𝑅 is linearly ordered under set-theoretic 

inclusion. 

The following result is well-known for the class of finite commutative rings (see [14]). 

Proposition 2.1. If 𝑅 is a finite commutative ring, then the following conditions are 

equivalent: 

(i) 𝑅 is a local ring and the maximal ideal of 𝑅 is principal, 

(ii) 𝑅 is a local principal ideal ring, 

(iii)𝑅 is a chain ring. 

If we denote by ⟨𝔞⟩ the maximal ideal of the finite chain ring 𝑅, then 𝔞 is nilpotent with 

nilpotency index some integer 𝑒 and the ideal of 𝑅 from the following chain: 

⟨0⟩ = ⟨𝔞𝑒⟩ ⊊ ⟨𝔞𝑒−1⟩ ⊊ ⋯ ⊊ ⟨𝔞⟩ ⊊ ⟨𝔞0⟩ = 𝑅.                                                  (6) 

In this paper, let 𝔽𝑝𝑚 be a finite field of 𝑝𝑚 elements, where 𝑝 is a prime number, and 

denote 

ℛ = 𝔽𝑝𝑚[𝑢]/⟨𝑢
2⟩.                                                              (7) 

The ring ℛ is a finite commutative ring with 𝑝2𝑚 elements, and can be expressed as 

ℛ = 𝔽𝑝𝑚 + 𝑢𝔽𝑝𝑚 = {𝑎 + 𝑏𝑢 | 𝑎, 𝑏 ∈ 𝔽𝑝𝑚}. It is easy to check that ℛ is a local ring 
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with maximal ideal ⟨𝑢⟩ = 𝑢𝔽𝑝𝑚. Therefore, by propsition 2.1, it is a chain ring. The 

ring ℛ has precisely 𝑝𝑚(𝑝𝑚 − 1) units and every invertible element in ℛ is of the form: 

𝑎 + 𝑏𝑢 where 𝑎, 𝑏 ∈ 𝔽𝑝𝑚 and 𝑎 ≠ 0. 

For any invertible element 𝛾 of 𝔽𝑝𝑚, 𝛾-constacyclic codes of length 𝑝𝑠 over a finite 

field 𝔽𝑝𝑚 are precisely the ideals of the finite chain ring 𝔽𝑝𝑚[𝑥]/⟨𝑥
𝑝𝑠 − 𝛾⟩. Since 𝛾 is 

a nonzero element of the field 𝔽𝑝𝑚, there exists 𝛾0 ∈ 𝔽𝑝𝑚  such that 𝛾0
𝑝𝑠 = 𝛾. In [15], 

[12], the algebraic structure and symbol-pair distances of 𝛾-constacyclic codes of length 

𝑝𝑠 over 𝔽𝑝𝑚 were established and given by the following theorem. 

Theorem 2.2 (cf. [12]) Let 𝒞 be a 𝛾-constacyclic code of length 𝑝𝑠 over 𝔽𝑝𝑚. Then 

𝒞 = ⟨(𝑥 − 𝛾0)
𝑖⟩ ⊆ 𝔽𝑝𝑚[𝑥]/⟨𝑥

𝑝𝑠 − 𝛾⟩, for 𝑖 ∈ {0,1, … , 𝑝𝑠}, and its symbol-pair 

distance 𝑑𝑠𝑝(𝒞) is completely determined by: 

𝑑𝑠𝑝(𝒞) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
•  2,   𝑖𝑓 𝑖 = 0,

•  3𝑝𝑘,   𝑖𝑓 𝑖 = 𝑝𝑠 − 𝑝𝑠−𝑘 + 1,
      𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑘 ≤ 𝑠 − 2,

•  4𝑝𝑘,   𝑖𝑓

𝑝𝑠 − 𝑝𝑠−𝑘 + 2 ≤ 𝑖 ≤ 𝑝𝑠 − 𝑝𝑠−𝑘 + 𝑝𝑠−𝑘−1,
      𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑘 ≤ 𝑠 − 2,

•  2(𝜎 + 2)𝑝𝑘,   𝑖𝑓

𝑝𝑠 − 𝑝𝑟 + 𝜎𝑟 + 1 ≤ 𝑖 ≤ 𝑝𝑠 − 𝑝𝑟 + (𝜎 + 1)𝑟,

  𝑤ℎ𝑒𝑟𝑒  𝑟 = 𝑝𝑠−𝑘−1,   0 ≤ 𝑘 ≤ 𝑠 − 2
      𝑎𝑛𝑑 1 ≤ 𝜎 ≤ 𝑝 − 2,

•  (𝜎 + 2)𝑝𝑠−1,   𝑖𝑓 𝑖 = 𝑝𝑠 − 𝑝 + 𝜎,
      𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝜎 ≤ 𝑝 − 2,
•  𝑝𝑠,   𝑖𝑓 𝑖 = 𝑝𝑠 − 1,

•  0,   𝑖𝑓 𝑖 = 𝑝𝑠.

 

 

3 SYMBOL-PAIR DISTANCE 

Let 𝛾 be a nonzero element of the field 𝔽𝑝𝑚. 𝛾-constacyclic code of length 𝑝𝑠 over ℛ 

are precisely the ideals of the ring 

ℛ𝛾 = ℛ[𝑥]/⟨𝑥
𝑝𝑠 − 𝛾⟩.                                                          (8) 

All 𝛾-constacyclic code of length 𝑝𝑠 over ℛ are classified into 4 distinct types and their 

detailed structures are also established in [11]. 

Let 𝒞3 be a 𝛾-constacyclic code of 𝖳𝗒𝗉𝖾 𝟥 (principal ideals with monic polynomial 

generators) as in [11]: 

Here, we have 𝒞3 = ⟨(𝑥 − 𝛾0)
𝛿 + 𝑢(𝑥 − 𝛾0)

𝑡ℎ(𝑥)⟩, where 1 ≤ 𝖳 ≤ 𝛿 ≤ 𝑝𝑠 − 1, 0 ≤
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𝑡 < 𝛿, and either ℎ(𝑥) is 0 or a unit in 𝔽𝑝𝑚[𝑥]/⟨𝑥
𝑝𝑠 − 𝛾⟩, degℎ(𝑥) ≤ 𝖳 − 𝑡 − 1, and 𝖳 

is the smallest integer satisfying 𝑢(𝑥 − 𝛾0)
𝖳 ∈ 𝒞3, i.e., 

𝘛 = {
𝛿, 𝑖𝑓 ℎ(𝑥) = 0,
𝑚𝑖𝑛{𝛿, 𝑝𝑠 − 𝛿 + 𝑡}, 𝑖𝑓 ℎ(𝑥) ≠ 0.

                                             (9) 

Moreover, we have 

|𝒞3| = 𝑝
𝑚(2𝑝𝑠−𝛿−𝘛).                                                                      (10) 

Note that 𝔽𝑝𝑚 is a subring of ℛ, for a code 𝒞 over ℛ, we denote 𝑑𝑠𝑝(𝒞𝔽) as the symbol-

pair distance of 𝒞|𝔽𝑝𝑚 . 

In [16, Theorem 4.3(Type 3)], Dinh et al.  stated that: 𝑑𝑠𝑝(𝒞3) = 𝑑𝑠𝑝(⟨(𝑥 − 𝛾0)
𝛿⟩𝔽). 

This result is not always true, which we illustrate in the following example. 

Example 3.1. Consider the 𝛾-constacyclic code 𝒞3 = ⟨(𝑥 − 𝛾0)
4 + 𝑢(𝑥 − 𝛾0)ℎ(𝑥)⟩ of 

length 5 over ℛ = 𝔽5𝑚 + 𝑢𝔽5𝑚 , where ℎ(𝑥) ≠ 0. Here 𝑝 = 5,  𝑠 = 1,  𝛿 = 4 and 𝑡 =

1. Then 𝖳 = 2, which implies that ⟨𝑢(𝑥 − 𝛾0)
2⟩ ⊆ 𝒞3. This implies that 𝑑𝑠𝑝(⟨𝑢(𝑥 −

𝛾0)
2⟩) = 𝑑𝑠𝑝(⟨(𝑥 − 𝛾0)

2⟩𝔽) ≥ 𝑑𝑠𝑝(𝒞3). By Theorem 2.2, we see that 𝑑𝑠𝑝(⟨(𝑥 −

𝛾0)
2⟩𝔽) = 4, which implies that 

                                                                    𝑑𝑠𝑝(𝒞3) ≤ 4.                                                                         (11) 

By using Theorem 2.2 again, we see that 

                                        𝑑𝑠𝑝(⟨(𝑥 − 𝛾0)
4⟩𝔽) = 5                                                       (12) 

Now by (11) and (12), we see that 𝑑𝑠𝑝(𝒞3) ≠ 𝑑𝑠𝑝(⟨(𝑥 − 𝛾0)
4⟩𝔽). This example shows 

that [16, Theorem 4.3(Type 3)] is incorrect in general. 

By the above Example, we see that Theorem 4.3(Type 3) in [16] is not entirely true. 

In [13], Laaouine had added some assumptions to correct it completely. We list the 

correct result in the following, and it will play an important role in our main result. 

Theorem 3.2 ([13, Theorem 6.]) Let 𝒞3 = ⟨(𝑥 − 𝛾0)
𝛿 + 𝑢(𝑥 − 𝛾0)

𝑡ℎ(𝑥)⟩ be a 𝛾-

constacyclic code of length 𝑝𝑠 over ℛ of 𝖳𝗒𝗉𝖾 𝟥, where 1 ≤ 𝖳 ≤ 𝛿 ≤ 𝑝𝑠 − 1, 0 ≤ 𝑡 <

𝛿, either ℎ(𝑥) is 0 or ℎ(𝑥) is a unit and 𝖳 is the smallest integer satisfying 𝑢(𝑥 − 𝛾0)
𝖳 ∈

𝒞3, i.e., 

𝘛 = {
𝛿, 𝑖𝑓 ℎ(𝑥) = 0,

𝑚𝑖𝑛{𝛿, 𝑝𝑠 − 𝛿 + 𝑡}, 𝑖𝑓 ℎ(𝑥) ≠ 0.
 

Then the symbol-pair distance 𝑑𝑠𝑝(𝒞3) of the code 𝒞3 is given by 
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𝑑𝑠𝑝(𝒞3) = 𝑑𝑠𝑝(⟨(𝑥 − 𝛾0)
𝖳⟩𝔽)

=

{
 
 
 
 
 
 

 
 
 
 
 
 
•  3𝑝𝑘,   𝑖𝑓 𝖳 = 𝑝𝑠 − 𝑝𝑠−𝑘 + 1,
   𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑘 ≤ 𝑠 − 2,

•  4𝑝𝑘,   𝑖𝑓

𝑝𝑠 − 𝑝𝑠−𝑘 + 2 ≤ 𝖳 ≤ 𝑝𝑠 − 𝑝𝑠−𝑘 + 𝑝𝑠−𝑘−1,
    𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑘 ≤ 𝑠 − 2,

•  2(𝛼 + 2)𝑝𝑘,   𝑖𝑓

𝑝𝑠 − 𝑝𝑟 + 𝛼𝑟 + 1 ≤ 𝖳 ≤ 𝑝𝑠 − 𝑝𝑟 + (𝛼 + 1)𝑟,

    𝑤ℎ𝑒𝑟𝑒  𝑟 = 𝑝𝑠−𝑘−1,   0 ≤ 𝑘 ≤ 𝑠 − 2
        𝑎𝑛𝑑  1 ≤ 𝛼 ≤ 𝑝 − 2,

•  (𝛼 + 2)𝑝𝑠−1,   𝑖𝑓 𝖳 = 𝑝𝑠 − 𝑝 + 𝛼,
    𝑤ℎ𝑒𝑟𝑒  1 ≤ 𝛼 ≤ 𝑝 − 2,
•  𝑝𝑠,  𝑖𝑓 𝖳 = 𝑝𝑠 − 1.

 

Proof.  We first observe that 

𝑤𝑡𝑠𝑝(𝑎(𝑥) + 𝑢𝑏(𝑥)) ≥ 𝑚𝑎𝑥{𝑤𝑡𝑠𝑝(𝑎(𝑥)),𝑤𝑡𝑠𝑝(𝑏(𝑥))},                      (13) 

where 𝑎(𝑥),  𝑏(𝑥) ∈ 𝔽𝑝𝑚[𝑥]. 

Since ⟨𝑢(𝑥 − 𝛾0)
𝖳⟩ ⊆ 𝒞3, it follows that 

𝑑𝑠𝑝(𝒞3) ≤ 𝑑𝑠𝑝(⟨𝑢(𝑥 − 𝛾0)
𝘛⟩) = 𝑑𝑠𝑝(⟨(𝑥 − 𝛾0)

𝘛⟩𝔽).                                 (14) 

Now, let 𝑐(𝑥) be an arbitrary nonzero element of 𝒞3. That means there exist 

𝑓(𝑥), 𝑔(𝑥) ∈ 𝔽𝑝𝑚[𝑥] such that 

𝑐(𝑥) = [𝑓(𝑥) + 𝑢𝑔(𝑥)][(𝑥 − 𝛾0)
𝛿 + 𝑢(𝑥 − 𝛾0)

𝑡ℎ(𝑥)]

= 𝑓(𝑥)(𝑥 − 𝛾0)
𝛿 + 𝑢[𝑔(𝑥)(𝑥 − 𝛾0)

𝛿 + 𝑓(𝑥)(𝑥 − 𝛾0)
𝑡ℎ(𝑥)]

= 𝑓(𝑥)(𝑥 − 𝛾0)
𝛿 + 𝑢𝑟(𝑥).

                 (15) 

where 𝑟(𝑥) = 𝑔(𝑥)(𝑥 − 𝛾0)
𝛿 + 𝑓(𝑥)(𝑥 − 𝛾0)

𝑡ℎ(𝑥). Thus, by (13), we obtain that 

𝑤𝑡𝑠𝑝(𝑐(𝑥)) ≥ max{𝑤𝑡𝑠𝑝(𝑓(𝑥)(𝑥 − 𝛾0)
𝛿),𝑤𝑡𝑠𝑝(𝑟(𝑥))}

≥ max{𝑤𝑡𝑠𝑝(𝑓(𝑥)(𝑥 − 𝛾0)
𝛿),𝑤𝑡𝑠𝑝(𝑔(𝑥)(𝑥 − 𝛾0)

𝛿)}

≥ 𝑑𝑠𝑝(⟨(𝑥 − 𝛾0)
𝛿⟩𝔽)

≥ 𝑑𝑠𝑝(⟨(𝑥 − 𝛾0)
𝖳⟩𝔽)  (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 ⟨(𝑥 − 𝛾0)

𝛿⟩ ⊆ ⟨(𝑥 − 𝛾0)
𝖳⟩).

         (16) 

Hence, 𝑑𝑠𝑝(𝑐(𝑥)) ≥ 𝑑𝑠𝑝(⟨(𝑥 − 𝛾0)
𝖳⟩𝔽). From this, we get 

𝑑𝑠𝑝(𝒞3) = 𝑑𝑠𝑝(⟨(𝑥 − 𝛾0)
𝖳⟩𝔽).                                                        (17) 

The rest of the proof follows from Theorem 2.2 and the discussion above.                                     

When ℎ(𝑥) = 0 or ℎ(𝑥) ≠ 0 and 1 ≤ 𝛿 ≤
𝑝𝑠+𝑡

2
, we have 𝖳 = 𝛿 and when ℎ(𝑥) ≠ 0 
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and 
𝑝𝑠+𝑡

2
< 𝛿 ≤ 𝑝𝑠 − 1, then 𝖳 = 𝑝𝑠 − 𝛿 + 𝑡. 

Corollary 3.3 ([13,  Corollary 2.]) Following the same notations as in Theorem 3.2, 

we have the following results: 

Case 1) If ℎ(𝑥) is 0 or ℎ(𝑥) is a unit and 1 ≤ 𝛿 ≤
𝑝𝑠+𝑡

2
, then 

𝑑𝑠𝑝(𝒞3) = 𝑑𝑠𝑝(⟨(𝑥 − 𝛾0)
𝛿⟩𝔽)

=

{
 
 
 
 
 
 

 
 
 
 
 
 
•  3𝑝𝑘,   𝑖𝑓 𝛿 = 𝑝𝑠 − 𝑝𝑠−𝑘 + 1,
    𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑘 ≤ 𝑠 − 2,

•  4𝑝𝑘,   𝑖𝑓

𝑝𝑠 − 𝑝𝑠−𝑘 + 2 ≤ 𝛿 ≤ 𝑝𝑠 − 𝑝𝑠−𝑘 + 𝑝𝑠−𝑘−1,
    𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑘 ≤ 𝑠 − 2,

•  2(𝛼 + 2)𝑝𝑘,   𝑖𝑓
𝑝𝑠 − 𝑝𝑟 + 𝛼𝑟 + 1 ≤ 𝛿 ≤ 𝑝𝑠 − 𝑝𝑟 + (𝛼 + 1)𝑟,

    𝑤ℎ𝑒𝑟𝑒  𝑟 = 𝑝𝑠−𝑘−1,   0 ≤ 𝑘 ≤ 𝑠 − 2
        𝑎𝑛𝑑  1 ≤ 𝛼 ≤ 𝑝 − 2,

•  (𝛼 + 2)𝑝𝑠−1,   𝑖𝑓 𝛿 = 𝑝𝑠 − 𝑝 + 𝛼,
    𝑤ℎ𝑒𝑟𝑒  1 ≤ 𝛼 ≤ 𝑝 − 2,
•  𝑝𝑠,  𝑖𝑓 𝛿 = 𝑝𝑠 − 1.

 

Case 2) If ℎ(𝑥) is a unit and 
𝑝𝑠+𝑡

2
< 𝛿 ≤ 𝑝𝑠 − 1, then 

𝑑𝑠𝑝(𝒞3) = 𝑑𝑠𝑝(⟨(𝑥 − 𝛾0)
𝑝𝑠−𝛿+𝑡⟩𝔽)

=

{
 
 
 
 
 
 

 
 
 
 
 
 
•  3𝑝𝑘,   𝑖𝑓 𝛿 = 𝑡 + 𝑝𝑠−𝑘 − 1,
    𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑘 ≤ 𝑠 − 2,

•  4𝑝𝑘,  𝑖𝑓

𝑡 + 𝑝𝑠−𝑘 − 𝑝𝑠−𝑘−1 ≤ 𝛿 ≤ 𝑡 + 𝑝𝑠−𝑘 − 2,
    𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑘 ≤ 𝑠 − 2,

•  2(𝛼 + 2)𝑝𝑘,   𝑖𝑓
𝑡 + 𝑝𝑟 − (𝛼 + 1)𝑟 ≤ 𝛿 ≤ 𝑡 + 𝑝𝑟 − 𝛼𝑟 − 1,

    𝑤ℎ𝑒𝑟𝑒  𝑟 = 𝑝𝑠−𝑘−1,   0 ≤ 𝑘 ≤ 𝑠 − 2
        𝑎𝑛𝑑  1 ≤ 𝛼 ≤ 𝑝 − 2,

•  (𝛼 + 2)𝑝𝑠−1,   𝑖𝑓 𝛿 = 𝑡 + 𝑝 − 𝛼,
    𝑤ℎ𝑒𝑟𝑒  1 ≤ 𝛼 ≤ 𝑝 − 2,
•  𝑝𝑠,  𝑖𝑓  𝛿 = 𝑡 + 1.

 

 

4 MDS SYMBOL-PAIR CONSTACYCLIC CODES. 

To get 𝖬𝖣𝖲 symbol-pair codes, we need to determine the singleton bound for symbol-

pair codes first. Singleton bound for symbol-pair code 𝐶 of length 𝑛 over a finite 

commutative ring 𝑅 with symbol-pair distance 𝑑𝑠𝑝(𝐶) is as follows: |𝐶| ≤
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|𝑅|(𝑛−𝑑𝑠𝑝(𝐶)+2)  (see [17]). A symbol-pair code 𝐶 is called an 𝖬𝖣𝖲 symbol-pair code if 

it attains the singleton bound for symbol-pair codes, i.e., 

|𝐶| = |𝑅|(𝑛−𝑑𝑠𝑝(𝐶)+2).                                                              (18) 

Let 𝒞 = ⟨(𝑥 − 𝛾0)
𝑖⟩ be a 𝛾-constacyclic code of length 𝑝𝑠 over 𝔽𝑝𝑚, where 0 ≤ 𝑖 ≤

𝑝𝑠. It is well known that |𝒞| = 𝑝𝑚(𝑝
𝑠−𝑖). So, the dimension of code 𝒞 is 𝑝𝑠 − 𝑖. By (18), 

𝒞 is an 𝖬𝖣𝖲 symbol-pair code if and only if 𝑝𝑠 − 𝑖 = 𝑝𝑠 − 𝑑𝑠𝑝(𝒞) + 2, i.e., 𝑖 =

𝑑𝑠𝑝(𝒞) − 2. In  [12], Dinh et al. identifed all the 𝖬𝖣𝖲 symbol-pair constacyclic codes 

of length 𝑝𝑠 over 𝔽𝑝𝑚. 

Theorem 4.1 (cf. [12]) Let 𝒞 = ⟨(𝑥 − 𝛾0)
𝑖⟩ be a 𝛾-constacyclic code of length 𝑝𝑠 over 

𝔽𝑝𝑚, for 𝑖 ∈ {0,1, … , 𝑝𝑠}. Then 𝒞 is a 𝖬𝖣𝖲 symbol-pair code if and only if one of the 

following conditions holds: 

 If 𝑠 = 1, then 𝑖 = 𝜂, for 0 ≤ 𝜂 ≤ 𝑝 − 2. Then 𝑑𝑠𝑝(𝒞) = 𝜂 + 2. 

 If 𝑠 ≥ 2, then 

o 𝑖 = 0, 𝑑𝑠𝑝(𝒞) = 2, 

o 𝑖 = 1, 𝑑𝑠𝑝(𝒞) = 3, 

o 𝑖 = 2, 𝑑𝑠𝑝(𝒞) = 4, 

o 𝑠 = 2, 𝑝 = 3, 𝑖 = 4, 𝑑𝑠𝑝(𝒞) = 6, 

o 𝑖 = 𝑝𝑠 − 2, 𝑑𝑠𝑝(𝒞) = 𝑝
𝑠. 

Now, let 𝒞3 = ⟨(𝑥 − 𝛾0)
𝛿 + 𝑢(𝑥 − 𝛾0)

𝑡ℎ(𝑥)⟩ be a 𝛾-constacyclic code of length 𝑝𝑠 
over ℛ of 𝖳𝗒𝗉𝖾 𝟥, where ℎ(𝑥) is a unit, 1 ≤ 𝛿 ≤ 𝑝𝑠 − 1 and 0 ≤ 𝑡 < 𝛿. In this section, 

we shall determine necessary and sufficient conditions for 𝒞3 to be 𝖬𝖣𝖲 symbol-pair 

code. For this, the following two cases arise. 

Case1: When 𝟏 ≤ 𝜹 ≤
𝒑𝒔+𝒕

𝟐
 then, |𝒞3| = 𝑝2𝑚(𝑝

𝑠−𝛿). Thus by (18), 𝒞3 is a symbol-pair 

𝖬𝖣𝖲 code if and only if 𝑝𝑠 − 𝛿 = 𝑝𝑠 − 𝑑𝑠𝑝(𝒞3) + 2, i.e., 𝛿 = 𝑑𝑠𝑝(𝒞3) − 2. Hence, 

follows the theorem. 

Theorem 4.2. Let 𝒞3 = ⟨(𝑥 − 𝛾0)
𝛿 + 𝑢(𝑥 − 𝛾0)

𝑡ℎ(𝑥)⟩ be of 𝖳𝗒𝗉𝖾 𝟥, where ℎ(𝑥) is a 

unit, 0 ≤ 𝑡 < 𝛿 and 1 ≤ 𝛿 ≤
𝑝𝑠+𝑡

2
, then 𝒞3 is a 𝖬𝖣𝖲 symbol-pair code if and only if one 

of the following conditions holds: 

 If 𝑠 = 1, 𝛿 = 𝑛, 1 ≤ 𝑛 ≤ 𝑝 − 2 and max{2𝑛 − 𝑝, 0} ≤ 𝑡 < 𝑛, then 

𝑑𝑠𝑝(𝒞3) = 𝑛 + 2. 

 If 𝑠 ≥ 2, 

o 𝛿 = 1 and 𝑡 = 0, then 𝑑𝑠𝑝(𝒞3) = 3, 

o 𝛿 = 2 and 0 ≤ 𝑡 ≤ 1, then 𝑑𝑠𝑝(𝒞3) = 4, 
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o 𝑠 = 2, 𝑝 = 3, 𝛿 = 4 and 0 ≤ 𝑡 ≤ 3, then 𝑑𝑠𝑝(𝒞3) = 6, 

o 𝛿 = 𝑝𝑠 − 2 and 𝑝𝑠 − 4 ≤ 𝑡 ≤ 𝑝𝑠 − 3, then 𝑑𝑠𝑝(𝒞3) = 𝑝𝑠. 

Proof. We get 𝖬𝖣𝖲 code for 𝛿 = 𝑑𝑠𝑝(𝒞3) − 2, which is similar to the 𝖬𝖣𝖲 𝛾-

constacyclic symbol-pair codes over 𝔽𝑝𝑚  (see Theorem 4.1). But we have 1 ≤ 𝛿 ≤
𝑝𝑠+𝑡

2
 and 0 ≤ 𝑡 < 𝛿, which implies that max{2𝛿 − 𝑝𝑠, 0} ≤ 𝑡 < 𝛿. This completes the 

proof of the theorem.       

Remark 4.3. Let 𝒞3 = ⟨(𝑥 − 𝛾0)
𝛿 + 𝑢(𝑥 − 𝛾0)

𝑡ℎ(𝑥)⟩, where ℎ(𝑥) is a unit, 0 ≤ 𝑡 <

𝛿 and 1 ≤ 𝛿 ≤ 𝑝𝑠−1 + ⌊
𝑡

2
⌋. Then by (18), 𝒞3 is a 𝖬𝖣𝖲 symbol-pair code if and only if 

𝛿 = 𝑑𝑠𝑝(𝒞3) − 2. In  [17, Theorem 8], Dinh et al. stated that: When 𝑠 ≥ 2, then 𝛿 ≥ 2. 

Unfortunately, this result is not true. For example, taking 𝑠 = 4, 𝑝 = 5 and 𝛿 = 1, then 

𝑡 = 0. By Corollary  3.3 (case 1), we have 𝑑𝑠𝑝(𝒞3) = 3, then 𝑑𝑠𝑝(𝒞3) − 2 = 3 − 2 =

1 = 𝛿, which implies that 𝒞3 is a 𝖬𝖣𝖲 symbol-pair code. This case shows that  is 

incomplete. 

Case2: When 
𝐩𝐬+𝐭

𝟐
< 𝛅 ≤ 𝐩𝐬 − 𝟏. In this case, |𝒞3| = 𝑝

𝑚(𝑝𝑠−𝑡). Applying  (18), 𝒞3 is 

an 𝖬𝖣𝖲 symbol-pair constacyclic code if and only if 𝑝𝑠 − 𝑡 = 2𝑝𝑠 − 2𝑑𝑠𝑝(𝒞3) + 4, 

i.e., 𝑡 = 2𝑑𝑠𝑝(𝒞3) − 𝑝
𝑠 − 4. Hence, follows the theorem. 

Theorem 4.4. Let 𝒞3 = ⟨(𝑥 − 𝛾0)
𝛿 + 𝑢(𝑥 − 𝛾0)

𝑡ℎ(𝑥)⟩ be of 𝖳𝗒𝗉𝖾 𝟥, where ℎ(𝑥) is a 

unit, 0 ≤ 𝑡 < 𝛿 and 
𝑝𝑠+𝑡

2
< 𝛿 ≤ 𝑝𝑠 − 1. Then no 𝖬𝖣𝖲 symbol-pair constacyclic code 

exists. 

Proof. Let 𝒞3 = ⟨(𝑥 − 𝛾0)
𝛿 + 𝑢(𝑥 − 𝛾0)

𝑡ℎ(𝑥)⟩, where ℎ(𝑥) is a unit. If 
𝑝𝑠+𝑡

2
< 𝛿 ≤

𝑝𝑠 − 1, i.e., 2𝛿 > 𝑝𝑠 + 𝑡, we get 𝖬𝖣𝖲 code if and only if 𝑡 = 2𝑑𝑠𝑝(𝒞3) − 𝑝
𝑠 − 4. The 

symbol-pair distance 𝑑𝑠𝑝(𝒞3) is established in Corollary 3.3(case 2). In the following, 

we are going to discuss the case when 𝑡 = 2𝑑𝑠𝑝(𝒞3) − 𝑝
𝑠 − 4 and 2𝛿 > 𝑝𝑠 + 𝑡. 

𝙲𝚊𝚜𝚎 𝟷: 𝛿 = 𝑡 + 𝑝𝑠−𝑘 − 1, where 0 ≤ 𝑘 ≤ 𝑠 − 2. Then 𝑑𝑠𝑝(𝒞3) = 3𝑝𝑘, and 2𝛿 =

2𝑡 + 2𝑝𝑠−𝑘 − 2 > 𝑝𝑠 + 𝑡. Hence, 

𝑡 > 𝑝𝑠 − 2𝑝𝑠−𝑘 + 2

= 2𝑝𝑠−𝑘(𝑝𝑘 − 1) − 𝑝𝑠 + 2

≥ 2𝑝2(𝑝𝑘 − 1) − 𝑝𝑠 + 2

≥ 8(𝑝𝑘 − 1) − 𝑝𝑠 + 2

= 6𝑝𝑘 − 𝑝𝑠 + 2𝑝𝑘 − 2 − 4

≥ 6𝑝𝑘 − 𝑝𝑠 − 4

= 2𝑑𝑠𝑝(𝒞3) − 𝑝
𝑠 − 4.

                                                         (19) 

Since, 𝑡 > 2𝑑𝑠𝑝(𝒞3) − 𝑝
𝑠 − 4, no 𝖬𝖣𝖲 symbol-pair constacyclic code exists in this 

case. 

𝙲𝚊𝚜𝚎 𝟸: 𝑡 + 𝑝𝑠−𝑘 − 𝑝𝑠−𝑘−1 ≤ 𝛿 ≤ 𝑡 + 𝑝𝑠−𝑘 − 2, where 0 ≤ 𝑘 ≤ 𝑠 − 2. So 
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𝑑𝑠𝑝(𝒞3) = 4𝑝𝑘. We consider 𝛿 = 𝑡 + 𝑝𝑠−𝑘 − 𝑟, where 2 ≤ 𝑟 ≤ 𝑝𝑠−𝑘−1. Then 2𝛿 =

2𝑡 + 2𝑝𝑠−𝑘 − 2𝑟 > 𝑝𝑠 + 𝑡. Hence, 

𝑡 > 𝑝𝑠 − 2𝑝𝑠−𝑘 + 2𝑟

= 2𝑝𝑠−𝑘(𝑝𝑘 − 1) − 𝑝𝑠 + 2𝑟

≥ 2𝑝2(𝑝𝑘 − 1) − 𝑝𝑠 + 4

≥ 8(𝑝𝑘 − 1) − 𝑝𝑠 + 4

= 8𝑝𝑘 − 𝑝𝑠 − 4

= 2𝑑𝑠𝑝(𝒞3) − 𝑝
𝑠 − 4.

                                                      (20) 

Since, 𝑡 > 2𝑑𝑠𝑝(𝒞3) − 𝑝
𝑠 − 4, no 𝖬𝖣𝖲 symbol-pair constacyclic code exists in this 

case. 

𝙲𝚊𝚜𝚎 𝟹: 𝑡 + 𝑝𝑠−𝑘 − (𝛼 + 1)𝑝𝑠−𝑘−1 ≤ 𝛿 ≤ 𝑡 + 𝑝𝑠−𝑘 − 𝛼𝑝𝑠−𝑘−1 − 1, where 0 ≤ 𝑘 ≤
𝑠 − 2 and 1 ≤ 𝛼 ≤ 𝑝 − 2. Then 𝑑𝑠𝑝(𝒞3) = 2(𝛼 + 2)𝑝

𝑘. We consider 𝛿 = 𝑡 + 𝑝𝑠−𝑘 −

𝛼𝑝𝑠−𝑘−1 − 𝑟, where 1 ≤ 𝑟 ≤ 𝑝𝑠−𝑘−1. Then 2𝛿 = 2𝑡 + 2𝑝𝑠−𝑘 − 2𝛼𝑝𝑠−𝑘−1 − 2𝑟 >
𝑝𝑠 + 𝑡. Hence, 

𝑡 > 𝑝𝑠 − 2𝑝𝑠−𝑘 + 2𝛼𝑝𝑠−𝑘−1 + 2𝑟

= 2𝑝𝑠−𝑘(𝑝𝑘 − 1) − 𝑝𝑠 + 2𝛼𝑝𝑠−𝑘−1 + 2𝑟

≥ 2𝑝2(𝑝𝑘 − 1) − 𝑝𝑠 + 2𝛼𝑝 + 2

≥ 2(𝛼 + 2)2(𝑝𝑘 − 1) − 𝑝𝑠 + 2𝛼(𝛼 + 2) + 2

= 2(𝛼 + 1)(𝛼 + 2)𝑝𝑘 − 𝑝𝑠 + 2(𝛼 + 2)(𝑝𝑘 − 2) + 2

≥ 4(𝛼 + 2)𝑝𝑘 − 𝑝𝑠 + 6(𝑝𝑘 − 2) + 2

≥ 4(𝛼 + 2)𝑝𝑘 − 𝑝𝑠 − 4

= 2𝑑𝑠𝑝(𝒞3) − 𝑝
𝑠 − 4.

                      (21) 

Since, 𝑡 > 2𝑑𝑠𝑝(𝒞3) − 𝑝
𝑠 − 4, no 𝖬𝖣𝖲 symbol-pair constacyclic code exists in this 

case. 

𝙲𝚊𝚜𝚎 𝟺: 𝛿 = 𝑡 + 𝑝 − 𝛼, where 1 ≤ 𝛼 ≤ 𝑝 − 2. Then 𝑑𝑠𝑝(𝒞3) = (𝛼 + 2)𝑝𝑠−1, and 

2𝛿 = 2𝑡 + 2𝑝 − 2𝛼 > 𝑝𝑠 + 𝑡. Hence, 

𝑡 > 𝑝𝑠 − 2𝑝 + 2𝛼

= 2𝑝(𝑝𝑠−1 − 1) − 𝑝𝑠 + 2𝛼

≥ 2(𝛼 + 2)(𝑝𝑠−1 − 1) − 𝑝𝑠 + 2𝛼

= 2(𝛼 + 2)𝑝𝑠−1 − 𝑝𝑠 − 4

= 2𝑑𝑠𝑝(𝒞3) − 𝑝
𝑠 − 4.

                                        (22) 

Since, 𝑡 > 2𝑑𝑠𝑝(𝒞3) − 𝑝
𝑠 − 4, no 𝖬𝖣𝖲 symbol-pair constacyclic code exists in this 

case. 

  𝙲𝚊𝚜𝚎 𝟻: 𝛿 = 𝑡 + 1. Then 𝑑𝑠𝑝(𝒞3) = 𝑝𝑠, and 2𝛿 = 2𝑡 + 2 > 𝑝𝑠 + 𝑡. Hence, 
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𝑡 > 𝑝𝑠 − 2

= 2𝑝𝑠 − 𝑝𝑠 − 2

> 2𝑝𝑠 − 𝑝𝑠 − 4

= 2𝑑𝑠𝑝(𝒞3) − 𝑝
𝑠 − 4.

                                                    (23) 

Since, 𝑡 > 2𝑑𝑠𝑝(𝒞3) − 𝑝
𝑠 − 4, no 𝖬𝖣𝖲 symbol-pair constacyclic code exists in this 

case. 

Therefore, 𝖬𝖣𝖲 symbol-pair code does not exist for 𝛾-constacyclic codes of 𝖳𝗒𝗉𝖾 𝟥, 

when ℎ(𝑥) is a unit and 
𝑝𝑠+𝑡

2
< 𝛿 ≤ 𝑝𝑠 − 1. This completes the proof.                                 

Remark 4.5.  Let 𝒞3 = ⟨(𝑥 − 𝛾0)
𝛿 + 𝑢(𝑥 − 𝛾0)

𝑡ℎ(𝑥)⟩, where ℎ(𝑥) is a unit, 0 ≤ 𝑡 <

𝛿 and 𝑝𝑠−1 + ⌊
𝑡

2
⌋ < 𝛿 ≤ 𝑝𝑠 − 1. Then by (18), 𝒞3 is a 𝖬𝖣𝖲 symbol-pair code if and 

only if 𝑡 = 2𝑑𝑠𝑝(𝒞3) − 𝑝
𝑠 − 4. In [17, Theorem 9], Dinh et al. stated that: 

1. 𝒞3 = ⟨(𝑥 − 𝛾0)
𝑝𝑠−1 + 𝑢(𝑥 − 𝛾0)

𝑡ℎ(𝑥)⟩ is a 𝖬𝖣𝖲 symbol-pair code, where 

ℎ(𝑥) is a unit, 𝑠 ≥ 1, 𝑝 ≥ 5 and 𝑡 = 𝑝𝑠 − 4. Unfortunately, this result is not 

true. For example, taking 𝑠 = 1 and 𝑝 = 7, then 𝑡 = 3. By Corollary 3.3 

(case 2), we have 𝑑𝑠𝑝(𝒞3) = 6, then 2𝑑𝑠𝑝(𝒞3) − 𝑝
𝑠 − 4 = 12 − 7 − 4 =

1 ≠ 𝑡 = 3, which implies that 𝒞3 is not a 𝖬𝖣𝖲 symbol-pair code. 

2. 𝒞3 = ⟨(𝑥 − 𝛾0)
2𝑠−1 + 𝑢(𝑥 − 𝛾0)

𝑡ℎ(𝑥)⟩ is a 𝖬𝖣𝖲 symbol-pair code, where 

ℎ(𝑥) is a unit, 𝑠 ≥ 2 and 𝑡 = 2𝑠 − 4. This result is not true. For example, 

taking 𝑠 = 3, then 𝑡 = 4. By Corollary 3.3(case 2), we have 𝑑𝑠𝑝(𝒞3) = 6, 

then 2𝑑𝑠𝑝(𝒞3) − 2
𝑠 − 4 = 12 − 8 − 4 = 0 ≠ 𝑡 = 4, which implies that 𝒞3 

is not a 𝖬𝖣𝖲 symbol-pair code. 

3. 𝒞3 = ⟨(𝑥 − 𝛾0)
3𝑠−1 + 𝑢(𝑥 − 𝛾0)

𝑡ℎ(𝑥)⟩ is a 𝖬𝖣𝖲 symbol-pair code, where 

ℎ(𝑥) is a unit, 𝑠 ≥ 2 and 𝑡 = 3𝑠 − 4. This result is not true. For example, 

taking 𝑠 = 2, then 𝑡 = 5. By Corollary 3.3(case 2), we have 𝑑𝑠𝑝(𝒞3) = 6, 

then 2𝑑𝑠𝑝(𝒞3) − 3
𝑠 − 4 = 12 − 9 − 4 = −1 ≠ 𝑡 = 5, which implies that 

𝒞3 is not a 𝖬𝖣𝖲 symbol-pair code. 

4. 𝒞3 = ⟨(𝑥 − 𝛾0)
2𝑠−3 + 𝑢(𝑥 − 𝛾0)

𝑡ℎ(𝑥)⟩ is a 𝖬𝖣𝖲 symbol-pair code, where 

ℎ(𝑥) is a unit, 𝑠 ≥ 3 and 𝑡 = 2𝑠−1 − 4. This result is not true. For example, 

taking 𝑠 = 3, then 𝑡 = 0. By Corollary 3.3(case 2), we have 𝑑𝑠𝑝(𝒞3) = 4, 

then 2𝑑𝑠𝑝(𝒞3) − 2
𝑠 − 4 = 8 − 8 − 4 = −4 ≠ 𝑡 = 0, which implies that 𝒞3 

is not a 𝖬𝖣𝖲 symbol-pair code. 

5. 𝒞3 = ⟨(𝑥 − 𝛾0)
3𝑠−5 + 𝑢(𝑥 − 𝛾0)

𝑡ℎ(𝑥)⟩ is a 𝖬𝖣𝖲 symbol-pair code, where 

ℎ(𝑥) is a unit, 𝑠 ≥ 3 and 𝑡 = 3𝑠−1 − 4. This result is not true. For example, 

taking 𝑠 = 3, then 𝑡 = 5. By Corollary 3.3(case 2), we have 𝑑𝑠𝑝(𝒞3) = 6, 

then 2𝑑𝑠𝑝(𝒞3) − 3
𝑠 − 4 = 12 − 27 − 4 = −19 ≠ 𝑡 = 5, which implies that 

𝒞3 is not a 𝖬𝖣𝖲 symbol-pair code. 

These examples shows that [17, Theorem 9] is incorrect. 
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To conclude this section, we provide some cases study of constacyclic codes to 

illustrate our results. 

Case study1: 𝛾-constacyclic codes of length 7 over the chain ring ℛ = 𝔽7 + 𝑢𝔽7 are 

precisely the ideals of ℛ[𝑥]/⟨𝑥7 − 𝛾⟩, where 𝛾 ∈ {1,2,3,4,5,6}. 
In the following, we list all distinct 𝛾-constacyclic codes of length 7 over the chain ring 

𝔽7 + 𝑢𝔽7 of 𝖳𝗒𝗉𝖾 𝟥, where ℎ(𝑥) is a unit, 0 ≤ 𝑡 < 𝛿 and 1 ≤ 𝛿 ≤ 6. There are 1242 

distinct 𝛾-constacyclic codes listed below. In all codes we have ℎ0 ∈
{1,2, … ,6},  ℎ1, ℎ2 ∈ {0,1, … ,6}. 

 𝛿 = 1 and 𝑡 = 0: ⟨(𝑥 − 𝛾) + ℎ0𝑢⟩, 

 𝛿 = 2 and 𝑡 = 0: ⟨(𝑥 − 𝛾)2 + ℎ0𝑢 + ℎ1𝑢(𝑥 − 𝛾)⟩, 

 𝛿 = 2 and 𝑡 = 1: ⟨(𝑥 − 𝛾)2 + ℎ0𝑢(𝑥 − 𝛾)⟩, 

 𝛿 = 3 and 𝑡 = 0: ⟨(𝑥 − 𝛾)3 + ℎ0𝑢 + ℎ1𝑢(𝑥 − 𝛾) + ℎ2𝑢(𝑥 − 𝛾)
2⟩, 

 𝛿 = 3 and 𝑡 = 1: ⟨(𝑥 − 𝛾)3 + ℎ0𝑢(𝑥 − 𝛾) + ℎ1𝑢(𝑥 − 𝛾)
2⟩, 

 𝛿 = 3 and 𝑡 = 2: ⟨(𝑥 − 𝛾)3 + ℎ0𝑢(𝑥 − 𝛾)
2⟩, 

 𝛿 = 4 and 𝑡 = 0: ⟨(𝑥 − 𝛾)4 + ℎ0𝑢 + ℎ1𝑢(𝑥 − 𝛾) + ℎ2𝑢(𝑥 − 𝛾)
2⟩, 

 𝛿 = 4 and 𝑡 = 1: ⟨(𝑥 − 𝛾)4 + ℎ0𝑢(𝑥 − 𝛾) + ℎ1𝑢(𝑥 − 𝛾)
2 + ℎ2𝑢(𝑥 − 𝛾)

3⟩, 

 𝛿 = 4 and 𝑡 = 2: ⟨(𝑥 − 𝛾)4 + ℎ0𝑢(𝑥 − 𝛾)
2 + ℎ1𝑢(𝑥 − 𝛾)

2⟩, 

 𝛿 = 4 and 𝑡 = 3: ⟨(𝑥 − 𝛾)4 + ℎ0𝑢(𝑥 − 𝛾)
3⟩, 

 𝛿 = 5 and 𝑡 = 0: ⟨(𝑥 − 𝛾)5 + ℎ0𝑢 + ℎ1𝑢(𝑥 − 𝛾)⟩, 

 𝛿 = 5 and 𝑡 = 1: ⟨(𝑥 − 𝛾)5 + ℎ0𝑢(𝑥 − 𝛾) + ℎ1𝑢(𝑥 − 𝛾)
2⟩, 

 𝛿 = 5 and 𝑡 = 2: ⟨(𝑥 − 𝛾)5 + ℎ0𝑢(𝑥 − 𝛾)
2 + ℎ1𝑢(𝑥 − 𝛾)

3⟩, 

 𝛿 = 5 and 𝑡 = 3: ⟨(𝑥 − 𝛾)5 + ℎ0𝑢(𝑥 − 𝛾)
3 + ℎ1𝑢(𝑥 − 𝛾)

4⟩, 

 𝛿 = 5 and 𝑡 = 4: ⟨(𝑥 − 𝛾)5 + ℎ0𝑢(𝑥 − 𝛾)
4⟩, 

 𝛿 = 6 and 𝑡 = 0: ⟨(𝑥 − 𝛾)6 + ℎ0𝑢⟩, 

 𝛿 = 6 and 𝑡 = 1: ⟨(𝑥 − 𝛾)6 + ℎ0𝑢(𝑥 − 𝛾)⟩, 

 𝛿 = 6 and 𝑡 = 2: ⟨(𝑥 − 𝛾)6 + ℎ0𝑢(𝑥 − 𝛾)
2⟩, 

 𝛿 = 6 and 𝑡 = 3: ⟨(𝑥 − 𝛾)6 + ℎ0𝑢(𝑥 − 𝛾)
3⟩, 

 𝛿 = 6 and 𝑡 = 4: ⟨(𝑥 − 𝛾)6 + ℎ0𝑢(𝑥 − 𝛾)
4⟩, 

 𝛿 = 6 and 𝑡 = 5: ⟨(𝑥 − 𝛾)6 + ℎ0𝑢(𝑥 − 𝛾)
5⟩ 

 

Using the results in Sections 3 and 4, we list all symbol-pair distances 𝖽𝗌𝗉 of such codes. 

We also give all 𝖬𝖣𝖲 and non-𝖬𝖣𝖲 symbol-pair codes (Table 1).  

Among these 1242 codes, 786 of them are 𝖬𝖣𝖲 symbol-pair codes. 
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Table 1.  𝛾-constacyclic codes of length 7 over the chain ring 𝔽7 + 𝑢𝔽7 of 𝘛𝘺𝘱𝘦 𝟥 

(ℎ(𝑥) is a unit). 

𝗜𝗱𝗲𝗮𝗹 𝗱𝘀𝗽 𝗠𝗗𝗦 code 

⟨(𝑥 − 𝛾) + ℎ0𝑢⟩ 3 𝖸𝖾𝗌 

⟨(𝑥 − 𝛾)2 + ℎ0𝑢 + ℎ1𝑢(𝑥 − 𝛾)⟩ 4 𝖸𝖾𝗌 

⟨(𝑥 − 𝛾)2 + ℎ0𝑢(𝑥 − 𝛾)⟩ 4 𝖸𝖾𝗌 

⟨(𝑥 − 𝛾)3 + ℎ0𝑢 + ℎ1𝑢(𝑥 − 𝛾) + ℎ2𝑢(𝑥 − 𝛾)
2⟩ 5 𝖸𝖾𝗌 

⟨(𝑥 − 𝛾)3 + ℎ0𝑢(𝑥 − 𝛾) + ℎ1𝑢(𝑥 − 𝛾)
2⟩ 5 𝖸𝖾𝗌 

⟨(𝑥 − 𝛾)3 + ℎ0𝑢(𝑥 − 𝛾)
2⟩ 5 𝖸𝖾𝗌 

⟨(𝑥 − 𝛾)4 + ℎ0𝑢 + ℎ1𝑢(𝑥 − 𝛾) + ℎ2𝑢(𝑥 − 𝛾)
2⟩ 5 𝖭𝗈 

⟨(𝑥 − 𝛾)4 + ℎ0𝑢(𝑥 − 𝛾) + ℎ1𝑢(𝑥 − 𝛾)
2 + ℎ2𝑢(𝑥 − 𝛾)

3⟩ 6 𝖸𝖾𝗌 

⟨(𝑥 − 𝛾)4 + ℎ0𝑢(𝑥 − 𝛾)
2 + ℎ1𝑢(𝑥 − 𝛾)

2⟩ 6 𝖸𝖾𝗌 

⟨(𝑥 − 𝛾)4 + ℎ0𝑢(𝑥 − 𝛾)
3⟩ 6 𝖸𝖾𝗌 

⟨(𝑥 − 𝛾)5 + ℎ0𝑢 + ℎ1𝑢(𝑥 − 𝛾)⟩ 4 𝖭𝗈 

⟨(𝑥 − 𝛾)5 + ℎ0𝑢(𝑥 − 𝛾) + ℎ1𝑢(𝑥 − 𝛾)
2⟩ 5 𝖭𝗈 

⟨(𝑥 − 𝛾)5 + ℎ0𝑢(𝑥 − 𝛾)
2 + ℎ1𝑢(𝑥 − 𝛾)

3⟩ 6 𝖭𝗈 

⟨(𝑥 − 𝛾)5 + ℎ0𝑢(𝑥 − 𝛾)
3 + ℎ1𝑢(𝑥 − 𝛾)

4⟩ 7 𝖸𝖾𝗌 

⟨(𝑥 − 𝛾)5 + ℎ0𝑢(𝑥 − 𝛾)
4⟩ 7 𝖸𝖾𝗌 

⟨(𝑥 − 𝛾)6 + ℎ0𝑢⟩ 3 𝖭𝗈 

⟨(𝑥 − 𝛾)6 + ℎ0𝑢(𝑥 − 𝛾)⟩ 4 𝖭𝗈 

⟨(𝑥 − 𝛾)6 + ℎ0𝑢(𝑥 − 𝛾)
2⟩ 5 𝖭𝗈 

⟨(𝑥 − 𝛾)6 + ℎ0𝑢(𝑥 − 𝛾)
3⟩ 6 𝖭𝗈 

⟨(𝑥 − 𝛾)6 + ℎ0𝑢(𝑥 − 𝛾)
4⟩ 7 𝖭𝗈 

⟨(𝑥 − 𝛾)6 + ℎ0𝑢(𝑥 − 𝛾)
5⟩ 7 𝖭𝗈 

 

Case study2: Consider cyclic codes of length 4 over the chain ring ℛ = 𝔽2 + 𝑢𝔽2 

which are the ideals of ℛ[𝑥]/⟨𝑥4 − 1⟩. In the following, we list all distinct cyclic codes 

of length 4 over the chain ring 𝔽2 + 𝑢𝔽2 of 𝖳𝗒𝗉𝖾 𝟥, where ℎ(𝑥) is a unit, 0 ≤ 𝑡 < 𝛿 

and 1 ≤ 𝛿 ≤ 3. There are 7 distinct cyclic codes listed below. 

 𝛿 = 1 and 𝑡 = 0: ⟨(𝑥 − 1) + 𝑢⟩, 

 𝛿 = 2 and 𝑡 = 0: ⟨(𝑥 − 1)2 + 𝑢 + ℎ1(𝑥 − 1)⟩,  where ℎ1 ∈ {0,1}, 
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 𝛿 = 2 and 𝑡 = 1: ⟨(𝑥 − 1)2 + 𝑢(𝑥 − 1)⟩, 

 𝛿 = 3 and 𝑡 = 0: ⟨(𝑥 − 1)3 + 𝑢⟩, 

 𝛿 = 3 and 𝑡 = 1: ⟨(𝑥 − 1)3 + 𝑢(𝑥 − 1)⟩, 

 𝛿 = 3 and 𝑡 = 2: ⟨(𝑥 − 1)3 + 𝑢(𝑥 − 1)2⟩. 

Applying Theorem 3.2, we can compute all symbol-pair distances of cyclic codes 𝖽𝗌𝗉. 

Using Theorems 4.2 and 4.4, all 𝖬𝖣𝖲 and non-𝖬𝖣𝖲 symbol-pair codes are determined 

in Table 2. Among these 7 codes, 4 of them are 𝖬𝖣𝖲 symbol-pair codes. 

 

Table 2. Cyclic codes of length 4 over the chain ring 𝔽2 + 𝑢𝔽2 of 𝘛𝘺𝘱𝘦 𝟥 (ℎ(𝑥) is a 

unit). 

 

5 CONCLUSION 

Let 𝛾 be a nonzero element of the finite field 𝔽𝑝𝑚. Determining the symbol-pair 

distances of constacyclic codes and obtaining 𝖬𝖣𝖲 symbol-pair constacyclic codes are 

very important in coding theory. Motivated by this, in this paper, we completed the 

problem of determining 𝖬𝖣𝖲 symbol-pair 𝛾-constacyclic codes of length 𝑝𝑠 over ℛ =
𝔽𝑝𝑚 + 𝑢𝔽𝑝𝑚(𝑢

2 = 0). 

For future work, it would be interesting to determine the symbol-pair distances of 𝛾-

constacyclic codes of length 𝑝𝑠 over 𝖱 = 𝔽𝑝𝑚 + 𝑢𝔽𝑝𝑚 + 𝑢
2𝔽𝑝𝑚  (𝑢

3 = 0), and to 

determine 𝖬𝖣𝖲 symbol-pair 𝛾-constacyclic codes of length 𝑝𝑠 over 𝖱. 
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𝗜𝗱𝗲𝗮𝗹 𝗱𝘀𝗽 𝗠𝗗𝗦 code 

⟨(𝑥 − 1) + 𝑢⟩ 3 𝖸𝖾𝗌 

⟨(𝑥 − 1)2 + 𝑢 + ℎ1(𝑥 − 1) 4 𝖸𝖾𝗌 

⟨(𝑥 − 1)2 + 𝑢(𝑥 − 1)⟩ 4 𝖸𝖾𝗌 

⟨(𝑥 − 1)3 + 𝑢⟩ 3 𝖭𝗈 

⟨(𝑥 − 1)3 + 𝑢(𝑥 − 1)⟩ 4 𝖭𝗈 

⟨(𝑥 − 1)3 + 𝑢(𝑥 − 1)2⟩ 4 𝖭𝗈 
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