Advances in Dynamical Systems and Applications.

ISSN 0973-5321, Volume 16, Number 2, (2021) pp. 1811-1826
© Research India Publications
https://www.ripublication.com/adsa.htm

On MDS Symbol-Pair y-Constacyclic Codes of
Length pSover Fm[u]/(u®)

Jamal Laaouine”

Laboratory of Algebra, Geometry and Arithmetic, Department of Mathematics
Faculty of Sciences Dhar EI Mahraz, University Sidi Mohamed Ben Abdallah
B.P. 1796, Fez-Atlas, Fez, Morocco.

ABSTRACT

MDS symbol-pair codes form an optimal class of symbol-pair codes for their
high error-correction capability. Let R = F,m[u]/(u®) be the finite
commutative chain ring with unity. y-constacyclic codes of length p® over R,
where y is a nonzero element of the field [F,=, had been classified into four
types. Let C3 = ((x — ¥0)% + u(x — ¥o)th(x)) be a code of Type 3, where
h(x) is a unit, 0<t<§, and 1 <§ <p®—1. In this paper, we derive
necessary and sufficient conditions under which C; is a maximum distance
separable (MDS) code with respect to the symbol-pair metric.

Keywords: Repeated-root codes; constacyclic codes; MDS codes; symbol-pair
distance; finite chain rings.

1 INTRODUCTION

Let us consider the code alphabet X with g elements, whose elements are called
symbols. In symbol-pair read channels, a codeword x = (xg, Xy, ...,Xp—1) IS
represented as

TI,'(X) = ((xOle)l (xlle)l e (xn—ler)) € (22)11_ (1)
Every vector x € 2™ has a unique pair representation m(x). For any two symbol pairs
(a,b) and (f, g),say (a,b) = (f,g) ifbotha = f and b = g. An important parameter
of symbol-pair codes is the symbol-pair distance. In 2010, Cassuto and Blaum [1] gave
the definition of the symbol-pair distance as the Hamming distance over the alphabet
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(2,2). Given x = (xg, X1, » Xn-1), Y = Vo, V1, --» Yn—1), the symbol-pair distance
between x and y is defined as

dsp(x,y) = dy(m(x), 1(¥)) = [{i € Zn | (xi, Xis1) # Voo Yir )3, (2)

where Z,, denotes the ring Z/nZ. The symbol-pair distance of a symbol-pair code C is
defined as

dsp (C) = min{ds,(x,y) | x,y € C,x # y}. 3)

The symbol-pair weight of a vector x is defined as the Hamming weight of its symbol-
pair vector m(x):

Witgp(x) = wty (m(x)) = [{i € Zn | (x;, Xi41) # (0,0)}]- (4)

If the code C is linear, its symbol-pair distance is equal to the minimum symbol-pair
weight of nonzero codewords of C:

dsp(C) = min{wtg,(x) 1 0 = x € C}. (5)

Inspired by reading restrictions in high-density data storage systems, symbol-pair codes
desired to protect against a certain number of pair-errors were first introduced by
Cassuto and Blaum [1]. They provided constructions and decoding methods of symbol-
pair codes. Again, they established the relationship between the symbol-pair distance
and the Hamming distance by [2]. In 2011, by using algebraic methods, Cassuto and
Litsyn [3] constructed cyclic symbol-pair codes. Recently, in [4], Yaakobi et al.
considered and gave a lower bound on the symbol-pair distances for binary cyclic
codes. By giving the definition of parity-check matrix for symbol-pair codes, a new
syndrome decoding algorithm of symbol-pair codes is given by Hirotomo et al. [5]. In
particular, in 2015, Kai et al. [6] extended the result of Cassuto and Litsyn [3] for the
case of simple-root constacyclic codes.

It is well-known that, for any fixed code of length n and dimension k, the maximum
distance separable (briefly, MDS) codes have the best possible error correcting
capability. Thus, constructing MDS codes has become one of the central topics in coding
theory. MDS symbol-pair codes can be considered as a generalization of MDS codes for
the classical case. This is the reason why many researchers evaluated MDS symbol-pair
codes (for example, [6; 7; 8; 9; 10]).

In engineering, constacyclic codes are most preferred since they can be efficiently
encoded using shift registers, due to their rich algebraic structure. For a unit element 1
in a commutative ring R, a code C of length n over R is said to be A-constacyclic if
(co, €1y -+-» Cn_q) € C implies that (Ac,_1,Co, ..., Cn_z) € C. A A-constacyclic code of
length n over R can be classifed as an ideal in R[x]/{(x™ — 1). When A = 1, the class
of A-constacyclic codes are known as cyclic codes. The case when the code length n is
divisible by the characteristic p of the residue feld R, the constacyclic codes are called
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repeated-root constacyclic codes. Let y be a nonzero element of the field F,m. All y-
constacyclic code of length p® over R = F,m + ulF,,m are classified into 4 distinct types
and their detailed structures are also established in [11]. Let C; = ((x — )% + u(x —
Yo)th(x)) be of Type 3, as in [11], where h(x) isaunit,0 <t < §,and1 < § < p° — 1.
In [12], Dinh et al. obtained MDS symbol-pair y-constacyclic codes of prime power
length over [F,m, by satisfying the Singleton bound of symbol-pair codes. To continue

the line of study, in this paper, we derive necessary and sufficient conditions under
which C; is a MDS symbol-pair code.

The organization of this paper is as follows. In Section 2, some preliminary results that
are needed to derive our main results are discussed. In Section 3, we give the symbol-
pair distance d, (C3) of the code C; obtained in [13]. In Section 4, we derive necessary
and sufficient conditions under which C; is a MDS symbol-pair code. We mention a
brief conclusion and discuss some interesting open problems in this direction
in Section 5.

2 PRELIMINARIES

All rings are commutative rings with identity. A ring R is called principal ideal ring if
its ideals are principal. R is called a local ring if R has a unique maximal ideal. Finally,
R is called a chain ring if the set of all ideals of R is linearly ordered under set-theoretic
inclusion.

The following result is well-known for the class of finite commutative rings (see [14]).

Proposition 2.1. If R is a finite commutative ring, then the following conditions are
equivalent:

(i) R isalocal ring and the maximal ideal of R is principal,

(i) R is a local principal ideal ring,

(iii)R is a chain ring.
If we denote by (a) the maximal ideal of the finite chain ring R, then a is nilpotent with
nilpotency index some integer e and the ideal of R from the following chain:

(0) =(a®) S (") & S (a) G (a%) = R. (6)

In this paper, let F,m be a finite field of p™ elements, where p is a prime number, and
denote

R = Fpm[u]/(u?). (7)

The ring R is a finite commutative ring with p?™ elements, and can be expressed as
R =TFym +uFym ={a+bu|a,b € F,m}. Itis easy to check that R is a local ring
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with maximal ideal (u) = ulF,m. Therefore, by propsition 2.1, it is a chain ring. The
ring R has precisely p™(p™ — 1) units and every invertible element in R is of the form:
a + bu where a,b € F,m and a # 0.

For any invertible element y of [F,m, y-constacyclic codes of length p* over a finite
field IF,m are precisely the ideals of the finite chain ring F,m [x]/(xP" — ). Since y is

a nonzero element of the field IF,m, there exists y, € [F,m such that yg’s =y. In [15],
[12], the algebraic structure and symbol-pair distances of y-constacyclic codes of length
p® over [F,m were established and given by the following theorem.

Theorem 2.2 (cf. [12]) Let C be a y-constacyclic code of length p* over [F,m. Then
C =((x —v0)") € Fpym[x]/{(xP" —y), for i€{0,1,..,p}, and its symbol-pair
distance d, (C) is completely determined by:

(e 2, ifi=0,

o 3pk, ifi=p°—pSk+1,
where 0 <k <s—2,

o 4p*, if

ps—ps_k-l-zSiSps—pS_k-i-pS_k_l,
where 0 <k <s-—2,

o 2(c +2)pk, if

pP—pr+or+1<i<p’—pr+(c+1r,

where r=pS %1 0<k<s-2
and1<o<p-—2,

e (c+2)p° Y, ifi=pS—-p+o,
wherel <o <p-2,

.ps’ ifi:ps—l'

e 0, if i =p".

dsp(C) = A

3 SYMBOL-PAIR DISTANCE

Let y be a nonzero element of the field F,m. y-constacyclic code of length p* over R
are precisely the ideals of the ring

Ry, = R[x]/(xP" = ). (8)

All y-constacyclic code of length p* over R are classified into 4 distinct types and their
detailed structures are also established in [11].

Let C; be a y-constacyclic code of Type 3 (principal ideals with monic polynomial
generators) as in [11]:

Here, we have C; = ((x — ¥0)® + u(x — yo)th(x)), where 1 < T< 8§ <p*—1,0 <
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t < 4, and either h(x) is 0 or a unitin [Fpm[x]/(xps —y),degh(x) <T—t—1,and T
is the smallest integer satisfying u(x — y,)" € Cs, i.e.,
S Y h(x) =0, )
min{é,p° — & +t}, if h(x) # 0.
Moreover, we have
|C5| = p™ P 07D, (10)

Note that IF,m is a subring of R, for a code C over R, we denote d, (Cr) as the symbol-
pair distance of @lepm-

In [16, Theorem 4.3(Type 3)], Dinh et al. stated that: d,(C3) = dg, ({(x — Yo))p).
This result is not always true, which we illustrate in the following example.

Example 3.1. Consider the y-constacyclic code C5 = ((x — y¢)* + u(x — yo)h(x)) of
length 5 over R = Fgm + ulFgm, where h(x) # 0. Herep =5, s =1, § =4and t =
1. Then T = 2, which implies that (u(x — y,)?) S Cs. This implies that d, ((u(x —
Y0)?)) = dgp ({(x — ¥0)?)F) = ds,(C3). By Theorem 2.2, we see that dg,(((x —
Y0)?)F) = 4, which implies that

dgp(C3) < 4. (11)
By using Theorem 2.2 again, we see that
dsp ((x = V0)*)F) = 5 (12)
Now by (11) and (12), we see that d, (C3) # dg, ({(x — ¥0)*)r). This example shows
that [16, Theorem 4.3(Type 3)] is incorrect in general.

By the above Example, we see that Theorem 4.3(Type 3) in [16] is not entirely true.
In [13], Laaouine had added some assumptions to correct it completely. We list the
correct result in the following, and it will play an important role in our main result.

Theorem 3.2 ([13, Theorem 6.]) Let C3 = ((x — y,)® + u(x — y,)th(x)) be a y-
constacyclic code of length p® over R of Type 3, where 1 < T<§<p°—-1,0<t<
8, either h(x) is 0 or h(x) is a unitand T is the smallest integer satisfying u(x — y,)" €
Cs, e,

L_(5 if h(x) =0,
B {min{&ps —6+t}, if h(x) #0.

Then the symbol-pair distance d, (C3) of the code Cj is given by
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dsp(CS) = dsp ((x — VO)T>IF)
(¢ 3p%, if T=p5—p5k+1,
where 0 <k <s-—2,
o 4p*, if
ps _ ps—k +2<T< ps _ ps—k + ps—k—l’
where 0 <k <s—2,
l* 2(a + 2)p*, if
pP—pr+ar+1<T<p*—pr+(a+Dr,
where r=pS %1 0<k<s-2
and 1<a<p-2,
e (a+2)p57Y, ifT=p°—p+a,
where 1< a<p-—2,
\e p°, if T=p° — 1.
Proof. We first observe that
wtg, (a(x) +ub(x)) = max{wts,(a(x)), wts, (b(x))}, (13)

where a(x), b(x) € Fym[x].

Since (u(x —y,)") € Cs, it follows that

dsp(C3) < dgp ((u(x —¥0)")) = dsp ({(x — ¥0)")p)- (14)
Now, let c(x) be an arbitrary nonzero element of C;. That means there exist
f(x),g(x) € F,m[x] such that
c(x) =[f() +ug@)]I[x —¥o)® +ulx — o) h(x)]
= f()(x = y0)° + u[g(x)(x = ¥0)® + f(X)(x = ¥0)*h(x)] (15)
= f(x)(x = y0)® + ur(x).
where r(x) = g(x)(x — y0)® + f(x)(x — ¥o)th(x). Thus, by (13), we obtain that
Wtg(c(x)) = max{wte, (f (x) (x = ¥0)?), Wt (r(x))}
> max{wig, (f (1) (x = 70)%), Wty (9 () (x = 70)®)}
> dop ({(x = v0)°)F)
> dgp (((x = ¥0)N)E) (because ((x —v0)°) € ((x = ¥o)").

Hence, ds, (c(x)) = dgp ({(x — ¥o)")r). From this, we get

dsp(c3) = dsp (((x - VO)T>]F)' (17)
The rest of the proof follows from Theorem 2.2 and the discussion above.

(16)

When h(x) =0or h(x) #0and 1 <§ < %, we have T = § and when h(x) = 0
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andZ <5 <pS—1,thenT=p*—5+¢.

Corollary 3.3 ([13, Corollary 2.]) Following the same notations as in Theorem 3.2,
we have the following results:

Casel) If h(x)isOorh(x)isaunitand 1 < 6§ < %, then

dsp(c3) = dsp(((x - VO)(S)]F)

(¢ 3p%, if 6=p5—p5F+1,
where 0 <k <s-—2,

. 4p%, if

ps _ps—k +2< E) < ps _ps—k +ps—k—1'
where 0 <k <s-—2,

I 2(a + 2)pk, if

pP—pr+ar+1<5§<p°—pr+(a+ Dr,
where r=pS %1, 0<k<s-2

and 1<a<p-—2,

e (a+2)p°7 Y, if6=p°—p+a,
where 1< a <p-—2,

\e p°, if 6 =p°—1.

Case 2) If h(x) is a unitand % <6 <p®—1,then

dep(C3) = dsp(((x = ¥0)? "% )p)

(¢ 3pk, if§=t+pS*—1,
where 0 <k <s-—2,

. 4p%, if

t+pSk—pshl<gs<t+psk-2
where 0 <k <s—2,

) 2(a + 2)p*, if
t+pr—(a+)r<éd<t+pr—ar—1,
where r=pS %1, 0<k<s-2

and 1<a<p-2,

e (a+2)ps7L, ifS=t+p—a,
where 1< a<p-2,

\e p°, if 6=t+1.

4 MDS SYMBOL-PAIR CONSTACYCLIC CODES.

To get MDS symbol-pair codes, we need to determine the singleton bound for symbol-
pair codes first. Singleton bound for symbol-pair code C of length n over a finite
commutative ring R with symbol-pair distance dg,(C) is as follows: |C| <
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|R|(=%sp(©)+2) (see [17]). A symbol-pair code C is called an MDS symbol-pair code if
it attains the singleton bound for symbol-pair codes, i.e.,

|C| = |R|®*~p(OFD), (18)

Let C = ((x — y,)") be a y-constacyclic code of length pS over F,m, where 0 < i <

p*. Itis well known that |C] = p™®°~D. So, the dimension of code C is p° — i. By (18),
C is an MDS symbol-pair code if and only if p* —i=p° —ds,(C)+2, ie, i =
dgp(C) — 2. In [12], Dinh et al. identifed all the MDS symbol-pair constacyclic codes
of length p® over [F,m.

Theorem 4.1 (cf. [12]) Let € = ((x — y,)") be a y-constacyclic code of length p* over
F,m, fori € {0,1,...,p®}. Then C is a MDS symbol-pair code if and only if one of the
following conditions holds:

e Ifs=1,theni=nfor0<n<p-2 Thend,(C)=n+2.
o Ifs=>2,then

o 1=0,ds(C) =2,

o i=1,ds(C)=3,

o 1=2,dg(C)=4,

o s=2,p=3,i=4,ds(C) =6,

o 1=p°=2,ds(C)=p°

Now, let C3 = ((x — ¥0)% + u(x — y,)th(x)) be a y-constacyclic code of length p*
over R of Type 3, where h(x)isaunit,1 < <p°—1and 0 <t < §. Inthis section,
we shall determine necessary and sufficient conditions for C; to be MDS symbol-pair
code. For this, the following two cases arise.
Casel: When1 <8 < % then, |C5| = p2™®°=9 Thus by (18), C; is a symbol-pair
MDS code if and only if p* — 6 = p® —d,(C3) + 2, i.e., 6 = d,(C3) — 2. Hence,
follows the theorem.
Theorem 4.2. Let C3 = ((x — y,)% + u(x — y,)th(x)) be of Type 3, where h(x) is a
unit, 0 <t <dand1 <6 < pTJ’t, then C is a MDS symbol-pair code if and only if one
of the following conditions holds:

» Ifs=1,6d=n1<n<p-2andmax{2n—p,0} <t <n,then

dgp(C3) = n + 2.
> Ifs>2,
o 6=1andt=0,thend,,(C3) =3,

o 6=2and0<t<1,thendg,(C3) =4,
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o s=2,p=3,8=4and0<t<3, thend, (C3) =6,
o 6=p°—2andp®—4<t<p°-3, thends,(C;3) =p°

Proof. We get MDS code for § = dsp(63) 2, which is similar to the MDS y-
constacyclic symbol-pair codes over F,= (see Theorem 4.1). But we have 1 < § <
P and 0 < t < §, which implies that max{2§ — p*,0} < t < §. This completes the
proof of the theorem.

Remark 4.3. Let C3 = ((x — y4)® + u(x — y,)th(x)), where h(x) isa unit, 0 < t <
Sand1<6<p°'+ [%J. Then by (18), C; is a MDS symbol-pair code if and only if
6 = dsp(C3) — 2. In [17, Theorem 8], Dinh et al. stated that: When s > 2, then § > 2.
Unfortunately, this result is not true. For example, taking s = 4, p = 5and § = 1, then
t = 0. By Corollary 3.3 (case 1), we have d,,(C3) = 3,thend,,(C3) —2=3 -2 =
1 = &, which implies that ¢; is a MDS symbol-pair code. This case shows that is
incomplete.

Case2: When 22 < § < ps — 1. In this case, |C5| = p™®°~D. Applying (18), Cs is

an MDS symbol pair constacyclic code if and only if p® — ¢t = 2p® — 2d,,(C3) + 4,
I.e., t = 2d,(C3) — p° — 4. Hence, follows the theorem.

Theorem 4.4. Let C’3 = ((x —¥0)% + u(x — y5)th(x)) be of Type 3, where h(x) is a
unit, 0 < t<sand 2 < § < p® — 1. Then no MDS symbol-pair constacyclic code
exists.

Proof. Let C; = ((x — ¥0)® + u(x — yo)th(x)), where h(x) is a unit. If 2= s <

p®—1,ie, 26 >p° +t, weget MDS code if and only if t = 2d,(C3) — p —4.The
symbol-pair distance d,(C3) is established in Corollary 3.3(case 2). In the following,
we are going to discuss the case when t = 2d,(C3) — p® —4and 26 > p° + t.

Casel: § =t+p5 -1, where 0 <k <s—2. Then d,(C3) = 3p*, and 26 =
2t + 2pS57*% — 2 > pS + t. Hence,

t >pS—2p5k+2
=2p**(p* - 1) —p* +2
> 2p2(p* - 1) —pS+2

>8(pk—1)—p°+2 (19)
=6pk—p*+2pF-2-4
> 6pk —pS — 4

= 2d,(C3) —p° — 4.

Since, t > 2d,,(C3) — p® — 4, no MDS symbol-pair constacyclic code exists in this
case.

Case2: t+ps*—ps*l<s<t+p* -2 where 0<k<s—2. So
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dsp(C3) = 4p*. We consider § = t + pS~* —r, where 2 < r < p**~1. Then 26 =
2t + 2p5~% — 2r > pS + t. Hence,

t >pS—2p5k+2r
=2p°*(* -1 —p°+2r
> 2p*(p* - 1) —p°+4
>8(pk—1)—p°+4
— 8pk _ ps —4
= 2d,(C3) —p° — 4.

Since, t > 2d,,(C3) — p® — 4, no MDS symbol-pair constacyclic code exists in this
case.

Case3it+p F—(a+Dp>*1<s<t+pSk—aps 1—1,where0<k<
s—2and1 < a <p—2.Thends,(C3) = 2(a + 2)p*. We consider § =t + p* —
aps %1 —r, where 1 <r <pS*1 Then 26 =2t +2p5 % — 2aps* 1 —2r >
p° + t. Hence,
t >pS—2p5 K+ 2apsk 1+ 2r

=2p5 K (p* — 1) — p + 2aps~* 1 + 2r

> 2p%(p* — 1) —p° + 2ap + 2

>2(a+2)%(p*—1)—pS +2a(a+2)+2

=2(a+ D(a+2)p* —pS+2(a+2)(p* —2)+2

> 4(a + 2)p* —pS+6(p*—2)+2

> 4(a + 2)p*—pS—4

= 2d,(C3) —p° — 4.
Since, t > 2d,(C3) — p® — 4, no MDS symbol-pair constacyclic code exists in this
case.

(21)

Case4: § =t+p—a, where 1 <a <p—2. Then dg,(C3) = (a+2)p°~*, and
26 =2t + 2p — 2a > p® + t. Hence,
t >p°—2p+2a

=2p(* ' =1 —p°+2¢a

>2(a+2)(pSt—1)—pS+ 2a (22)

=2(a+2)p5t—pS—4

= 2d,(C3) —p° — 4
Since, t > 2d,,(C3) — p® — 4, no MDS symbol-pair constacyclic code exists in this
case.

Case 5:8 =t+ 1. Thend,,(C3) = p®,and 26 = 2t + 2 > p® + t. Hence,
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t >p*—-2
=2p° —p°* -2

= 2d,(C3) — p° — 4.

Since, t > 2d,,(C3) — p® — 4, no MDS symbol-pair constacyclic code exists in this
case.

Therefore, MDS symbol-pair code does not exist for y-constacyclic codes of Type 3,
when h(x) is a unit and pTH < § < p® — 1. This completes the proof.

Remark 4.5. Let C3 = ((x — ¥0)® + u(x — y)th(x)), where h(x) is a unit, 0 < t <
5 and pS71 + [%J < 6 <p°—1. Then by (18), C; is a MDS symbol-pair code if and
only if t = 2d,(C3) — p® — 4. In [17, Theorem 9], Dinh et al. stated that:

1. Cs={((x—¥)" 14+ u(x —y,)th(x)) is a MDS symbol-pair code, where
h(x)isaunit,s > 1, p = 5 and t = p° — 4. Unfortunately, this result is not
true. For example, taking s =1 and p = 7, then t = 3. By Corollary 3.3
(case 2), we have dg,(C3) = 6, then 2d,,(C3) —p°* —4=12-7—-4=
1 # t = 3, which implies that C5 is not a MDS symbol-pair code.

2. C3={((x—vo)¥ T+ u(x —y,)th(x)) is a MDS symbol-pair code, where
h(x) is a unit, s > 2 and t = 25 — 4. This result is not true. For example,
taking s = 3, then t = 4. By Corollary 3.3(case 2), we have d,(C3) = 6,
then 2dg,(C3) —2° —4 =12 —-8—4 = 0 # t = 4, which implies that C;
is not a MDS symbol-pair code.

3. C3=((x—v)> T +u(x —yy)th(x)) is a MDS symbol-pair code, where
h(x) is a unit, s > 2 and t = 3% — 4. This result is not true. For example,
taking s = 2, then ¢ = 5. By Corollary 3.3(case 2), we have d,(C;) = 6,
then 2d,,(C3) —3°—4=12—-9—4= -1+t =15, which implies that
C5 is not a MDS symbol-pair code.

4. C3={((x—y0)¥ 3+ u(x —yy)th(x)) is a MDS symbol-pair code, where
h(x) isaunit, s = 3 and t = 2571 — 4, This result is not true. For example,
taking s = 3, then ¢ = 0. By Corollary 3.3(case 2), we have d,(C;) = 4,
then 2d,,(C3) —2° —4=8—-8—4 = —4 # t = 0, which implies that C;
is not a MDS symbol-pair code.

5. C3=((x—7¥0)>"% +u(x —y,)th(x)) is a MDS symbol-pair code, where
h(x) is a unit, s > 3 and t = 3571 — 4. This result is not true. For example,
taking s = 3, then t = 5. By Corollary 3.3(case 2), we have d,(C3) = 6,
then 2d,(C3) —3° —4 =12 — 27 — 4 = —19 # t = 5, which implies that
C5 is not a MDS symbol-pair code.

These examples shows that [17, Theorem 9] is incorrect.
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To conclude this section, we provide some cases study of constacyclic codes to
illustrate our results.

Case studyl: y-constacyclic codes of length 7 over the chain ring R = F, + ulF, are
precisely  the ideals of R[x]/{(x” —y), where y € {1,2,3,4,5,6}.
In the following, we list all distinct y-constacyclic codes of length 7 over the chain ring
F, + ulF, of Type 3, where h(x) isaunit, 0 <t <dand 1 < § < 6. There are 1242
distinct y-constacyclic codes listed below. In all codes we have h,€
{1,2,...,6}, hy,h, €{0,1, ...,6}.

d=1andt = 0:((x —y) + hou),

§=2andt = 0:((x —y)?+ hou + hyu(x —y)),
§=2andt=1:((x — y)? + hou(x — 7)),

§=3andt=0:((x —y)+ hou + hyu(x —y) + hyu(x — y)?),
§=3andt = 1: ((x — y)? + hou(x —y) + hyu(x — y)?),
§=3andt=2:((x— )3+ hou(x —¥)?),
§=4andt=0:((x —y)*+ hou + hyu(x — y) + hyu(x — y)?),
§=4andt=1:((x —y)* + hou(x — y) + hyu(x — y)? + hyu(x — y)3),
S=4andt=2:((x —y)* + hou(x —¥)? + hyu(x — y)?),
S=4andt=3:((x —y)*+ hou(x —y)3),

§=>5andt =0:{(x —y)® + hou + hyu(x — y)),

S=5andt = 1:((x —¥)° + hou(x — ) + hyu(x — y)?),
§=5andt = 2:((x — ) + hou(x — y)? + hyu(x — y)3),
§=5andt=3:((x — ) + hou(x — y)® + hyu(x — y)*,
S=5andt =4 ((x — )5 + hou(x — )*),
§=6andt=0:((x —y)°+ hou),

§=6andt=1: ((x — y)° + hou(x — 7)),
§=6andt=2:((x—y)®+ hou(x —y)2),
S§=6andt=3:((x —¥)° + hou(x — y)3),

S§=6andt =4:((x —y)® + hou(x — y)*),
S=6andt=5:((x —y)®+ hou(x —y)°)

V V. V V V VYV VYV V VYV VYV V VYV VYV V V VYV VY VY V VYV

Using the results in Sections 3 and 4, we list all symbol-pair distances ds, of such codes.

We also give all MDS and non-MDS symbol-pair codes (Table 1).
Among these 1242 codes, 786 of them are MDS symbol-pair codes.
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Table 1. y-constacyclic codes of length 7 over the chain ring [F, 4+ ulF, of Type 3
(h(x) is a unit).

Ideal ds, | MDS code
((x —y) + how) 3 Yes
((x —¥)? + hou + hyu(x — y)) 4 Yes
((x =¥)? + hou(x —y)) 4 Yes
((x =¥)® + hou + hyu(x —y) + hyu(x —y)?) 5 Yes
((x = ¥)% + hou(x — ¥) + hyu(x —y)?) 5 Yes
((x = ¥)% + hou(x —¥)?) 5 Yes
((x =*+ hou + hqyu(x — y) + hyu(x — y)?) 5 No
((x —Y)* + hou(x —y) + hyu(x — y)? + hyu(x —y)3) 6 Yes
((x =* + hou(x —y)* + hju(x —y)?) 6 Yes
((x =* + hou(x —v)*) 6 Yes
((x — )% + hou + hyu(x — y)) 4 No
((x = ¥)° + hou(x — y) + hyu(x —¥)?) 5 No
((x = ¥)° + hou(x —y)* + hyu(x — y)*) 6 No
((x = ¥)° + hou(x —y)* + hyu(x — )% 7 Yes
((x = ¥)° + hou(x — )% 7 Yes
((x =¥)° + hou) 3 No
((c =) + hou(x — ) 4 No
((x =¥)® + hou(x — ¥)?) 5 No
((x =¥)° + hou(x — ¥)*) 6 No
((x =¥)® + hou(x — ¥)*) 7 No
((x = ¥)° + hou(x —¥)°) 7 No

Case study2: Consider cyclic codes of length 4 over the chain ring R = F, + uF,
which are the ideals of R[x]/(x* — 1). In the following, we list all distinct cyclic codes
of length 4 over the chain ring F, + ulF, of Type 3, where h(x) isaunit, 0 <t < §
and 1 < & < 3. There are 7 distinct cyclic codes listed below.

» d=1landt=0:((x—1)+u),
> §=2andt=0:((x—1)%+u+h(x—1)), where h, € {0,1},
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> d=2andt=1:((x — 1%+ u(x— 1)),
> 6=3andt=0:((x—1)3+u),

> 6=3andt=1:((x—1)3+ulx—-1)),
> 6=3andt=2:((x—1)3+u(x—1)>3).

Applying Theorem 3.2, we can compute all symbol-pair distances of cyclic codes d.
Using Theorems 4.2 and 4.4, all MDS and non-MDS symbol-pair codes are determined
in Table 2. Among these 7 codes, 4 of them are MDS symbol-pair codes.

Table 2. Cyclic codes of length 4 over the chain ring F, + ulF, of Type 3 (h(x) isa

unit).
Ideal dsp MDS code

((x=1) +u) 3 Yes
(x—D*+u+h(x—1) 4 Yes
((x — 1D +u(x — 1)) 4 Yes
((x—1)% +u) 3 No

((x — 1)3 + u(x — 1)) 4 No
((x — 1)% + u(x — 1)) 4 No

5 CONCLUSION

Let y be a nonzero element of the finite field [F,~. Determining the symbol-pair
distances of constacyclic codes and obtaining MDS symbol-pair constacyclic codes are
very important in coding theory. Motivated by this, in this paper, we completed the
problem of determining MDS symbol-pair y-constacyclic codes of length p® over R =
]Fpm + u]Fpm(uz = 0).

For future work, it would be interesting to determine the symbol-pair distances of y-
constacyclic codes of length p° over R = Fym 4+ uF,m 4+ u®F,= (u® = 0), and to
determine MDS symbol-pair y-constacyclic codes of length p* over R.
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