Generalized Growth of Entire Solutions of Generalized Bi-axially Symmetric Helmholtz Equation

Rajeev Kumar Vishnoi¹ and Devendra Kumar^{2,3}

¹Department of Mathematics, Vardhaman College Bijnor-246701, U.P., India

²Department of Mathematics, Faculty of Sciences, Al-Baha University, P.O.Box-1988, Alaqiq, Al-Baha-65431, Saudi Arabia

³Department of Mathematics, M.M.H.College, Model Town, Ghaziabad-201001, U.P., India

Abstract. For an entire solution u of the generalized bi-axially symmetric helmholtz equation

$$\frac{\partial^2 u}{\partial t^2} + \frac{2\mu}{t} \frac{\partial u}{\partial t} + \frac{\partial^2 u}{\partial r^2} + \frac{2\nu}{r} \frac{\partial u}{\partial r} + c^2 u = 0, \mu, \nu > 0,$$

formulae involving the generalized growth characteristics of u and its Bessel-Jacobi series expansion coefficients have been obtained by using function theoretic method.

Keywords: Entire GBSHE functions, bi-axially symmetric helmholtz equation, generalized order and type, Jacobi polynomials and Bessel-Jacobi series expansion.

2010 AMS Mathematics Subject Classification: 30B10.

1. INTRODUCTION

The partial differential equation

$$\frac{\partial^2 u}{\partial t^2} + \frac{2\mu}{t} \frac{\partial u}{\partial t} + \frac{\partial^2 u}{\partial r^2} + \frac{2\nu}{r} \frac{\partial u}{\partial r} + c^2 u = 0, \mu, \nu > 0, \tag{1.1}$$

is called generalized bi-axially symmetric helmholtz equation (GBSHE) and the solutions of (1.1) subject to the initial conditions

$$(i)\frac{\partial}{\partial t}u(r,0) = 0, \quad (ii)u(r,0) = \sum_{n=0}^{\infty} a_n r^{2n}, \tag{1.2}$$

are called GBSHE functions. It is known that [6] a GBSHE function satisfying the condition (1.2)(i), has the following Bessel-Jacobi series expansion

$$u(r,t) \equiv u(\rho,\theta) = \rho^{-(\mu+\nu)} \sum_{n=0}^{\infty} A_n J_{2n+\mu+\nu}(c\rho) P^{(\mu-\frac{1}{2},\nu-\frac{1}{2})}(\cos 2\theta), \qquad (1.3)$$

where $r=\rho\cos\theta, t=\rho\sin\theta, J_{2n+\mu+\nu}$ are Bessel functions of first kind and $P^{(\mu-\frac{1}{2},\nu-\frac{1}{2})}(\cos2\theta)$ are Jacobi polynomials.

The coefficients A_n are determined from the condition (1.2)(ii) and given as

$$A_n = \frac{(2n+\mu+\nu)\Gamma(\mu+\frac{1}{2})n!}{\Gamma(n+\mu+\frac{1}{2})} (\frac{2}{c})^{(2n+\mu+\nu)} \sum_{s=0}^{n} (\frac{c}{2})^{2s} \frac{\Gamma(2n-s+\mu+\nu)}{s!} a_{n-s}.$$

A GBSHE function u is said to be entire if the series (1.2) of u converges absolutely and uniformly on the compact subsets of the whole complex plane. Parihar [6, Thm.11.2] proved the following theorem:

Theorem A. For $\mu, \nu \geq 0$, consider the initial value problem (1.1)-(1.2). Let R be the radius of convergence of the series in (1.2)(ii). Then the series

$$u(r,t) = \sum_{n=0}^{\infty} b_n(\mu,\nu) V_n(\mu,\nu;r,t),$$

where

$$b_n(\mu,\nu) = \sum_{s=0}^n (\frac{c}{2})^{2s} \frac{\Gamma(2n-s+\mu+\nu)}{s!} a_{n-s},$$

$$V_n(\mu,\nu;r,t) = S_n(\mu,\nu;r,t) B_n(\mu,\nu;r,t),$$

$$S_n(\mu,\nu;r,t) = \frac{\Gamma(2n+\mu+\nu+1)}{(\frac{c}{2}\sqrt{r^2+t^2})^{(2n+\mu+\nu)}} J_{2n+\mu+\nu}(c\sqrt{r^2+t^2}),$$

$$B_n(\mu,\nu;r,t) = \frac{n!\Gamma(\mu+\frac{1}{2})}{\Gamma(n+\mu+\frac{1}{2})} (r^2+t^2)^n P_n^{(\mu-\frac{1}{2},\nu-\frac{1}{2})} (\frac{r^2-t^2}{r^2+t^2}),$$

converges to a solution u(r,t) of (1.1)-(1.2) in the region $r^2+t^2 < R^2$ and diverges if $r^2+t^2 > R^2$.

The radii of convergence of the series in (1.2)(ii) and (1.3) are identical.

For the purpose of motivation, it is significant to mention, that the study of GBSHE functions have a bearing on the study of the scattering of particles in quantum mechanics. The solutions of equation (1.1), which satisfy a suitable radiation condition, correspond to scattered waves, and their singularities are related to the quantum states

of the scattered particles.

The limit $\mu \downarrow \nu$ corresponding to c=0, produces the generalized axisymmetric potential equation. Reduction of GASP equation to the harmonic function follows from the limit $\mu \downarrow 0$ that also reduces the zonal harmonics to thes harmonic, respectively analytic functions, regular at the origin. The GBSHE functions, then, are natural extensions of harmonic or analytic functions.

The growth of an entire function f(z) can be measured in terms of the order ζ defined by

$$\zeta = \limsup_{\rho \to \infty} \frac{\log \log M(\rho, f)}{\log \rho}$$

where $M(\rho, f) := \sup_{|z| \le \rho} |f(z)|$. If the order is a positive real number the type T of the function is defined by

$$T = \limsup_{\rho \to \infty} \frac{\log M(\rho, f)}{\rho^{\zeta}}.$$

For entire harmonic functions of one variable (identifying \mathbb{R}^2 with \mathbb{C}) there is a large literature concerning the growth of this topic. For entire harmonic functions elementary characterizations of the growth order and type in terms of Taylor coefficients can be found in the work of Temliakow [10], Fryant [1], Fugard [3], Kapoor and Nautiyal [5], Fryant and Shankar [2] and Veselovska [12].

The concept of order and type was generalized in the literature (see e.g. Seremeta [7]). Here one replaces the \log function in the above formulae by more general functions α, β defined on an interval (r_0, ∞) , which are assumed to be positive, strictly increasing and tending to infinity as $\rho \to \infty$, and satisfying properties of class L^0 and Λ defined below:

Let a function $h(\xi)$ is defined on $[a, \infty)$ for some $a \ge 0$ and it is strongly monotonically increasing and tends to ∞ as $\xi \to \infty$. According to Seremeta [7], this function belongs to the class L^0 if, for any real function ϕ such that $\phi(\xi) \to \infty$ as $\xi \to \infty$, the equality

$$\lim_{\xi \to \infty} \frac{h\{(1 + \frac{1}{\phi(\xi)})\xi\}}{h(\xi)} = 1.$$

It belongs to the class Λ if, for all c, $0 < c < \infty$,

$$\lim_{\xi \to \infty} \frac{h(c\xi)}{h(\xi)} = 1.$$

By using functions α and β from the classes L^0 and Λ , by analogy with [7], define the generalized order $\zeta_{\alpha,\beta}(u)$ and generalized lower order $\lambda_{\alpha,\beta}(u)$ of an entire GBSHEfunction u by the formulas:

$$\zeta_{\alpha,\beta}(u) = \limsup_{\rho \to \infty} \frac{\alpha(\log M(\rho, u))}{\beta(\rho)}, \lambda_{\alpha,\beta}(u) = \liminf_{\rho \to \infty} \frac{\alpha(\log M(\rho, u))}{\beta(\rho)}.$$

where $M(\rho, u) = \max_{0 \le \theta \le 2\pi} |u(\rho, \theta)|$.

Gilbert and Howard [4] had studied the order $\zeta(u)$ of an entire GASHE (corresponding to $\nu \downarrow 0$ in (1.1)) function u in terms of the coefficients occurring in the Bessel-Gegenbauer series expansion. In the present paper, using a different technique, we define formulae for the generalized growth characteristics of entire GBSHE functions in terms of Bessel-Jacobi series expansion coefficients.

2. **AUXILLIARY RESULTS**

To prove our main results the following lemmas are required.

Lemma 2.1. Let u be an entire GBSHE function given by (1.2), then

$$\frac{|A_n|}{n!} \left(\frac{c\rho}{2\rho_*}\right)^{2n} \le K_{\mu,\nu} K_* M(\rho, u),$$

where constants $\rho_* > 1$ and $K_* < \infty$.

Proof. Using the orthogonality property of Jacobi polynomials [9, p. 68] and the uniform convergence of the series (1.2), we have

$$\frac{\rho^{(\mu+\nu)}A_n J_{2n+\mu+\nu}(c\rho)}{(2n+\mu+\nu)A(n,\mu,\nu)} = 2 \int_0^{\frac{\pi}{2}} u(\rho,\theta) P_n^{(\mu-\frac{1}{2},\nu-\frac{1}{2})}(\cos 2\theta) \sin^{2\mu}\theta \cos^{2\nu}\theta d\theta, \quad (2.1)$$

where $A(n,\mu,\nu)=\frac{\Gamma(n+1)\Gamma(n+\mu+\nu)}{\Gamma(n+\mu+\frac{1}{2})\Gamma(n+\nu+\frac{1}{2})}$. Further from the well known series expansion of $J_{\delta+n}(c\rho)$ we have

$$J_{\delta+n}(c\rho) = \left(\frac{c\rho}{2}\right)^{(\delta+n)} \sum_{m=0}^{\infty} \frac{(-1)^m (c\rho)^{2m}}{2^{2m} m! \Gamma(n+\delta+m+1)},$$

$$= \left(\frac{c\rho}{2}\right)^{(\delta+n)} \frac{1}{\Gamma(n+\delta+1)} \sum_{m=0}^{\infty} \frac{(-1)^m (c\rho)^{2m} \Gamma(n+\delta+1)}{2^{2m} m! \Gamma(n+\delta+m+1)},$$

and so $n \ge [(c\rho)^2]$, where [x] denotes the integral part of x, we have

$$J_{\delta+n}(c\rho) \ge \frac{1}{2\Gamma(n+\delta+1)} \left(\frac{c\rho}{2}\right)^{(\delta+n)}.$$
 (2.2)

From (2.1) and (2.2) for $n \ge [(c\rho)^2]$, and using Schwartz's inequality with orthogonality of Jacobi polynomials we obtain

$$\frac{|A_n|}{n!} (\frac{c\rho}{2})^{2n} \le \frac{2^{\mu+\nu} \Gamma(2n+\mu+\nu+1)((2n+\mu+\nu)A(n,\mu,\nu)A(\mu,\nu))^{\frac{1}{2}}}{c^{\mu+\nu}n!} M(\rho,u)$$

or

$$\frac{|A_n|}{n!} \left(\frac{c\rho}{2}\right)^{2n} \le K_{\mu,\nu} \left[\frac{(2n+\mu+\nu)\sqrt{A(n,\mu,\nu)}}{\Gamma(n+1)}\right] \Gamma(2n+\mu+\nu) M(\rho,u), \tag{2.3}$$

where

$$K_{\mu,\nu} = \frac{2^{\mu+\nu+1}\sqrt{A(\alpha,\beta)}}{c^{\mu+\nu}}, \ A(\mu,\nu) = \frac{\Gamma(\mu+\frac{1}{2})\Gamma(\nu+\frac{1}{2})}{\Gamma\mu+\nu+1}.$$

Since $\left[\frac{(2n+\mu+\nu)\sqrt{A(n,\mu,\nu)}}{n}\right]^{\frac{1}{n}} \to 1$ as $n \to \infty$, we can choose constants $K_* < \infty$ and $\rho_* > 1$ such that $\frac{\Gamma(2n+\mu+\nu)(2n+\mu+\nu)\sqrt{A(n,\mu,\nu)}}{n\Gamma n} \le K_*\rho_*^{2n}$ for $n \ge 1$. Thus for $n \ge \lfloor (c\rho)^2 \rfloor$, (2.3) gives that

$$\frac{|A_n|}{n!} \left(\frac{c\rho}{2\rho_*}\right)^{2n} \le K_{\mu,\nu} K_* M(\rho, u).$$

Lemma 2.2. Let u be an entire GBSHE function represented by (1.2), then for $k \in \mathbb{N}$

$$M(\rho, u) \le K \sum_{n=0}^{\infty} \frac{A_n \Gamma(n+k+1)}{n! \Gamma(2n+\mu+\nu+1)} (\frac{c\rho}{2})^{2n},$$

where K is a constant independent of n and ρ .

Proof. Since $J_{\delta}(\rho) \leq \frac{(\frac{\rho}{2})^{\delta}}{\Gamma(\delta+1)}$ and

$$\max_{0 \le \theta \le 2\pi} |P_n^{\mu - \frac{1}{2}, \nu - \frac{1}{2}}(\cos 2\theta)| \le \frac{\Gamma(n + k + 1)}{\Gamma(q + 1)\Gamma(n + 1)}, \quad q = \max(\mu, \nu).$$

Now we obtain from (1.2)

$$M(\rho, u) \leq \rho^{-(\mu+\nu)} \sum_{n=0}^{\infty} \frac{|A_n|(\frac{c\rho}{2})^{(2n+\mu+\nu)}\Gamma(n+k+1)}{\Gamma(2n+\mu+\nu+1)\Gamma(q+1)\Gamma(n+1)}$$

$$\leq \frac{(\frac{c}{2})^{\mu+\nu}}{\Gamma(q+1)} \sum_{n=0}^{\infty} \frac{|A_n|(\frac{c\rho}{2})^{2n}\Gamma(n+k+1)}{\Gamma(2n+\mu+\nu+1)\Gamma(n+1)}.$$
(2.4)

Hence the proof is completed.

3. MAIN RESULTS

In this section we will prove our main theorems.

Theorem 3.1. The GBSHE function u continues to entire GBSHE function if and only if the following equality holds

$$\lim \sup_{n \to \infty} \left\{ \frac{|A_n|\Gamma(n+k+1)}{n!\Gamma(2n+\mu+\nu+1)} \right\}^{\frac{1}{2n}} = 0.$$
 (3.1)

Proof. Assume that the GBSHE function u continues to the entire GBSHE function which will also be denoted by u. The equality (3.1) directly follows from Lemma 2.1. To prove only if part, using Lemma 2.2, on the basis of (3.1) a uniform convergence of the series in the right hand side of equality (1.2) on compact subsets of whole complex plane \mathbb{C} follows. Therefore, setting the GBSHE function u by series (1.2), we shall continue it over the whole complex plane \mathbb{C} .

Theorem 3.2. Let u(r,t) be an entire GBSHE function. If for all $c, 0 < c < \infty$, one of the following conditions is satisfied

$$(i)\alpha, \beta \in \Lambda, \frac{d\log F(x,c)}{d\log x} = O(1), x \to \infty; \quad (ii)\alpha, \beta \in L^0, \lim_{x \to \infty} \frac{d\log F(x,c)}{d\log x} = p,$$

where $0 and the function <math>F(x,c) = \beta^{-1}(c\alpha(x))$, then the generalized order $\zeta_{\alpha,\beta}(u)$ of the entire GBSHE function u is given by

$$\zeta_{\alpha,\beta}(u) = \lim \sup_{n \to \infty} \frac{\alpha(2pn)}{\beta(\left[\frac{|A_n|}{n!}\right]^{-\frac{1}{2n}})}.$$

Proof. Let us consider the entire functions of complex variable z:

$$f_1(z) = \sum_{n=0}^{\infty} \frac{|A_n|}{n!(\rho_*)^{2n} K_{\alpha,\beta} K_*} z^{2n},$$

$$f_2(z) = \sum_{n=0}^{\infty} \frac{|A_n| \Gamma(n+k+1)}{n! \Gamma(2n+\mu+\nu+1)} z^{2n}.$$

By Lemma 2.1 and inequality (2.4), we get

$$m(\rho, f_1) \le M(\rho, u) \le M(\rho, f_2), \tag{3.2}$$

where $m(\rho, f_1)$ is the maximum term of power series of entire function $f_1(z)$ on circle $\{z: |z|=\rho\}$, and $M(\rho, f_2)=\max_{|z|=\rho}|f_2(z)|$. From (3.2) we obtain

$$\log m(\rho, f_1) \le \log M(\rho, u) \le \log M(\rho, f_2). \tag{3.3}$$

Since $\alpha, \beta \in \Lambda$ or L^0 , are monotonically increasing functions, therefore from (3.3) we get

$$\frac{\alpha(\log m(\rho, f_1))}{\beta(\rho)} \le \frac{\alpha(\log M(\rho, u))}{\beta(\rho)} \le \frac{\alpha(\log M(\rho, f_2))}{\beta(\rho)}.$$

Using a result of Valiron [11] on maximum term $m(\rho, f_1)$, we get

$$\log M(\rho, f_1) \simeq \log m(\rho, f_1)$$
 as $\rho \to \infty$.

Hence

$$\zeta_{\alpha,\beta}(f_1) \le \zeta_{\alpha,\beta}(u) \le \zeta_{\alpha,\beta}(f_2).$$
(3.4)

Now applying a formula of the generalized order of an entire function of one complex variable in terms of its power series expansion coefficients [7] and using the fact that $\alpha, \beta \in \Lambda$ or L^0 , we obtain the following equality

$$\zeta_{\alpha,\beta}(f_1) = \zeta_{\alpha,\beta}(f_2) = \lim \sup_{n \to \infty} \frac{\alpha(2pn)}{\beta(\left[\frac{|A_n|}{n!}\right]^{-\frac{1}{2n}})}.$$
(3.5)

On combining (3.4) and (3.5) the proof is completed.

Shah [8] obtained the coefficient characterization of the generalized lower order of entire function f(z) in terms of Taylor coefficients. Following the technique of Shah we obtain the following theorem:

Theorem B. Let $f(z) = \sum_{n=0}^{\infty} a_n(f) z^n$ be an entire function of one complex variable with generalized lower order of growth $\lambda_{\alpha,\beta}(f)$, where $\alpha,\beta\in\Delta$ or L^0 , for c=1, a function $F(x,1)=F(x)=\beta^{-1}(\alpha(x))$, where β^{-1} is a function inverse to β , satisfies the condition

(a) For some function $\varphi(x) \to \infty$ (howsoever slowly) as $x \to \infty$,

$$\frac{\beta(x\varphi(x))}{\beta(e^x)} \to 0 \text{ as } x \to \infty,$$

(b)

$$\frac{d(\log F(x))}{d(\log x)} = O(1) \text{ as } x \to \infty,$$

(c) $\left|\frac{a_n(f)}{a_{n+1}(f)}\right|$ is ultimately a non decreasing function of n. Then

$$\lambda_{\alpha,\beta}(f) = \liminf_{n \to \infty} \frac{\alpha(|n|)}{\beta(|a_n|^{\frac{-1}{n}})}.$$

Theorem 3.3. Let u be a GBSHE function. If condition (3.1) is satisfied, then GBSHE function u can be continued to entire GBSHE function, for which

$$\lambda_{\alpha,\beta}(u) = \liminf_{n \to \infty} \frac{\alpha(2pn)}{\beta(\left[\frac{|A_n|}{n!}\right]^{\frac{-1}{2n}})}.$$
(3.6)

If, in addition the ratio $\left|\frac{A_n}{A_{n+1}}(n+1)\right|$ forms a nondecreasing function of n and one of the conditions (i), (ii) of Theorem 3.2 with condition (a) of Theorem B are satisfied, then inequality (3.6) becomes equality.

Proof. The proof follows on the lines of proof of Theorem 3.2 with Theorem B.

Remark 3.1. For $\alpha(x) = \beta(x) = \log x$, Theorem 3.2 gives the formula for the classical order $\zeta(u)$ as:

$$\zeta(u) = \lim \sup_{n \to \infty} \frac{2n \log n}{\log \left[\frac{|A_n|}{n!}\right]^{-1}}.$$

Remark 3.2. For $\alpha(x) = x, \beta(x) = x^{\zeta}, p = \frac{1}{\zeta}$, where ζ is the order of GBSHE function u, the formula for the classical type T(u) is obtained from Theorem 3.2 as:

$$(\frac{T(u)\zeta e}{2})^{\frac{1}{\zeta}}=\lim\sup_{n\to\infty}n^{\frac{1}{\zeta}}[\frac{|A_n|}{n!}]^{\frac{1}{2n}}.$$

Remark 3.3. For $\alpha(x) = x, \beta(x) = x^{\zeta(x)}$, where $\zeta(x)$ is the proximate order of GBSHE function u, the formula for the generalized type $T^*(u)$ (same orders but infinite type) with respect to proximate order $\zeta(x)$:

$$\left(\frac{T^*(u)\zeta e}{2}\right)^{\frac{1}{\zeta}} = \lim \sup_{n \to \infty} \phi(n) \left[\frac{|A_n|}{n!}\right]^{\frac{1}{2n}},$$

where $x = \phi(\tau)$ is the function, inverse to $\tau = x^{\tau(x)}$.

REFERENCES

- [1] A. Fryant, Growth of harmonic functions in \mathbb{R}^3 , J. Math. Anal. Appl., 66 (1978), 599-605.
- [2] A. Fryant and H. Shankar, Fourier coefficients and growth of harmonic functions, Internat. J. Math. Math. Sci., 3 (1987), 443-452.

- [3] T.B. Fugard, Growth of entire harmonic functions in \mathbb{R}^n , $n \geq 2$, J. Math. Anal. Appl., 74, Issue 1 (1980), 289-291.
- [4] R.P. Gilbert and H.C. Howard, On solutions of the generalized axially symmetric wave equation represented by Bergman operators, Proc. Lond. Math. Soc., 15 (1965), 346-360.
- [5] G.P. Kapoor, and A. Nautiyal, Approximation of entire harmonic functions in \mathbb{R}^3 , Indian J. Pure and Appl. Math., 13, Issue 9 (1982), 1024-1030.
- [6] K.S. Parihar, Solutions of certain hyperbolic and elliptic problems in terms of series involving Jacobi polynomials and Bessel functions, J. d'Analyse Matematique, 27 (1) (1974), 1-23.
- [7] M.N. Seremeta, On the connection between the growth of the maximum modulus of an entire function and the moduli of the coefficients of its power series expansion, Amer. Math. Soc. Transl., (2) (88) (1970), 291-301.
- [8] S.M. Shah, Polynomial approximation of an entire function and generalized orders, J. Approx. Theory 19, No. 4 (1977), 315-324.
- [9] G. Szegő, Orthoginal Polynomials, Colloquim Publications, Vol. 23, Amer. Math. Soc. Providence, R.I. 1967.
- [10] A. Temliakow, Zu dem Wachstumproblem der harmonischen Functionen des drei dimensionalen Raumes, Recueil Mathematique, 42 (1935), 708-718.
- [11] G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea Publ. Co., New York, 1949.
- [12] O.V. Veselovska, Growth of entire functions which are harmonic in \mathbb{R}^n , Soviet Math. (IZ, VUZ), 27, No. 10 (1983), 14-21.