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Abstract. For an entire solution u of the generalized bi-axially symmetric helmholtz equation
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formulae involving the generalized growth characteristics of u and its Bessel-Jacobi series
expansion coefficients have been obtained by using function theoretic method.
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1. INTRODUCTION

The partial differential equation

O*u  2udu  O*u  2wou
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is called generalized bi-axially symmetric helmholtz equation (GBSHE) and the
solutions of (1.1) subject to the initial conditions

(i)%u(r,()) =0, (ii)u(r,0)= ; anr?", (1.2)
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are called GBS H E functions. It is known that [6] a GBS H E function satisfying the
condition (1.2)(7), has the following Bessel-Jacobi series expansion

u(r t) = u(p,0) = p~ " Apdon s (cp) PP727 72 (cos 20),  (1.3)

n=0

where » = pcost,t = psin6, J,4 4, are Bessel functions of first kind and
PW=3=3) (cos 20) are Jacobi polynomials.
The coefficients A,, are determined from the condition (1.2)(é¢) and given as

A, =

Qs

2n+p+ I/)F(,u1+ $)n! (2)(2%““) Zn:(g)QSF(Qn —s+p+v)
L(n+p+3) c =2 s!

A GBSHFE function u is said to be entire if the series (1.2) of u converges absolutely

and uniformly on the compact subsets of the whole complex plane. Parihar [6,

Thm.11.2] proved the following theorem:

Theorem A. For i, v > 0, consider the initial value problem (1.1)-(1.2). Let R be the
radius of convergence of the series in (1.2)(i7). Then the series

u(r,t) = Z b (1, V) Vi (v 7, 1),
n=0

where

JCn—s+pu+v)
bn(uv V) = Z(§)2 5! An—s,

s=0
Vi, vy, t) = Sp(p, vir, t) Bu(p, vy, t),

L2n+p+v+1)
Sn Y ; 7t = Jn ] . t27
e @¢ﬁIﬁwwﬁwzﬂﬁ@wT:3
Il (p + 3)
D(n+p+3)

(u*%ﬂ/*%)(rz — 2

(1, 57.1) (% + ) s

),

converges to a solution u(r, t) of (1.1)-(1.2) in the region r* + t* < R? and diverges if
r? + ¢ > R

The radii of convergence of the series in (1.2)(iz) and (1.3) are identical.

For the purpose of motivation, it is significant to mention, that the study of GBSHE
functions have a bearing on the study of the scattering of particles in quantum
mechanics. The solutions of equation (1.1), which satisfy a suitable radiation condition,
correspond to scattered waves, and their singularities are related to the quantum states
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of the scattered particles.

The limit 1 | v corresponding to ¢ = 0, produces the generalized axisymmetric
potential equation. Reduction of GASP equation to the harmonic function follows
from the limit p | O that also reduces the zonal harmonics to thes harmonic, respectively
analytic functions, regular at the origin. The GBSHE functions, then, are natural
extensions of harmonic or analytic functions.

The growth of an entire function f(z) can be measured in terms of the order ¢ defined
by

log log M
p—r00 log p

where M (p, f) = supy, <, | f(2)|. If the order is a positive real number the type 7" of
the function is defined by

log M
T = lim sup log M(p, f) :
p—00 P

For entire harmonic functions of one variable (identifying R? with C) there is a large
literature concerning the growth of this topic. For entire harmonic functions elementary
characterizations of the growth order and type in terms of Taylor coefficients can be
found in the work of Temliakow [10], Fryant [1], Fugard [3], Kapoor and Nautiyal [5],
Fryant and Shankar [2] and Veselovska [12].

The concept of order and type was generalized in the literature (see e.g. Seremeta [7
1). Here one replaces the log function in the above formulae by more general functions
«, 3 defined on an interval (g, c0), which are assumed to be positive, strictly increasing
and tending to infinity as p — oo, and satisfying properties of class L° and A defined
below:

Let a function A (&) is defined on [a, co) for some a > 0 and it is strongly monotonically
increasing and tends to oo as & — oo. According to Seremeta [7], this function belongs
to the class LY if, for any real function ¢ such that ¢(£) — oo as £ — oo, the equality

M1+ 556}

lim =1
It belongs to the class A if, for all ¢, 0 < ¢ < o0,
h(cf)

Jm hE) L
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By using functions « and 3 from the classes L" and A, by analogy with [7], define the
generalized order (, g(u) and generalized lower order A, s(u) of an entire GBSHE
function u by the formulas:

log M(p, . a(log M(p,
Cap(u) = hfiilp o Ogﬁ(p(),O u)) Aas(u) = h/fr_l)}gf o Ogﬁ(p()p u))

where M (p, u) = maxo<p<ar |u(p, 0)|.

Gilbert and Howard [4] had studied the order () of an entire GAS H E (corresponding
to v | 0 in (1.1)) function w in terms of the coefficients occurring in the
Bessel-Gegenbauer series expansion. In the present paper, using a different technique,
we define formulae for the generalized growth characteristics of entire GBSHE
functions in terms of Bessel-Jacobi series expansion coefficients.

2. AUXILLIARY RESULTS

To prove our main results the following lemmas are required.
Lemma 2.1. Let u be an entire G BS H E function given by (1.2), then

[4n]

cp o
! (_)2 SKM,VK*M(/%U),

204

where constants p, > 1 and K, < oo.

Proof. Using the orthogonality property of Jacobi polynomials [9, p. 68] and the
uniform convergence of the series (1.2), we have

p(“JrU)AnJQn-i-IH-V(Cp)
(20 + 11+ V) A(n, p,v

_ : (h=3.v—73) .2y 2w
7= 2 u(p,0) Py (cos 20) sin“* 0 cos™ 0df, (2.1)
0

I(n+1)T'(n+p+v)
D(n+p+ D) D(ntv+1)”
Further from the well known series expansion of .J5,,,(cp) we have

where A(n, u,v) =

oo

— (PGt (=1)"(cp)™

(=)™ (cp)*"T(n+6 + 1)
2mmIll(n+d+m+1)

[e.o]

CP\ (5in 1
= ()6

2 F(n+d+1) 2=

and so n > [(cp)?], where [x] denotes the integral part of z, we have

1 cp
> (— (6+T'L) .
Join(cp) 21 (n+(5+1)< 2 ) @2
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From (2.1) and (2.2) for n > [(cp)?], and using Schwartz’s inequality with orthogonality
of Jacobi polynomials we obtain

Anl ep 2P 2n+ pu+v+1)((2n + p+ v)A(n, pu, v)A(p, v 2
‘N“ﬂzﬁ ( )(( ) JA( JA( ))M@m)
n! 2 chTvnl
or
|An‘ cp 2 (2n+lu’+y) A(”v:u’ay)
Pl (Pym < ¢ (2 M(p,u), (2.3
where
P 2itv+l S A, B) Alv) = D(p+ (v +13)
v CIH‘V ) 2 FH +u+ 1 .
Since [(2n+“ +V)nV A(n’“’y)]% — 1 as n — oo, we can choose constants X, < oo and

p« > 1 such that F(%WW)(%&’:M VALY K,.p* forn > 1. Thus for n > [(cp)?],
(2.3) gives that

[4n]

n!

C
(5" < K KM (p, ),

Lemma 2.2. Let u be an entire GBS H FE function represented by (1.2), then for k € N

~ AT(n+k+1) cpy,
K " n
Zn'F2n+u+V+1)( )

Y

2

where K is a constant independent of n and p.

A%
Proof. Since Js(p) < Fig}rl) and

1,1 r k+1
max [P, 2" %(cos20)| < (n+k+1)
0<f<2r g+ 1)T'(n+1

7 q = max(u, v).
Now we obtain from (1.2)
A cp 2n+u+u F + k’ + 1
M(p,u) <p~ “+y)z | \( ) (n )
F'Cn+p+v+1)l(@g+ 1)I'(n+1)

(5)*‘*” | Aa[(P)"T(n+k + 1)
Flg+1) &= T@n+p+v+I(n+1)

2.4)
<

Hence the proof is completed.
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3. MAIN RESULTS

In this section we will prove our main theorems.

Theorem 3.1. The GBS HFE function u continues to entire GBS H E function if and
only if the following equality holds

A, T(n+k+1) 1 — 0, a1

.
1m fgfo{nlr@n +pu+v+1)

Proof. Assume that the GBS H F function u continues to the entire GBS H E function
which will also be denoted by u. The equality (3.1) directly follows from Lemma 2.1.
To prove only if part, using Lemma 2.2, on the basis of (3.1) a uniform convergence of
the series in the right hand side of equality (1.2) on compact subsets of whole complex
plane C follows. Therefore, setting the GBS H E function u by series (1.2), we shall
continue it over the whole complex plane C.

Theorem 3.2. Let u(r,t) be an entire GBS H E function. If for all ¢,0 < ¢ < oo, one
of the following conditions is satisfied

log F' log F'
—d 08 F'(z,¢) =O(1),z — oo; (ii)a, B € L°, lim —d 08 F'(z,¢) =

' A
(i), 5 € A, dlog z—o0  dlogw

Y

where 0 < p < oo and the function F(z,c) = 37!(ca(x)), then the generalized order
Ca,(u) of the entire GBS H E function u is given by

(2pn)
o = hm SUp ——

Proof. Let us consider the entire functions of complex variable z:

_ - |An| 2n
fl(’z) _Z n'(,o*)Z”Kang*Z )

f2(2) _20 nI'2n+p+v+ 1)Z '

By Lemma 2.1 and inequality (2.4), we get

m(p, f1) < M(p,u) < M(p, fa), (3.2)

where m(p, f1) is the maximum term of power series of entire function f;(z) on circle
{z 1 |2] = p}, and M(p, f2) = max.|—, |f2(2)|. From (3.2) we obtain

logm(p, f1) <log M(p,u) <log M(p, fa). (3.3)
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Since o, 8 € A or L°, are monotonically increasing functions, therefore from (3.3) we
get

a(log M(p, u))
B(p)

a(logm(p, f1))
B(p)

a(log M(ﬁv f2))
B(p) ‘

< <

Using a result of Valiron [11] on maximum term m(p, fi), we get
log M(p, f1) ~logm(p, f1) as p— oo.

Hence

Ca,ﬁ(fl) < Cmﬁ(u) < Ca,ﬁ(fQ)' (3.4)

Now applying a formula of the generalized order of an entire function of one complex
variable in terms of its power series expansion coefficients [7] and using the fact that
a, 3 € A or L°, we obtain the following equality

. 2
Ca8(f1) = Cap(f2) = lim nsggo %-

(3.5)

On combining (3.4) and (3.5) the proof is completed.

Shah [8] obtained the coefficient characterization of the generalized lower order of
entire function f(z) in terms of Taylor coefficients. Following the technique of Shah
we obtain the following theorem:

Theorem B. Let f(z) = >~ a,(f)z" be an entire function of one complex variable
with generalized lower order of growth )\aﬁ( f), where o, 5 € A or L% forc =1, a
function F(z,1) = F(x) = 8 *(a(x)), where 37! is a function inverse to 3, satisfies
the condition

(a) For some function ¢(x) — oo (howsoever slowly) as x — o0,

Blog@) o
B(e") —0 — 00,
(b)
d(log F(z))
W—O(l) as ZL'—)OO,

(¢) |a:i—%| is ultimately a non decreasing function of n. Then

Ao s(f) = liminf _aflnl)

o f(|an| )
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Theorem 3.3. Let u be a GBSHE function. If condition (3.1) is satisfied, then
GBS H E function u can be continued to entire G B.S H E function, for which

2
Ao p(u) = liminf a(2pn)

== ()

If, in addition the ratio | (n+1)| forms a nondecreasing function of n and one of the

Ap
An+1
conditions (i), (ii) of Theorem 3.2 with condition (a) of Theorem B are satisfied, then
inequality (3.6) becomes equality.

Proof. The proof follows on the lines of proof of Theorem 3.2 with Theorem B.

Remark 3.1. For o(z) = B(x) = log x, Theorem 3.2 gives the formula for the classical
order ((u) as:
2nlogn

((u) = lim sup .
( ) n—oo log[%]_l

Remark 3.2. For a(z) = z,8(x) = 2°,p = %, where ( is the order of GBSHE
function u, the formula for the classical type 7'(u) is obtained from Theorem 3.2 as:

T 1 1 | A,

(520t = tm sup nd [

Remark 3.3. For a(z) = z,8(z) = 2°®), where ((x) is the proximate order of
GBSHE function u, the formula for the generalized type 7™*(u) (same orders but
infinite type) with respect to proximate order ((x):

T Al
L) i sup (22
where 7 = ¢(7) is the function, inverse to 7 = 27(*),
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