Fuzzy Analysis of Synergistic Collaboration of Biserial and Parallel Servers with a Common Server

Sameer Sharma*
Department of Mathematics
D.A.V. College, Jalandhar, 144008, Punjab, India

Abstract

The paper highlights the significant attempt made to find various characteristics of queue network in which a biserial and two parallel servers are linked in series with a common server in a fuzzy environment with the aim to solve problems associated with a variety of fields such as industry, education, banking, insurance, travel and tours and more significantly in data communication and processing etc. Most of queuing optimization problems is static in nature, whereas in real world problems, the various queue characteristics such as arrival rate, service rate of customers etc. are uncertain in nature. The \(\alpha \) - cut approach and various fuzzy arithmetic operations are used to estimate the uncertainty associated with input parameters. To illustrate the validity of proposed approach in this paper, the numerical computation is facilitated.

Keywords: Fuzzy arrival rate; Fuzzy service rate; Biserial server; Parallel servers; Mean queue length; Triangular fuzzy numbers.

1. INTRODUCTION

Waiting lines or queues are a common occurrence both in everyday life and in a variety of business and industrial situations. It is a common trend that waiting lines
are may be found in communication system, voice or data traffic queues up for transmission, in manufacturing system with several work stations, units completing work in one station wait for access to the next, vehicles requiring service wait for their turn in a garage, patients arrive at a doctor clinic for treatment, etc. While investigating traditional queuing theory, it has been found that inter-arrival times, service times etc. are required to follow certain probability distribution with fixed parameter. However in many real life situations, the arrival rate, service rate of customers are typically described by linguistic values such as fast, slow or moderate rather than complete probability distribution. It is observed that the arrival rate, service rate, etc. may be expressed by possibility rather than probability; the fuzzy queue model would be a more realistic approach than a classical queuing theory method. To measure the uncertainty, vagueness, imprecision involved in arrival rate, service rate, etc. fuzzy logic theory is introduced. Fuzzy logic consists of the theory of fuzzy sets and possibility theory as given by Zadeh (1978).

In this paper, the fuzzy membership functions based on Zadeh’s extension principle is applied to a network queue model comprised of biserial and parallel channels linked in series to a common server given by Gupta et al (2007). The α cuts approach and
fuzzy arithmetic operations are used to derive various system characteristics. The various concepts of Fuzzy Set Theory along with Triangular Fuzzy Number and Fuzzy Arithmetic Operations are discussed.

A new fuzzy biserial queue model is introduced. The methodologies to convert the input data into fuzzy numbers and to find various queue characteristics in fuzzy environment are also discussed. A numerical analysis has been conducted on the proposed model and results are discussed.

2. Proposed Fuzzy Queue Model

According to Zadeh development theory [1978] and by the use of the possibility theory concepts, Stanford fuzzy Markov chain [1982], Li and Lee [1989] proposed that every fuzzy queuing model could be considered as a classical queuing theory model by considering following changes: the probability distribution function of the time between two consecutive arrivals which is assumed to follow the exponential distribution with the parameter λ is considered to be $\tilde{\lambda}$ in fuzzy environment which is an approximation of the mean of its possibility distribution and similarly, the servicing rate μ is considered to be the fuzzy number $\tilde{\mu}$ which is the mean of its possibility distribution in fuzzy environment. The proposed fuzzy model is shown in Fig.1. The following nomenclature has been used in the paper.

- $\tilde{\lambda}$: Fuzzy arrival rate
- $\tilde{\mu}$: Fuzzy service rate
- n: Number of customers / jobs arriving
- $P_s(i)$: Possibility that the system is in the state (i,j) at any time t
- L: Mean queue length of the customers system
- $E(W)$: Expected waiting time customers (jobs)
- \tilde{L}: Fuzzy mean queue length (number of customers) of the system
- $E(\tilde{W})$: Expected fuzzy waiting time of the system

2.1. Mathematical Model

The entire model is comprised of three servers S_1, S_2, S_3. The server S_1 consists of two biserial service servers S_{11} and S_{12}. The server S_2 contains two parallel servers S_{21} and S_{22}. Server S_3 is commonly linked in series with each of two servers S_1 and S_2 for completion of phase service demanded either at the servers S_1 or S_2. The service time at the servers S_{ij} ($i, j=1, 2$) are exponentially distributed. Let mean service rate at S_{ij} ($i, j=1, 2$) be $\mu_{ij}, \tilde{\mu}_{ij}, \tilde{\mu}_{ij}$ and $\tilde{\mu}_{ij}$ at S_3 respectively. Queues Q_1, Q_2, Q_3, Q_4 and Q_5 are said to be formed in front of the servers if they are busy.
Customers coming at rate $\tilde{\lambda}_1$ after completion of service at S_{11} will go to the network of the servers $S_{11} \rightarrow S_{12}$ or $S_{11} \rightarrow S_{3}$ with possibilities $\tilde{\mu}_{12}$ or $\tilde{\mu}_{13}$ such that $\tilde{\mu}_{12} + \tilde{\mu}_{13} = 1$.

The customers coming at rate $\tilde{\lambda}_2$ after completion of service at S_{12} will go to the network of the servers $S_{12} \rightarrow S_{11}$ or $S_{12} \rightarrow S_{3}$ with possibilities $\tilde{\mu}_{21}$ or $\tilde{\mu}_{23}$ such that $\tilde{\mu}_{21} + \tilde{\mu}_{23} = 1$. The customers coming at rate $\tilde{\lambda}_3$ after completion of service at S_{21} will go to the network of the server $S_{21} \rightarrow S_{3}$ and those coming at rate $\tilde{\lambda}_4$ after completion of service at S_{22} will go to the network of the server $S_{22} \rightarrow S_{3}$.

The objective is to develop an algorithm to find various queue characteristics for the proposed fuzzy queue model.

The system characteristic of interest are the average queue length and the expected waiting time of customers / jobs. From the knowledge of queue theory as given by Gupta et al [2008], if

\[
(i) \quad \frac{\tilde{\lambda}_1 + \tilde{\lambda}_2 p_{21}}{\mu_1 (1 - p_{12} p_{21})} < 1, \quad (ii) \quad \frac{\tilde{\lambda}_2 + \tilde{\lambda}_1 p_{21}}{\mu_2 (1 - p_{12} p_{21})} < 1, \quad (iii) \quad \frac{\tilde{\lambda}_3}{\mu_3} < 1, \quad (iv) \quad \frac{\tilde{\lambda}_4}{\mu_4} < 1
\]

and, \(v) \quad \frac{\tilde{\lambda}_3 + \tilde{\lambda}_4}{\mu_3} + \frac{p_{13}(\tilde{\lambda}_1 + \tilde{\lambda}_2 p_{21}) + p_{23}(\tilde{\lambda}_2 + \tilde{\lambda}_1 p_{21})}{\mu_3 (1 - p_{12} p_{21})} < 1\), then
the average queue length and the mean expected number of customers for a biserial
and two parallel servers linked in series to a common server system are as follows

Mean queue length = \(L = \frac{\rho_1}{1-\rho_1} + \frac{\rho_2}{1-\rho_2} + \frac{\rho_3}{1-\rho_3} + \frac{\rho_4}{1-\rho_4} + \frac{\rho_5}{1-\rho_5} = L_1 + L_2 + L_3 + L_4 + L_5 \)

Where, \(L_1 = \frac{\lambda_1}{\mu_1 (1-\rho_{12})}, \quad L_2 = \frac{\lambda_2 + \lambda_p \rho_2}{\mu_2 (1-\rho_{12})}, \quad L_3 = \frac{\lambda_3}{\mu_3}, \quad L_4 = \frac{\lambda_4}{\mu_4}, \quad L_5 = \frac{\lambda_5}{\mu_5} \).

\[\rho_1 = \frac{\lambda_1 + \rho_2 \lambda_2}{\mu_1 (1-\rho_{12})}, \quad \rho_2 = \frac{(\lambda_2 + \lambda_p \rho_2)}{\mu_2 (1-\rho_{12})}, \quad \rho_3 = \frac{\lambda_3}{\mu_3}, \quad \rho_4 = \frac{\lambda_4}{\mu_4}, \quad \rho_5 = \frac{\lambda_5}{\mu_5} \]

and

Expected waiting time = \(E(w) = \frac{L}{\lambda}, \) where \(\lambda = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 \).

The model finds its applications in manufacturing or assembling line process in which
units processed through a series of stations, each performing a given task. Practical
situation can be observed in a registration process (vehicle registration) where the
registrants have to visit a series of desks (advisor, department chairperson, cashier,
etc.), or in a clinical physical test procedure where the patients have to pass through a
series of stages (lab tests, electrocardiogram, chest X-ray etc.). The customers or
items after getting service at stage \(S_{11} \) may join the service \(S_{12} \) or may directly avail
the service through server \(S_3 \). Similarly, the customers or items after getting service at
stage \(S_{12} \) may join the service \(S_{11} \) or may directly avail the service through server \(S_3 \).
The customers or items after getting service at parallel servers \(S_{21} \) or \(S_{22} \) will avail the
service through server \(S_3 \).

3. SOLUTION METHODOLOGY

In classical queuing theory, arrival rates and service times are required to follow
certain probability distribution. In the present paper, we study the proposed queue
model in possibilistic / fuzzy environment.

The system data which are gathered from the real world problems always has a sort
of ambiguity. The “fuzzy set” is a tool to consider these ambiguities. On the other
hand, to determine the parameters of the model in the real world, generally, the
expert ideas or sampling data can be used. It can be claimed that there is a sort of
ambiguity in the both mentioned methods. In the first case, the ambiguity is due to
the lack of the preciseness and enough specialties. In the second case, the ambiguity
is due to the lack of enough sampling data. Because of these ambiguities, in this
paper, it is preferred to use the fuzzy parameters instead of the certain ones for the
suggested queue model. To estimate a parameter as a fuzzy number and to change
the input data (Arrival rate, Service rate) into the fuzzy numbers, the method of
Buckley and Qu method [1990] is used.
Since the arrival rate (\(\tilde{\lambda} \)), service rate (\(\tilde{\mu} \)) are not known precisely, therefore, we use triangular fuzzy numbers to represent them.

If \(\tilde{A}=(a_1,a_2,a_3) \) be a triangular fuzzy numbers, then by using \(\alpha \)-cut approach, \(A^\alpha \) can be derived as follows:

\[
\forall \alpha \in [0,1], \text{ we have } \\
a_1^{(\alpha)} - a_2^{(\alpha)} = \alpha; \quad \frac{a_2^{(\alpha)} - a_1^{(\alpha)}}{a_3^{(\alpha)} - a_2^{(\alpha)}} = \alpha, \quad \text{we get}
\]

\[
a_1^{(\alpha)} = (a_2 - a_1)\alpha + a_1; \quad a_2^{(\alpha)} = a_3 - (a_3 - a_1)\alpha.
\]

Thus, \(A^\alpha = [a_1^{(\alpha)},a_2^{(\alpha)},a_3^{(\alpha)}] = [(a_2 - a_1)\alpha + a_1, a_3 - (a_3 - a_1)\alpha]. \)

Similarly, if \(B=(b_1,b_2,b_3) \), then \(B^\alpha = [b_1^{(\alpha)},b_2^{(\alpha)},b_3^{(\alpha)}] = [(b_2 - b_1)\alpha + b_1, b_3 - (b_3 - b_1)\alpha]. \)

The basic arithmetic operations with \(\alpha \)-cut are as follows:

(i) \(A^\alpha + B^\alpha = [a_1^{(\alpha)},a_2^{(\alpha)},a_3^{(\alpha)}] + [b_1^{(\alpha)},b_2^{(\alpha)},b_3^{(\alpha)}] = [a_1^{(\alpha)} + b_1^{(\alpha)},a_2^{(\alpha)} + b_2^{(\alpha)},a_3^{(\alpha)} + b_3^{(\alpha)}] \)

(ii) \(A^\alpha - B^\alpha = [a_1^{(\alpha)},a_2^{(\alpha)},a_3^{(\alpha)}] - [b_1^{(\alpha)},b_2^{(\alpha)},b_3^{(\alpha)}] = [a_1^{(\alpha)} - b_1^{(\alpha)},a_2^{(\alpha)} - b_2^{(\alpha)},a_3^{(\alpha)} - b_3^{(\alpha)}] \)

(iii) \(A^\alpha \cdot B^\alpha = [a_1^{(\alpha)},a_2^{(\alpha)},a_3^{(\alpha)}] \cdot [b_1^{(\alpha)},b_2^{(\alpha)},b_3^{(\alpha)}] = [a_1^{(\alpha)} \cdot b_1^{(\alpha)},a_2^{(\alpha)} \cdot b_2^{(\alpha)},a_3^{(\alpha)} \cdot b_3^{(\alpha)}] \)

(iv) \(\frac{A^\alpha}{B^\alpha} = \left[\frac{a_1^{(\alpha)}}{b_1^{(\alpha)}}, \frac{a_2^{(\alpha)}}{b_2^{(\alpha)}}, \frac{a_3^{(\alpha)}}{b_3^{(\alpha)}} \right] = \left[\frac{a_1^{(\alpha)}}{b_1^{(\alpha)}}, \frac{a_2^{(\alpha)}}{b_2^{(\alpha)}}, \frac{a_3^{(\alpha)}}{b_3^{(\alpha)}} \right] \)

Let \(\tilde{\lambda}=(\lambda_1,\lambda_2,\lambda_3), \tilde{\mu}=(\mu_1,\mu_2,\mu_3) \), where \(\lambda_1 < \lambda_2 < \lambda_3, \mu_1 < \mu_2 < \mu_3 \) based on subjective judgment. The membership of \(\eta_{\tilde{\lambda}}(\tilde{\lambda}) \) and \(\eta_{\tilde{\mu}}(\tilde{\mu}) \) are defined as follows:

\[
\eta_{\tilde{\lambda}}(\tilde{\lambda}) = \begin{cases}
0 & \text{if } \lambda < \lambda_1 \\
\lambda - \lambda_1 & \text{if } \lambda_1 \leq \lambda \leq \lambda_2 \\
\lambda - \lambda_2 & \text{if } \lambda_2 \leq \lambda \leq \lambda_3 \\
0 & \text{if } \lambda \geq \lambda_3
\end{cases}
\]

\[
\eta_{\tilde{\mu}}(\tilde{\mu}) = \begin{cases}
0 & \text{if } \mu < \mu_1 \\
\mu - \mu_1 & \text{if } \mu_1 \leq \mu \leq \mu_2 \\
\mu - \mu_2 & \text{if } \mu_2 \leq \mu \leq \mu_3 \\
0 & \text{if } \mu \geq \mu_3
\end{cases}
\]
Using the concept of α-cut method, the following set of equations have been obtained.

\[
\lambda^\alpha = \left[\alpha(\lambda_2 - \lambda_1) + \lambda_4, \lambda_3 - \alpha(\lambda_3 - \lambda_2)\right]
\]

\[
\mu_i^\alpha = \left[\alpha(\mu_2 - \mu_1) + \mu_4, \mu_3 - \alpha(\mu_3 - \mu_2)\right]
\]

\[
p_i^\alpha = \left[\alpha(p_2 - p_1) + p_4, p_3 - \alpha(p_3 - p_2)\right]
\]

Let the fuzzy arrival rates are $\tilde{\lambda}_1, \tilde{\lambda}_2$; fuzzy service rates are $\tilde{\mu}_1, \tilde{\mu}_2, \tilde{\mu}_3$ and the various fuzzy possibilities $\tilde{\lambda}_2, \tilde{\mu}_1, \tilde{\mu}_2, \tilde{\mu}_3$ are defined as follows:

\[
\tilde{\lambda}_i = (\lambda_1^i, \lambda_2^i, \lambda_3^i), \tilde{\mu}_i = (\mu_1^i, \mu_2^i, \mu_3^i) \text{ and } \tilde{p}_i = (p_1^i, p_2^i, p_3^i) \text{ for various values of } i \& j.
\]

Therefore, $\lambda^\alpha = \frac{\lambda_1^\alpha + \lambda_2^\alpha}{\mu_1(1 - p_1^\alpha p_2^\alpha)}$, therefore $p_i^\alpha = \frac{\lambda_1^\alpha + \lambda_2^\alpha p_2^\alpha}{\mu_1(1 - p_1^\alpha p_2^\alpha)}$

\[
\frac{\alpha}{\lambda_2^\alpha} p_2(1 - p_1^\alpha p_2^\alpha) = \left[\alpha\left(\lambda_2^\alpha - \lambda_1^\alpha\right) + \lambda_4^\alpha, \left(\lambda_3^\alpha - \lambda_2^\alpha\right) - \alpha\left(\lambda_3^\alpha - \lambda_1^\alpha\right)\right]
\]

\[
\frac{\alpha}{\mu_1^\alpha} (1 - p_1^\alpha p_2^\alpha) = \left[\alpha\left(\mu_3^\alpha - \mu_1^\alpha\right) + \mu_4^\alpha, (1 - \alpha)\left(\mu_3^\alpha - \mu_2^\alpha\right) + \mu_1^\alpha\right]
\]

\[
\frac{\alpha}{p_i^\alpha} (1 - p_1^\alpha p_2^\alpha) = \left[\alpha\left(\mu_3^\alpha - \mu_1^\alpha\right) + \mu_i^\alpha, (1 - \alpha)\left(\mu_3^\alpha - \mu_2^\alpha\right) + \mu_{i-1}^\alpha\right]
\]

Therefore, $\rho_i = \frac{\lambda_1^\alpha + \lambda_2^\alpha p_2^\alpha}{\mu_1^\alpha (1 - p_1^\alpha p_2^\alpha)}$
\[
\begin{aligned}
L_4 &= \frac{\alpha (\lambda_1^2 - \lambda_1^1) + \lambda_1^1}{(1-p_{21}^1)(p_{21}^1\mu_1)} + \frac{\alpha (\lambda_1^2 - \lambda_1^1) + \lambda_1^1}{(1-p_{21}^2)(p_{21}^2\mu_2)} + \frac{\alpha (\lambda_1^2 - \lambda_1^3) + \lambda_3^3}{(1-p_{21}^3)(p_{21}^3\mu_3)} + \frac{\alpha (\lambda_1^2 - \lambda_2^2 - \lambda_2^3)}{(1-p_{21}^2)(p_{21}^2\mu_2)}
\end{aligned}
\]

Therefore, \(aL_4 = \frac{\alpha}{1-a\rho_1} \)

\[
\begin{aligned}
L_4 &= \frac{\alpha (\lambda_1^2 - \lambda_1^1) + \lambda_1^1}{(1-p_{21}^1)(p_{21}^1\mu_1)} + \frac{\alpha (\lambda_1^2 - \lambda_1^1) + \lambda_1^1}{(1-p_{21}^2)(p_{21}^2\mu_2)} + \frac{\alpha (\lambda_1^2 - \lambda_1^3) + \lambda_3^3}{(1-p_{21}^3)(p_{21}^3\mu_3)} + \frac{\alpha (\lambda_1^2 - \lambda_2^2 - \lambda_2^3)}{(1-p_{21}^2)(p_{21}^2\mu_2)}
\end{aligned}
\]

Substituting \(\alpha = 0 \) and \(\alpha = 1 \), an approximate triangular fuzzy number, \(\tilde{L}_4 \) is obtained as

\[
L_4 = \frac{\lambda_1^1 + \lambda_2^1 p_{21}^1}{(1-p_{21}^1)(p_{21}^1\mu_1)} + \frac{\lambda_2^2 + \lambda_2^2 p_{21}^2}{(1-p_{21}^2)(p_{21}^2\mu_2)} + \frac{\lambda_3^3 + \lambda_2^2 p_{21}^3}{(1-p_{21}^3)(p_{21}^3\mu_3)} + \frac{\lambda_1^1 + \lambda_2^2 - \lambda_2^3}{(1-p_{21}^2)(p_{21}^2\mu_2)}
\]

Similarly, \(L_2 = \frac{\rho_2}{1-\rho_2} = (L'_2, L'_2, L'_2) \); where

\[
L'_2 = \frac{\lambda_1^1 + \lambda_2^1 p_{21}^1}{(1-p_{21}^1)(p_{21}^1\mu_1)} + \frac{\lambda_2^2 + \lambda_2^2 p_{21}^2}{(1-p_{21}^2)(p_{21}^2\mu_2)} + \frac{\lambda_3^3 + \lambda_2^2 p_{21}^3}{(1-p_{21}^3)(p_{21}^3\mu_3)} + \frac{\lambda_1^1 + \lambda_2^2 - \lambda_2^3}{(1-p_{21}^2)(p_{21}^2\mu_2)}
\]
Also, \(\alpha \rho_3 = \frac{\alpha \lambda_1}{\alpha \mu_1} \)

\[
\begin{align*}
&= \left[\frac{\alpha \lambda_1^2 - \lambda_1^4}{\alpha \mu_1^2 - \mu_1^4} + \frac{\lambda_1^3 \lambda_1^3 \alpha \lambda_1^3 - \lambda_1^5}{\alpha \mu_1^3 - \mu_1^5} \right] \\
&= \left[\frac{\alpha \lambda_1^2 - \lambda_1^4}{\alpha \mu_1^2 - \mu_1^4} + \frac{\lambda_1^3 \lambda_1^3 \alpha \lambda_1^3 - \lambda_1^5}{\alpha \mu_1^3 - \mu_1^5} \right] \\
&= \left[\frac{\alpha \lambda_1^2 - \lambda_1^4}{\alpha \mu_1^2 - \mu_1^4} + \frac{\lambda_1^3 \lambda_1^3 \alpha \lambda_1^3 - \lambda_1^5}{\alpha \mu_1^3 - \mu_1^5} \right] \\
&= \left[\frac{\alpha \lambda_1^2 - \lambda_1^4}{\alpha \mu_1^2 - \mu_1^4} + \frac{\lambda_1^3 \lambda_1^3 \alpha \lambda_1^3 - \lambda_1^5}{\alpha \mu_1^3 - \mu_1^5} \right]
\end{align*}
\]

Therefore, \(\alpha \rho_3 = \frac{\alpha \lambda_1}{\alpha \mu_1} \)

\[
\begin{align*}
&= \left[\frac{\alpha \lambda_1^2 - \lambda_1^4}{\alpha \mu_1^2 - \mu_1^4} + \frac{\lambda_1^3 \lambda_1^3 \alpha \lambda_1^3 - \lambda_1^5}{\alpha \mu_1^3 - \mu_1^5} \right]
\end{align*}
\]

Substituting \(\alpha = 0 \) and \(\alpha = 1 \), an approximate triangular fuzzy number, \(\tilde{L}_3 \) is obtained as follows:

\[
\begin{align*}
\tilde{L}_3 &= \left(\frac{\lambda_1^2}{\mu_1^2}, \frac{\lambda_2^2}{\mu_2^2}, \frac{\lambda_3^2}{\mu_3^2} \right) \\
&= \left(\frac{\lambda_1^2}{\mu_1^2}, \frac{\lambda_2^2}{\mu_2^2}, \frac{\lambda_3^2}{\mu_3^2} \right)
\end{align*}
\]

Similarly, \(\tilde{L}_4 = \left(\frac{\lambda_1^2}{\mu_1^2}, \frac{\lambda_2^2}{\mu_2^2}, \frac{\lambda_3^2}{\mu_3^2} \right) = \left(\tilde{L}_1, \tilde{L}_2, \tilde{L}_3 \right) \)

Also, \(\alpha \rho_3 = \frac{\alpha \lambda_1^3 \lambda_1^3}{\alpha \mu_3} + \frac{\alpha \rho_3}{\alpha \mu_3} \)

\[
\begin{align*}
&= \left[\frac{\alpha \lambda_1^2 - \lambda_1^4}{\alpha \mu_1^2 - \mu_1^4} + \frac{\lambda_1^3 \lambda_1^3 \alpha \lambda_1^3 - \lambda_1^5}{\alpha \mu_1^3 - \mu_1^5} \right] \\
&= \left[\frac{\alpha \lambda_1^2 - \lambda_1^4}{\alpha \mu_1^2 - \mu_1^4} + \frac{\lambda_1^3 \lambda_1^3 \alpha \lambda_1^3 - \lambda_1^5}{\alpha \mu_1^3 - \mu_1^5} \right] \\
&= \left[\frac{\alpha \lambda_1^2 - \lambda_1^4}{\alpha \mu_1^2 - \mu_1^4} + \frac{\lambda_1^3 \lambda_1^3 \alpha \lambda_1^3 - \lambda_1^5}{\alpha \mu_1^3 - \mu_1^5} \right]
\end{align*}
\]

Therefore, \(\alpha \rho_3 = \frac{\alpha \lambda_1^3 \lambda_1^3}{\alpha \mu_3} + \frac{\alpha \rho_3}{\alpha \mu_3} \)

Substituting \(\alpha = 0 \) and \(\alpha = 1 \), an approximate triangular fuzzy number, \(\tilde{L}_5 \) is given as
\[L_3 = \left(\frac{\bar{\lambda}_3^1 + \bar{\lambda}_3^2}{\mu_3^1} + \frac{p_{31}^{1} \{ \bar{\lambda}_1^1 + \bar{\lambda}_2^1 \} + p_{33}^{1} \{ \bar{\lambda}_1^1 + \bar{\lambda}_2^1 \}}{\mu_3^1 (1 - p_{31}^{1} p_{32}^{1})} \right), \]

Therefore, the membership functions for \(L \) and \(E \left(\hat{W} \right) \) are

\[\eta \left(\hat{L} \right) = \begin{cases}
0 & \text{if } \hat{L} < l_1 \\
\frac{L - l_1}{l_2 - l_1} & \text{if } l_1 \leq \hat{L} < l_2 \\
\frac{l_1 - L}{l_3 - l_2} & \text{if } l_2 \leq \hat{L} < l_3 \\
1 & \text{if } \hat{L} \geq l_3
\end{cases} \]
Fuzzy Analysis of Synergistic Collaboration of Biserial and Parallel Servers...

The system characteristics are described by membership function; it preserves the fuzziness of input information. However, the designer would prefer one crisp value for one of the system characteristics rather than fuzzy set. In order to overcome this problem we defuzzify the fuzzy values of system characteristic by using the Robust Ranking Technique. Robust Ranking technique (2011) which satisfies compensation, linearity and additive properties and provide results which are consistent with human.

If \(\tilde{A} = (a_1, a_2, a_3) \) be a triangular fuzzy number, then robust ranking is defined by

\[
R(\tilde{A}) = \int_{0}^{1} (0.5)(a^U_{\alpha}, a^L_{\alpha}) d\alpha, \quad \text{where} \quad (a^U_{\alpha}, a^L_{\alpha}) = \{a_2 - a_1)\alpha + a_1, a_3 - (a_3 - a_2)\alpha \} \text{ is the } \alpha \text{- cut of the fuzzy number } \tilde{A} = (a_1, a_2, a_3).
\]

4. Numerical Illustration

Considering sixteen customers/jobs that are processed through the network of queues with parallel and biserial servers connected to a common server as discussed in the proposed mathematical model, the number of the customers, fuzzy mean arrival rate, fuzzy mean service rate and various associated possibilities are given as in Table 1.

<table>
<thead>
<tr>
<th>(n)</th>
<th>Arrival Rate</th>
<th>Service Rate</th>
<th>Possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_1 = 5)</td>
<td>(\tilde{\lambda}_1 = (2,3,4))</td>
<td>(\tilde{\mu}_1 = (10,11,12))</td>
<td>(\tilde{p}_{12} = (0.4,0.6,0.7))</td>
</tr>
<tr>
<td>(n_2 = 4)</td>
<td>(\tilde{\lambda}_2 = (5,6,7))</td>
<td>(\tilde{\mu}_2 = (12,13,17))</td>
<td>(\tilde{p}_{13} = (0.4,0.3,0.2))</td>
</tr>
<tr>
<td>(n_3 = 4)</td>
<td>(\tilde{\lambda}_3 = (3,4,5))</td>
<td>(\tilde{\mu}_3 = (12,14,16))</td>
<td>(\tilde{p}_{21} = (0.3,0.5,0.6))</td>
</tr>
<tr>
<td>(n_4 = 3)</td>
<td>(\tilde{\lambda}_4 = (2,4,5))</td>
<td>(\tilde{\mu}_4 = (6,7,8))</td>
<td>(\tilde{p}_{23} = (0.7,0.5,0.4))</td>
</tr>
<tr>
<td>(n_5 = 16)</td>
<td></td>
<td>(\tilde{\mu}_5 = (12,15,16))</td>
<td></td>
</tr>
</tbody>
</table>
Our aim is to find the expected waiting time and average queue length of customers/jobs.

Here, we have

\[
\begin{align*}
L_1 &= (1.6390, 3.5289, 1.5471); \\
L_2 &= (8.7381, 6.0021, 2.5); \\
L_3 &= (0.3214, 0.399, 0.3809); \\
L_4 &= (1.4997, 2.0003, 0.9523); \\
L_5 &= (13.8094, 19.8768, 34.226)
\end{align*}
\]

Therefore, mean (average) queue length of customers

\[
\tilde{L} = L_1 + L_2 + L_3 + L_4 + L_5 = (26.0076, 31.808, 39.6063) = (l_1, l_2, l_3)
\]

Therefore, the expected waiting time of the customers is \(E(\tilde{w}) = (1.238, 1.8710, 3.3005) \).

Now, on using the Robust’s Ranking Techniques [2011], the crisp value for mean queue length of customers \(R(\tilde{L}) = 32.80695 \) and the crisp value for the expected waiting time is \(R(\tilde{w}) = 2.26945 \).

The mean queue length of customers (jobs) \(R(\tilde{L}) \) in the system falls between 26.0076 and 39.6063. It indicates that the mean queue length of customers in the system will never fall below 26.0076 or exceed 39.6063. The most possible mean queue length of customers (jobs) is 31.808.

Similarly, it indicates that the support of \(R(\tilde{w}) \) ranges from 1.2384 to 3.3005, i.e. the expected waiting time is fuzzy, it is impossible for its values to fall below 1.2384 or exceed 3.3005 and the most possible value for the expected waiting time in the system is 1.8710.
5. CONCLUSION
In this paper, the fuzzy analysis of synergistic collaboration of biserial and parallel servers with a common server has been conducted. Considering arrival rate, service rate are fuzzy, the expected waiting time and mean queue length of customers have been computed using fuzzy arithmetic operations. In the literature, the various system characteristics are assumed to be exact, but in real practical life the input information are almost uncertain, imprecise, and incomplete. The proposed fuzzy queue model is more suitable for designer and practitioner as it deals with imprecise values. Fuzzy triangular membership function, α-cut approach and fuzzy arithmetic operations are used to obtain system characteristic membership function. The study may further be extended by introducing more parallel, biserial servers and by introducing concept of linkage network of system of parallel machines with the proposed queue model in fuzzy environment.

REFERENCES