# **Presentation of Finite Dimensions**

Volker W. Thürey\*

Bremen, Germany

### **Abstract**

We present subsets of Euclidean spaces  $\mathbb{R}^n$  in the ordinary plane  $\mathbb{R}^2$ . Naturally some informations are lost. We provide examples.

Keywords and phrases: presentation, Euclidean space

MSC2020: 51-08

#### 1. INTRODUCTION

It is trivial that one can picture objects of the space  $\mathbb{R}^n$  only if n is less than four. The best presentation is a picture in  $\mathbb{R}^2$ . Mathematicians often deal with objects in higher dimensional spaces, but since we live in a three dimensional space we have no real imagination of these objects. Here we show methods to represent something of the  $\mathbb{R}^n$  in  $\mathbb{R}^2$ . The way is by dividing a vector of  $\mathbb{R}^n$  into small parts consisting of some components. After this we take barycenters. The resulting point can be presented in the two dimensonal space  $\mathbb{R}^2$ .

## 2. DEMONSTRATION

First we give names. We have methods way<sub>2</sub>, way<sub>3</sub> and way<sub>4</sub>. To use way<sub>2</sub> we need points in  $\mathbb{R}^n$  for  $n \in \{4, 8, 16\}$ . To use way<sub>3</sub> we need points in  $\mathbb{R}^n$  for n = 9 or n = 27. For way<sub>4</sub> we use a point in  $\mathbb{R}^8$ . We calculate barycenters of polygons. Further we define method<sub>n</sub>, which requires a vector from  $\mathbb{R}^n$ , and which is suitable for all integers n and which does not need barycenters.

\*E-mail: volker@thuerey.de

Let us take a vector  $\vec{a} := (a_1, a_2, \dots, a_{n-1}, a_n)$  of  $\mathbb{R}^n$ . We define

$$\mathsf{method}_n(\vec{a}) := \left\{ \begin{array}{l} \left(a_1 + \ldots + a_{\frac{n}{2}-1} + a_{\frac{n}{2}}, \ a_{\frac{n}{2}+1} + a_{\frac{n}{2}+2} + \ldots + a_{n-1} + a_n\right) \\ \text{if } n \ \text{ is even, } n \text{ larger than 4} \\ \left(a_1 + \ldots + a_{\frac{n-1}{2}-1} + a_{\frac{n-1}{2}} + \frac{1}{2} \cdot a_{\frac{n-1}{2}+1}, \ \frac{1}{2} \cdot a_{\frac{n-1}{2}+1} + a_{\frac{n-1}{2}+2} + \ldots + a_n\right) \\ \text{if } n \text{ is odd, } n \text{ larger than 5} \end{array} \right.$$

We define  $\mathsf{method}_1(a) := (a, a)$ ,  $\mathsf{method}_2(a, b) := (a, b)$ ,  $\mathsf{method}_3(a, b, c) := (a + \frac{1}{2} \cdot b, \frac{1}{2} \cdot b + c)$ ,  $\mathsf{method}_4(a, b, c, d) := (a + b, c + d)$ ,  $\mathsf{method}_5(a, b, c, d, e) := (a + b + \frac{1}{2} \cdot c, \frac{1}{2} \cdot c + d + e)$ .

Let us demonstrate way<sub>2</sub>. If we have an element  $(a, b, c, d) \in \mathbb{R}^4$  we take two vectors  $(a, b), (c, d) \in \mathbb{R}^2$ . Then we compute the barycenter and we get the image point

$$\mathsf{way}_2(a,b,c,d) := \left(\frac{1}{2} \cdot (a,b) + \frac{1}{2} \cdot (c,d)\right) = \left(\frac{1}{2} \cdot (a+c), \ \frac{1}{2} \cdot (b+d)\right), \tag{2.1}$$

which can be drawn in  $\mathbb{R}^2$ . In the case of a vector  $\vec{y} := (a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8) \in \mathbb{R}^8$  we divide it in four parts  $(a_1, a_2), (a_3, a_4), (a_5, a_6), (a_7, a_8) \in \mathbb{R}^2$ . First we calculate two barycenters of the pairs  $(a_1, a_2), (a_3, a_4)$  and  $(a_5, a_6), (a_7, a_8)$ , respectively. After this we take the barycenter of the two barycenters. We get

$$\mathsf{way}_2(\vec{y}) := \left(\frac{1}{2} \cdot \left[\frac{1}{2} \cdot (a_1 + a_3), \ \frac{1}{2} \cdot (a_2 + a_4)\right] + \frac{1}{2} \cdot \left[\frac{1}{2} \cdot (a_5 + a_7), \ \frac{1}{2} \cdot (a_6 + a_8)\right]\right)$$

hence

2

$$\mathsf{way}_2(\vec{y}) = \left(\frac{1}{4} \cdot (a_1 + a_3 + a_5 + a_7), \ \frac{1}{4} \cdot (a_2 + a_4 + a_6 + a_8)\right) \tag{2.2}$$

which is a point in  $\mathbb{R}^2$ .

If we have a vector  $\vec{u} := (a_1, a_2, a_3, \dots, a_{14}, a_{15}, a_{16}) \in \mathbb{R}^{16}$  we can use also way<sub>2</sub>. We compute the barycenter of two barycenters of four barycenters of 8 points  $(a_1, a_2), (a_3, a_4), (a_5, a_6), (a_7, a_8), (a_9, a_{10}), (a_{11}, a_{12}), (a_{13}, a_{14})$  and  $(a_{15}, a_{16})$ . We get way<sub>2</sub> $(\vec{u}) =$ 

$$\left(\frac{1}{8}\cdot(a_1+a_3+a_5+a_7+a_9+a_{11}+a_{13}+a_{15}),\,\frac{1}{8}\cdot(a_2+a_4+a_6+a_8+a_{10}+a_{12}+a_{14}+a_{16})\right). \tag{2.3}$$

To demonstrate way<sub>3</sub> for  $\mathbb{R}^9$  we use a point  $\vec{v} := (a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9) \in \mathbb{R}^9$ . First we take the barycenter of the triangle of three points  $(a_1, a_2, a_3), (a_4, a_5, a_6), (a_7, a_8, a_9)$  of  $\mathbb{R}^3$ , then we use method<sub>3</sub>. We define

$$\mathsf{way}_3(\vec{v}) := \left(\frac{1}{3} \cdot (a_1 + a_4 + a_7) + \frac{1}{6} \cdot (a_2 + a_5 + a_8), \ \frac{1}{6} \cdot (a_2 + a_5 + a_8) + \frac{1}{3} \cdot (a_3 + a_6 + a_9)\right). \tag{2.4}$$

In the case of a vector  $\vec{w} := (a_1, a_2, a_3, \dots, a_{26}, a_{27})$  from  $\mathbb{R}^{27}$  we use method<sub>3</sub> for the barycenter of three barycenters of three triangles, which are generated by nine points  $(a_1, a_2, a_3), (a_4, a_5, a_6), \dots, (a_{25}, a_{26}, a_{27})$  of  $\mathbb{R}^3$ . This means

$$way_3(\vec{w}) := \left(\frac{1}{9} \cdot a + \frac{1}{18} \cdot b, \ \frac{1}{18} \cdot b + \frac{1}{9} \cdot c\right)$$
(2.5)

where

$$a := a_1 + a_4 + a_7 + a_{10} + a_{13} + a_{16} + a_{19} + a_{22} + a_{25}$$
, (2.6)

$$b := a_2 + a_5 + a_8 + a_{11} + a_{14} + a_{17} + a_{20} + a_{23} + a_{26}, (2.7)$$

$$c := a_3 + a_6 + a_9 + a_{12} + a_{15} + a_{18} + a_{21} + a_{24} + a_{27}. (2.8)$$

For  $way_4$  we define the same formula as for  $way_2$ . Please see line (2.2). Note that in  $way_4$  we calculate the barycenter of a 4-gon. We define

$$\mathsf{way_4}(\vec{y}) := \left(\frac{1}{4} \cdot (a_1 + a_3 + a_5 + a_7), \, \frac{1}{4} \cdot (a_2 + a_4 + a_6 + a_8)\right) \tag{2.9}$$

**Remark 2.1.** If n < k it holds  $\mathbb{R}^n \subset \mathbb{R}^k$ . In place of the vector  $(a_1, a_2, a_3, \dots, a_{n-1}, a_n)$  of  $\mathbb{R}^n$  we can use  $(a_1, a_2, a_3, \dots, a_{n-1}, a_n, 0, 0, 0, \dots, 0, 0) \in \mathbb{R}^k$ .

**Remark 2.2.** To avoid fractions we may multiply  $\operatorname{method}_k(\vec{x})$  or  $\operatorname{way}_k(\vec{x})$  with a suitable factor.

#### 3. EXAMPLE

As an example we take the four dimensional cube, which is the convex hull of four dimensional vectors  $(a, b, c, d) \in \mathbb{R}^4$ , where the variables a, b, c, d either are 0 or 1. Each point is called a *vertex* of the cube. Hence a four dimensional cube has 16 vertices. By method<sub>4</sub> we get 9 vertices (x, y), where x and y is 0 or 1 or 2.

We get the same result if we use  $way_2$  and Remark 2.2. We multiply all values with 2 by Remark 2.2. By line (2.1) the presentation in  $\mathbb{R}^2$  has 9 vertices

$$(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2).$$

We repeat the presentation by Remark 2.1 since  $\mathbb{R}^4 \subset \mathbb{R}^5$ . Instead of points (a,b,c,d) we use points (a,b,c,d,0) with variables a,b,c,d either 0 or 1. It holds (s,t):= method<sub>5</sub>  $(a,b,c,d,0)=\left(a+b+\frac{1}{2}\cdot c,\frac{1}{2}\cdot c+d\right)$ .

By Remark 2.2 we multiply all points with 2 to avoid fractions. We get with method<sub>5</sub> 12 points

$$(0,0),(2,0),(4,0),(0,2),(2,2),(4,2),(1,1),(1,3),(3,1),(3,3),(5,1),(5,3).$$
 Note that  $c$  occurs both in  $s$  and  $t$ .

Volker W. Thürey

With way<sub>3</sub> we repeat the presentation by Remark 2.1, since  $\mathbb{R}^4 \subset \mathbb{R}^9$ . Instead of points  $(a,b,c,d) \in \mathbb{R}^4$  we take points  $(a,b,c,d,0,0,0,0,0) \in \mathbb{R}^9$ . By Remark 2.2 we multiply the 12 resulting points with 6. We get by line (2.4): (0,0),(2,0),(4,0),(0,2),(2,2),(4,2),(1,1),(1,3),(3,1),(3,3),(5,1),(5,3).

With way<sub>4</sub> we repeat the presentation by Remark 2.1, since  $\mathbb{R}^4 \subset \mathbb{R}^8$ . Instead of points  $(a,b,c,d) \in \mathbb{R}^4$  we take points  $(a,b,c,d,0,0,0,0) \in \mathbb{R}^8$ . Since in  $\mathbb{R}^8$  we have way<sub>4</sub> = way<sub>2</sub> we get by line (2.2) the same points as above (0,0),(0,1),(0,2),(1,0),(1,1), (1,2),(2,0),(2,1),(2,2).

**Acknowledgements:** We thank Franziska Brown for a careful reading of the paper