
Global Journal of Computational Intelligence Research.
Volume 1, Number 1 (2011), pp. 21-30
© Research India Publications
http://www.ripublication.com/gjcir.htm

Face Detection in Still Images using Neural Network
and Back Propagation Algorithm

Ajit Pratap Singh Gautam

Associate Professor, Department of Computer Application
Technical Education and Research Institute, P.G. College, Ghazipur, India

Abstract

Human face analysis for detection and recognition is a growing field of
interest in computer science and research. Its importance is clear with its
applicability in different fields of real life and is obvious from security reason
to computer aided identification. Face detection is the first step towards face
recognition. Here, a neural network- based face detection system is designed.
This paper is an effort to present a neural network-based algorithm to detect
frontal view of faces in gray scale images. A bootstrap algorithm for training
the network is used which adds false detection to the training set with progress
of training.

Introduction
Analysis of human face for detection and recognition is a growing field of interest in
computer science and research. The importance of it is clear with its applicability in
different fields of real life and from security reasons to computer aided identification.
This, indeed, is a result of the demand of current multimedia technology inasmuch as
MPEG group is more inclined towards object oriented representation and comparison.
 Moreover, the problem of face detection is difficult altogether. Face detection is a
problem in which the machine must be able to classify between face and non-face
images. For a given image as input, the output declares if the input contains a face or
not. If it is so, it gives the location where it occurs.
 Basically, face detection is the first step in face recognition and also the most
difficult one. Once face detection is complete the face recognition may be solved with
the help of available algorithms. Face detection in a general image has no definite
algorithm which ensures hundred percent accuracy. The problem of face detection is
typically a machine learning problem assuming the human face to be represented by
some non-linier function.
 Among the heuristics based approaches, feature vector based approach, color
histogram and color segmentation approach performed well for colored images, but

22 Ajit Pratap Singh Gautam

they are working mostly for images under clear background. Instead, the machine
learning approaches, where the human face is approximated as a non-liner function.,
performs better even under a complex background.
 If way take gray-scale upright frontal image of a human face and cut out the
average intensity of the face. That is the background, than that portion which varies
heavily from their surroundings can be identified. The portion vary hugely from the
surroundings are the requisite parameters that help us developing the necessary non-
linear function of the human face. After the parameters to develop the non-linear
function is available, for machine learning we are employing the following methods:

1. Neural Network based learning
2. Levenberg-Marquartd Algorithm
3. Support Vector Machine

 Since all human faces are quite similar to look at, we can expect the learning
modal to successful coverage.

System Design
We have used feed forward Neural Network and Back Propagation algorithm for
learning process. Moreover, instead of going for fully connected network, we can use
a partially connected network expressing the relation between input and output for
different parameters. Advantageous to use a partially connected network over a fully
connected network as we have better performance on time, memory and space by we
dealing with lesser numbers of edges also in the hidden layer, the number of nodes
decreases. Hence, calculation involved in this process gets further reduced and
simplified.
 The basic problem with face detection in a general image is to train the network
for negative examples. This is because; the number of examples containing faces
which represent the set of human face may be obtained and restricted in size.
Whereas, finding a representative set of examples, not containing face is the negative
example set, is rather impossible and can grows very large in size soon. Hence, we
restrict the input image size for training the network to 20 X 20 pixels. The images
containing a larger face can be scaled down detected, if a network can dectect the
presence of the face under this restriction. Faces of smaller size cannot be identified
by the network, but it seems practically to have very low chance of obtaining a face of
even smaller size. This also restricts the size of the input layer of the network to 400
nodes.
 We are using upright, frontal view of human face of a given size, where eyes are
brought horizontal position by rotating it suitable and scaling the image, so the
distance between center of the upper lips and the horizontal line joining the eyes is 12
pixel. This restricts an exposure to the most important part for identifying the human
face and also helps decide the topology for the hidden layer of a network. For
negative example, we first create some random pixel value images and add them to
the training set. Since this merely represent represents the possible negative set, after
training on these images, we use boot-strap method by randomly running the network

Face Detection in Still Images 23

on images not containing faces, and selecting the sub-images for which the network
gives positive output, and add them to the negative training set.
 From the given training data, the input layers get fixed with 400 nodes. The
network will have a single output node, giving output greater than or less than 0.5 to
represent the presence or non presence of a human face in the image fed into the input
nodes as input. Since the positive examples are matter of interest, that is what we
want to identify, and also those are symmetrically aligned, ie, centered around the
point at the middle of the line joining the center point of upper lip and the horizontal
line joining the eyes, and the distance of this horizontal line from the center of upper
lip is always 12 pixel. We take three different sets of hidden units to capture different
features of face like eyes, lips, nose etc. The first set is a 2 x 2 block which looks at
the 10 x10 blocks of the input image, divided through horizontal and vertical lines
through the image which is a 20 x 20 block. The lower two of these nodes will
probably capture the two corners of the lips and each of the upper two should contain
0ne of the eyes as a part of it. We take second set of hidden nodes as a 4 x 4 block
which will be looked at individual 5x5 blocks of the input nodes obtained through
three horizontal equidistant lines through image. Finally we go for a third set of 6
hidden nodes which looks overlapping horizontal strips of the input image, each of
size 5 x 20, to capture the “ horizontal eyes strips” and the horizontal strip of lips.
Hence, in all we get 26 hidden nodes divided into three sets. Therefore, the total
number of nodes in the net is 427 and total number of edges is 1426 (weights)
 The output of the Neural Network is refined through some post-processing steps
removing false detection etc. This is also important since the trained network alone is
not sufficient to identify faces. Other possibilities are to use more than one network
and attribute to them.
 Data are also very important issue in this problem. There is no standard known
formula to represent human face as an object. So we have taken a data driven
approach to solve face recognition problem. We can best approximate human face
from a set of ‘example data’, which we know both the input and output. For each of
these ‘example data’, information corresponding featured image as well as the class it
belongs to should be available.
 All images at gray scale level have also been considered. Although the color
information of a human face can be treated as a facial feature and it does not carry lots
of information for isolation of a face from its background. We are neglecting it for
simplicity and speedup reason. We also restrict ourselves to a single layer of hidden
units, since this is fund to be sufficient for identifying frontal upright faces. This
restriction helps obtaining higher speed of learning, as the number of multiplication
and addition needs depends directly on the number of hidden layers and hidden units.

The Learning Algorithm
Here simple Gradient Descent Back Algorithm is used as the learning algorithm to
learn the parameters, ie., the weights. This is again a state-of the- art choice. This is
very popular in machine learning due to its simplicity and fast convergence criterion.
The algorithm runs down the error surface, which is assumed to be parabolic in

24 Ajit Pratap Singh Gautam

nature, performing a gradient decent search in the weight space. Error surface is the
surface that describes the error on each example as a function of the weights in the
network. In each iteration, the algorithm moves the network in the direction of
steepest decent on the error surface. The Back-Propagation Algorithm

For all epochs do
For all images in the images in the initial set, do

1. Set the input vector
2. Set target
3. Feed forward through the network and calculate output.
4. Calculate error and output ‘delta’
5. Calculate hidden ‘delta’
6. Adjust hidden weights
7. Adjust input weights

End
End

Training and Training Data
The training data consist of a tagged set of images faced and non- faced both. Each
one is of 20 x 20 pixel. We consider the images only at gray scale level. For every
face image in training set, the eyes and the center of the upper lip are manually
located. Face images are adequately rotated and normalized so that the eyes are
placed in the horizontal line and the distance between the centers of the upper lip from
this horizontal line is 12 pixel. The 20 x 20 image block is centered at the middle
point on this vertical line, that is, 6 pixel above the center of the upper lips.
 Before feeding the images to the input nodes of neural network, all the images are
pre-processed to correct the lighting effects and then histogram equalized to increase
the contrast of that image. The lighting correction removes the average intensities of
the pixel of the image by estimating a liner ramp which is subtracted from the original
image. Now this feature image pixel values are scaled down using the pre-
computational table to reduce the input pixel values from [0,255] to [0,1] to create the
input vector to be fed to the neural network as input. The same image processing
operations are also done for the negative examples as well to maintain similarity for
all input vectors regardless of their type and class. We use sigmoid function as the
threshold function. This forces us to initialize the weights with small numbers near
zero since the sigmoid curve is very much stable and gives constant gradient near
zero.

The training process can be summarized as follows:

1. Select the positive and negative training data
2. Train network for these data.
3. Run the network on some images not containing human face.
4. Add those sub- images to negative training set which gives positive output.
5. Go back to step 1 for all epochs or till net converges.

Face Detection in Still Images 25

Testing and Test Data
A training time embedded testing has to be performed from within the training
module to estimate the performance of the network. This is done on an image list in
general. This provides a stopping criterion for the training module.

Testing procedure:

1. Start with original image size.
2. Apply the network at every possible location to detect presence of a face.
3. Search for faces rotated in a small angle by rotating the input image itself.
4. Scale down the image by a constant factor and go back to step 2 if scaled

image size is higher than networks input size; stop otherwise.
5. (Additional step) Apply neighborhood information around every detected face.
6. (Additional step) Combine results from different network.

Implementation of the Training Module
The input to this module is the training image data files. From the design of the
system, we have concrete, fixed structure for neural network at the heart of algorithm.
The learning rate and momentum are also kept to be fixed at 0.3 both, but can easily
be modified to take user defined values. We also have two arrays, Weights and
Rrev_Weights, to account for the edge weights and previous change in the edge
weights in the last iteration. These are the parameters we want to learn. The out of the
system is a file containing the final values from the Weight array of the network
which defines the classifier.
 We have 427 units and 1426 edges in the network, distributed in three layers.
Each unit is of the form

sruct Unit_Type{
float act; /*Activation*/
float Bias; /* Bias of the Unit*/
int NoOfSources; /*Number of predecessor Units*/
UNIT_TYPE **sources; /*predecessor units*/
float *weights; /*weights from predecessor units*/
float *prev_weights; /*previous change in waights*/
} Unit, pUnit;

The neural network is also specified by a structure as follows:
struct NEURAL_NET{
int input_n; /* number of input units*/
int hidden_n /*number of hidden outputs*/
int out_n; /*number of output units*/
pUnit *Input_Units;
pUnit *Hidden_Units;
pUnit *Output Units // all the units

26 Ajit Pratap Singh Gautam

float *hidden_delta; /*storage for hidden unit error*/
float *output delta; /*storage for output unit error*/

float eta,momentam; /*storage for target vector*/
foat target; /*actual output observed*/

float output;
} BPNN;

 All the images are subjected to lighting correction and a linear scaling of the
scaling of the pixel values from [0,255] to [0.0,-1.0]. While lighting correction, the
objective is to remove the background effect from the original image, first followed
by an enhancement is contrast to identify the object features. We fit the linear ramp
for the 20 x 20 blocks which approximates the pixel values at every location to define
the background. This operation is done within a mask not considering the boundary
pixels to avoid boundary to avoid boundary artifacts which may be present in the
image templates due to cropping.
 The pixel values are needed to be selected to [0.0-1.0] range to feed into the
neural network. The number of random location to produce for boot strapping from
any image and a particular location is taken to be constant and equal to five.

Implementation of Testing Module
Input to the testing module is an image to be tested for the presence of a human face,
and a trained network. Here the actual input is the trained weights rather than the
complete network. In this stage we do not need the pre-weights field any more. We
use JPEG images instead of PGM images for testing purpose because of is highly
scalable property of JPEG images. Using a JPEG image library, scaling images at any
scale is just a function call. We have used 0.9 as scaling factor for constructing the
image pyramid.
 With the choice of proper threshold, the false detection can be eliminated or
reduced. We noticed that the overlapped detection usually points the same face. By
overlapping two faces we mean that the areas of the faces are overlapped. The biggest
size detection is kept in the face list and rest all is deleted. These two post processing
tool bring improvement in final result.

Result obtained during training
The size of the training set varies with training progresses due to the addition of
negative images from the boot-strap set. Hence, to gather results on training set, we
must go for a relative measure of the correct detection rate, false detection rate and
failure detection rate instead of their actual values. The table of training result is as
follows.

Face Detection in Still Images 27

Table I (Network 4.1)

Seed=123456 Initial # of Images in Training set = 110 Boot-Strap Set=43 Test
Set=49

Epoch Total# In

training set
% correct
detection

%wrong
detection

Total# in
validation Set

% correct
detection

% wrong
detection

0 110 26.36 73.64 - - -
70 244 68.03 31.97 49 51.02 48.98
140 250 74.40 25.60 49 65.31 34.69
210 255 82.35 17.65 49 75.51 24.49
280 261 79.31 20.69 49 65.31 34.69
350 268 79.85 20.15 49 65.31 34.69
420 273 90.11 9.89 49 79.59 20.41

Table II (Network 4.2)

Seed= 210181 Initial # of Images in Training set= 110, Boot-Strap Set= 43, Test= 49

Epoch Total # in
training set

% correct
detection

% wrong
Detection

Total # in
validation set

% correct
detection

% failure
detection

0 110 26.36 73.64 - - -
70 245 68.16 31.31 49 68.16 31.84
210 256 69.14 30.86 49 48.98 5102
350 269 82.16 17.84 49 67.35 32.65
490 282 82.98 17.84 49 61.22 38.78
630 290 85.17 14.83 49 69.39 30.61
770 302 85.76 14.24 49 65.31 34.69
910 312 91.35 8.65 49 77.55 22.45
980 319 95.30 4.70 49 83.67 16.33

Training Curve

28 Ajit Pratap Singh Gautam

Result Obtained Durning Test
These result are obtained by applying the trained network on JPEG test images of any
size. Both the previosly trained netowks have been used on different test images
which were not present in the training set.
 The following results are obtained for a single netwotk system:

Table III: Thresh hold use = 8.

Network Image # location

net applied
#of detection
by the net

#detection after
thresh holding

#detection on
removal of
overlap

Final
location

Net 4.1 24.jpg
(112 x
116)

33049 143 98 2 (35,76)
(81,22)

Net 4.2 24.jpg
(112 x
116)

3304
9

189 90 2 (36,76)
(81,21)

Net 4.1 1.jpg
(163 x
131)

63786 108 41 1 (54,66)

Net 4.2 1.jpg
(163 x
131)

63786 118 29 1 (54,64)

Net 4.1 30.jpg
(100
x100)

22746 125 77 3 (56,20)
(37,74)
(54,46)

Net 4.2 30.jpg
(100
x100)

22746 87 48 1 (50,47)

 Following are the result obtained for AND-ing multiple networks:

Table IV

S.No. #Nets Nets Used #Images #Faces # Correct
Detection

False
Detection

Failure
Detection

1. 2 Object,
Miscellaneous

22 68 54 39 14

2. 3 Objects, Sky,
Miscellaneous

22 68 54 30 14

3. 4 Objects,
Miscellaneous,
Trees, Houses

22 68 58 8 10

4. 5 Objects,
Miscellaneous,
Trees, Houses, 4.3

22 68 54 4 14

Face Detection in Still Images 29

 Though it may seem from the tabulated result that the error percentage is very
quite high, actually it is very near to zero. This is because, while calculating the
percentage correct or false detection, we must take into account the negative sub-
images as well. Since every image has almost 100% negative sub images and almost
all of them are detected correctly, that is, as negative image, even if some of the faces
are wrongly detected and other faces could not be detected, the performance of the
system is close to accurate.
 Quantitatively, we have total locations = 12761023
 Face locations = 68, non face locations = 12760955
 Faces correctly detected = 54, missed to detect = 14
 Non-faces wrongly detected = false detection = 4
 Non-faces correctly detected = 12760951
 Hence total correct detection = 54+12760971 = 12761005 and
 Total wrong detection = 14=4=18
 This gives the clear idea about the system performance.

Conclusion
We address the problem of Human Face Detection here in this paper. We provide a
thorough understanding of the problem followed by a detail design and
implementation, which is further experimentally validated. As we can see from the
result this face detection system is not robust on its own; that is, the learning
procedure does not ensure us 100 % correct detection. Hence, we applied some post
processing steps as showed in previous sections.
 An important point to observe here is that the accuracy of the system heavily
depends on the selection of the thresh holding parameter. Better result can be obtained
using adaptive threshold. Generally we can expect more detection for a large face
since it can be identified in many subsequent scales which forms the image pyramid.
Again large faces are expected to occur more commonly in a large image. Hence we
can apply adaptive thresh holding, which apply small value for the threshold for small
images, medium value for medium sized image and relatively large value for a large
image and so on. We also find here that choosing a very large threshold to remove
false detection may result in failure in detection. Instead, this system use multiple
network and arbitrate between them to produce actual output. This property can be
efficiently used to remove false detection simple by AND-ing or Voting among
different network, or by taking a weighted multiplexer. Color histogram based
approach, edge detection based approach etc are also potential techniques for
performance optimization, which if applied carefully, can improve speed of the
system as well.

30 Ajit Pratap Singh Gautam

Reference

[1] A. J Colmenarez, B. Fery and T.S. huang : “Detection and tracking of faces and
facial features:”: proceeding International Conference on Image
processing,1999

[2] A. Schneiderman and T.Khande: “ A statistical Model for 3d object detection
applied to faces and cars”, Proceeding computer vision and Pattern recognition,
2000, IEEE.

[3] David A. Forsyth, University of California, Berkeley and Jean Ponce,
University of Illinois, Urbana Champaign” Computer Vision a Modern
Approach “.

[4] D. E. Benn, and M.S. Nixon and J.N, Carter “ Extending concentricity analysis
by deformable templates for improved eye extraction” Proceeding Second
International Conference on Audio and Video –Based Biometric Person
Authentication (AVBPA)1999

[5] Eric Hjelmas and Boon Kee Low,” Face Detection: A Survey”, Science Direct-
Computer Vision and Image Understanding.

[6] Gaungzheng Yang and Thomas S Huang, “Human Face Detection in a
Complex Background.

[7] Henry A. Rowley, Sumeet Baluja, Takeo Kande, “ Neural Network Based Face
Detection, IEEE Transaction on Pattern Recognition and Machine Lerning.

[8] Lucas Finschi, ” An implementation of the Levenberg-Marquardt Algorithm”,
Institute of Operation Research, Zurich, 1996.

[9] M. Abdel-Mottaleb, and A Elgammal, “Face Detection in Complex
Environment”, Proceeding International Conference in Image Processing,
1999.

[10] Ming Husan Yang, David Kriegman and Narendra Ahuja:”Detecting Faces in
Images : A survey, IEEE Transactions’ on Pattern analysis and Machine
Intelligence

[11] M.J. Jones and J. Rehg,” Statistical color Models With Application to Skin
Detection” Computer Vision and Pattern Recognition,1999,IEEE.

[12] Rapheal Feraud, Oliver Bernire, Jean E. Viallet and Michel Collobret,”A fast
and accurate Face Fetector Based on Neural Network”, IEEE Transaction
Pattern Recognition and Machine Learning.

