Global Journal of Electronic and Communication Research. ISSN 2249-314X Volume 12, Number 1 (2021), pp. 1-9 © Research India Publications https://dx.doi.org/10.37622/GJECR/12.1.2021.1-9

Survey on Laser Guided Missile Systems and Implementation by Developing a Laser Guidance System

Gopisetty Srinivas

School of ECE, REVA University Bengaluru, India

Harshitha C Gowda School of ECE REVA University Bengaluru, India

Harish Kumar Gowda B H School of

ECE REVA University Bengaluru, India

Jyothi ST

School of ECE REVA University Bengaluru, India

Ravi Shankar D

School of ECE REVA University Bengaluru, India

ABSTRACT

A laser-guided missile is a projectile airborne to reach and destroy the target. The whole body is propelled to hit a predetermined target-directed through the laser beam painting towards a target. The laser is aimed to point at the goal object and its central position from the robot missile. If the target changes its initial position, the camera tracks the new position, and information is fed to an onboard computer of the missile as visual feedback, which computes a new trajectory for itself by steering its body and chasing towards the direction of

the new target and hitting it with improved accuracy. This whole system of guiding and making changes according to new information has to be updated every time instantaneously and should be made entirely automated and not controlled by any human. To design such a Stable, Accurate, and Spontaneous system lot of parameters have to be seen in Electronics and Aerodynamics. A detailed survey is made on the most available Laser Guidance System for analyzing the best way to design. This paper discusses the proposed Laser guided system developed using Raspberry-pi controller.

Keywords: Laser beam, Guidance System, Raspberry-pi Accuracy and stability.

I. INTRODUCTION

A guidance device consists of devices that are implemented on controlling the movement of a missile or other moving object. Every movement within the missile from the start line till it reaches the target is about and goes past the system. Here we are studying a laser-guided system for the missile. Guidance is that the process of calculating the initial and changes in its position, velocity, altitude, and rotation rates of a moving object within the air required to follow a particular trajectory [1].

A laser-guided missile could be a V-1 that strikes its target with incredible precision employing a laser for tracking its target; the target is often stationary or moving.

A guidance device consists of three sections: Input section, Processing unit, and Output section. The input section includes sensors, data, radio and satellite links, and other information sources. The processing unit integrates this data and determines the specified actions (if any) that are to be taken for achieving a correct heading. The processing unit is directly fed to the outputs which directly affects the system's performance. The output section controls velocity by interacting with devices like motors for thrust or by actuating ailerons, rudders altering directly. Components in the system include; targeting or guidance system, flight system, engine, and warhead.

During the first 1950s, the federal government did not want to be over-dependant on the German team in order that they tried to insulate themselves for military applications. One of the people who were "developed" domestically was missile guidance. MIT Instrumentation Lab, chosen by the Air Force, to produce a self-contained system backup in San Diego for the new inter-continental missile named Atlas.

The first missile developed by Nazi Germany in war II which was used operationally was a series of missiles. The famous ones in every of these are the V-1 buzz bomb and V-2 rocket, both of them are consisting of a mechanical autopilot keeping the missile on the wing mode along a pre-chosen route. Less well-known was a series of Anti-Ship and Anti-aircraft missiles, typically supported a straightforward direction system directed by the operator. However, these early systems were in-built small numbers [2].

II. LITERATURE SURVEY

The below table has a collection of information, research made across various countries and published in conferences related to Guidance System.

TABLE I. LIST OF GUIDANCE SYSTEMS PUBLISHED IN CO

	Year	Conference Name,	Title	Pros	cons
		Place & Author			
1	2000	11441101	D : 4 1 : C	TPI C' 11 1	
1	2008	Intl. Conf. On Control,	Design Analysis of	The final lead compensator	-
		Automation, Robotics,	Phase Lead	network has been designed	
		and Vision	Compensation for	to increase stability using	
		Hanoi, Vietnam	Typical Laser	MATLAB[15]	
		Hla Myo Tun	Guided Missile		
			Control System		
			Using MATLAB		
			Bode Plots		
2	2008	First Intl. conf. On	A Design of Data	The design in this article	-
		Intelligent networks and	fusion software	collects information by	
		Intelligent systems	system for laser	FLIR and achieves a new	
		Chengdu, China	Radar and FLIR	method of control and	
		Ke Zhang, Wei Zhang		guide with multisensory.	
				[7]	
3	2011	IE EE Shijiazhuang,	Study on image	Image Processing was a	-
		China	processing	very effective way for	
		ZHOU Zhong-Liang	technology in	improving system's	
			imaging laser	performance[8]	
			detection system		
4	2012	International	The optical system	As the projection system	Due to the size and shape
		Conference on	design of	design is closer to the	of the diffuse reflection
		Optoelectronics and	transmissive laser	actual environment, this	screen, the spot position
		microelectronics	target simulator	system can simulate the	simulation is limited only
		Changchun, China		imaging of the far-field	to a small area.[9]
		Keyan Dong		target under near-field	
				conditions.	
5	2013	Journal of the	Application of a	Compensator system design	Smaller high-frequency
		institution of engineers	complex lead	can be applied for efficient	gain of the complex lead
		India	compensation for a	system modeling and loop	compensator tends to
		Rajesh Joseph	laser-guided missile	shaping which gives better	increase the high-frequency
		Abrraham		results.	noise rejection when
					compared to the double
					lead compensator. [10]

6	2014	IEEE	Innovative flight	The software tool used for	The exact nature of the
		Melbourne, Australia	test instrumentation	3D simulation is available	correlation between the
		Roberto Sabatini	and techniques for	for both training mission	various SPD has not been
			airborne laser	planning and post-mission	identified. [11]
			systems	data analysis.	
			performance		
			analysis		
7	2017	IEEE	Applications of	This weapon when used as	As this is a directed high-
		Gurgaon, India	laser for tactical	range finders, LIDARs,	energy weapon, it requires a
		Hemani Kaushal	Military operations.	target designators, they	sufficient amount of power.
				serve as a powerful tool to	Also, during unstable
				the war-fighters.	weather conditions, these
					weapons can deflect and
					can miss the target. [12]
8	2019	Journal of systems	A Quantitative	Based on the laser	After comparing the
		engineering and	Method for	transmission model and the	simulation results of
		electronics	calculating	motion model, an algorithm	different irradiation fields,
		China	irradiation area of	was made for measurably	it was seen that the shape of
		ZHANG Jiandong,	target designator	calculating the irradiation	the reflection surface
		SHI Gouging		area of the laser target.	greatly affected the size and
					shape of the irradiation
					field. [13]
9	2020	IEEE	Modeling the	Between the mission	As the power supply is
		China	impact of high	effectiveness and the	limited it might lead to
		QIJIA YUN, YANG	energy laser weapon	subsystem design	insufficient battery
		PEI	on the mission	parameters, an SoS view of	capacity, which leads to
			effectiveness	the relationship is	system shutdown in the
			effectiveness	the relationship is established through a	system shutdown in the middle of the engagement
			effectiveness	*	

III. RELATED WORK

- 1) In 2008, Hla Myo Tun, et al explained the lead compensator, designed to increase stability using MATLAB[15]
- 2) In 2008, Ke Zhang, et al
- 3) In 2011, ZHOU Zhong Liang, et al
- 4) In 2012, Keyan Dong, et al
- 5) In 2013, Rajesh Joseph Abrraham, et al

- 6) In 2014, Roberto Sabatini, et al
- 7) In 2017, Hemani Kaushal, et al
- 8) In 2019, ZHANG Jiandong, SHI Gouging, et al
- 9) In 2020, QIJIA YUN, YANG PEI, et al

IV. METHODOLOGY

The RaspberryPi 3 model B+ is taken as an onboard computer that runs OpenCV package for image/video analisis, which in turn is fed by a camera, then the computed data is sent to PCA9685 through GPIO pins on the RaspberryPi which helps in giving control over the servos. The servos which are connected to the control surface help with steering in 3D. For producing thrust BLDC motor is connected to its Electronic Speed Controller (ESC) which takes command from Raspberry Pi and produces Constant thrust.

A. Block diagram.

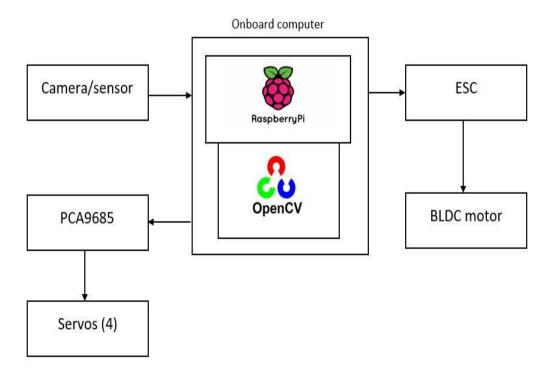


Fig.1: Block diagram of the connection of components to the missile

B. Hardware and software requirements.

• Hardware Used

Table 1: Hardware components used

S.N	Hardware Components	Specification	Description	
1	Rpi Camera	5 mega-pixel	Acts as a sensor and video feed to Rpi.	
2	Raspberry pi 3 Model B+	Broadcom BCM2837B0 64Gb ROM 1GB SDRAM	The video feed is processed in OpenCV and the output is given to the servos through PCA9685.	
3	Adafruit PCA9685 servo driver	16-channel 5v operation voltage 25MHz internal oscillator	Gives a servo-independent power supply and a smoother PWM signal.	
4	Servo motors	SG90 model 180-degree freedom of motion	Control the 'control surfaces' to maneuver in 3D.	
5	ESC (Electronic speed controller)	16.3g 7-26V and 30A max	Control's the speed of the BLDC motor.	
6	BLDC motor	2200KV	Used for producing thrust.	
7	Li-po battery	3 cell 11.1V	On-board power source.	

Software Used.

1. Thonny IDE(python 3.7)

Thonny is an Integrated Development Environment (IDE) for python which is designed and developed for beginners. Thonny IDE supports for C-Python and Micro-Python. This program works on Windows, Linux, and macOS. It is available as a binary bundle that includes a pip-installable package or python interpreter. This software is used for explaining Variables and memory by using a simplified model (name \rightarrow value) or by using a more realistic model (name \rightarrow id \rightarrow value). It can be installed using the operating system package manager on Raspberry Pi, Ubuntu, and Fedora.

FUTURE RESEARCH DIRECTIONS

A large and sufficient amount of power, most preferred in watts, is required for the design and testing of high laser weapons. These high-power transmissions cause serious challenges during field testing. Therefore, the performance of these systems has to be estimated under a controlled environment. Many experiments have come up

as a very important challenge because the third domain is now gaining development, maturity, and configuration safe, comprehensive, and cost-effective for high experiments.

Also, high-energy laser generation systems require efficient cooling mechanisms which have the capability for maintaining stable temperatures during transmission cycles.

The most important consideration when handling high-power laser transmission is minimizing fatal accident and threats to friendly sensors and equipment which is nearby.

RESULT

The laser colour is detected and tracked by the onboard computer and guides the missile towards the target on which the laser is painted. Fig-3 shows the identification and tracking of red colour lasered target as an example. This missile has the capability of striking the designated target accurately 50% of the time.

Fig 2: Missile body

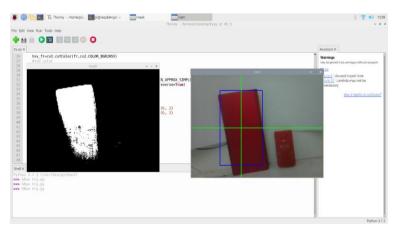


Fig-3: Output of program identifying the target.

CONCLUSION

Laser technology has shown a strong ability to transform modern-day battlefield structure, through supportive defensive and offensive applications. The lasers also serve as a powerful device for the soldier or battler when they are employed as target-designators, range-finders, LIDARs, and secure communication systems. Laser technology has made amazing progress over the past decades. This paper reviews the laser applications and projects related to strategic defence actions both on the land surface and in space. It has also covered an extensive overview of diverse laser-based projects of the last decade.

REFERENCES

- [1] https://en.wikipedia.org/wiki/Guidance_system
- [2] https://en.wikipedia.org/wiki/Missile_guidance
- [3] https://www.scienceabc.com/innovation/how-guided-missiles-work-guidance-control-system-line-of-sight-pursuit-navigation.html
- [4] http://www.madehow.com/Volume-1/Laser-Guided-Missile.html
- [5] <u>https://patents.google.com/patent/US3995792A/en</u>
- [6] <u>https://www.historylearningsite.co.uk/world-war-two/world-war-two-in-western-europe/the-v-revenge-weapons/the-v-weapons/</u>
- [7] H. J. W. Z. Z. T. Ke Zhang, et al "A Design of Data Fusion Software System for Laser Radar and FLIR," First International Conference on Intelligent Networks and Intelligent System, 2008.
- [8] Y. J. ZHOU, et al "Study on Image Processing Technology in Imaging laser detection system" *IEEE*, 2011.
- [9] K. Dong, et al "The optical system design of transmissive laser target simulator," *International Conference on Optoelectronics and Microelectronics*, 2012.
- [10] R. J. Abraham, et al "Application of a complex lead compensation for a laser-guided missile," *Journal of the institution of engineers*, 2013.
- [11] R. Sabatini, et al "Innovative Flight Test Instrumentation and techniques for airborne laser systems performance analysis" *IEEE*, 2014.
- [12] H. Kaushal, et al "Applications of Lasers for Tactical military operations" *IEEE*, 2017.
- [13] S. G. ZHANG Jiandong, et al "A quantitative method for calculating irradiation area of target designator," *Journal of Systems Engineering and Electronics*, 2019.

- [14] Y. P. QIJIA YUN, et al "Modelling the impact of high energy laser weapon on the mission effectiveness" *IEEE*, 2020.
- [16] "Lawrence Berkeley National Laboratory, "Electromagnetic Spectrum" U.S.Department of Energy National Laboratory, University of California.
- [17] Whitwam Ryan, et al "International Space Station may get laser cannon to vaporizeorbital debris", *Extreme Tech* 2015"
- [18] Perakis N, et al "Project Dragonfly: a study of interstellar travel using laser-powered light sail propulsion"