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Abstract 

 

In this paper, some new oscillation criteria are given for first order neutral 

delay differential equations with variable coefficients. Our results generalize 

and extend some of the well-known results in the literature. Some examples 

are considered to illustrate the main results. 
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1. Introduction 

In recent years, oscillation of neutral delay differential equations (or NDDEs ) has 

received great attention and has been studied extensively. It is a relatively new field 

with interesting applications from the real world. In fact, NDDEs appear in modeling 

of the problems as transformation of information, population dynamics, the networks 

containing lossless transmission lines and in the theory of automatic control [1 – 4]. 

Consider the first order NDDE of the form 

 

[ 𝑟(𝑡) (𝑥(𝑡) + 𝑢(𝑡)𝑥(𝑡 –  𝜏))]′+ v(t) x (t – σ) = 0, t ≥ t0, (1) 

 

Where 

 

u ∈ C [[t0, ∞), R], r, v ∈ C [[t0, ∞), R+], τ, σ ∈ R+. (2) 
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Let n = max{τ, σ}. By a solution of (1), we mean a function x ∈ C [[t1 – n, ∞), R] for 

some t1 ≥ t0 such that x(t) + u(t)x(t – τ) is continuously differentiable, and (1) is satisfied 

identically for t1 ≥ t0. Such a solution of (1) is said to be oscillatory if it has arbitrarily 

large zeros and nonoscillatory if it is eventually positive or eventually negative. The 

NDDE (1) is called oscillatory if all its solutions are oscillatory, otherwise it is called 

non oscillatory. 

Some more investigations such as [5 – 7] have appeared which are concerned with the 

oscillation as well as the non oscillation behaviour of NDDE (1). In fact, Zahariev and 

Bainov [8] is the first work dealing with oscillation of neutral equations. A systematic 

development of oscillation theory of NDDEs was initiated by Ladas and Sficas [9]. For 

the oscillation of (1) when r(t) = 1 and u(t) and v(t) are constants, we refer the readers 

to the articles by Gopalsamy and Zhamg [10], Zhang [11], Grammatikopoulos et al. 

[12], Sficas and Stavroulakis [13], Ladas and Schults [14]. For the oscillation of (1) 

when r(t) = 1 and u(t) is equal to a constant, we refer the readers to the papers by 

Grammatikopoulos et al. [15], Zhang [11], Gopalsamy and Zhang [10], and Saker and 

Elabbasy [16] and the references cited therein. Grammatikopoulos et al. [6], Ladas and 

Schults [14], Chuanxi and Ladas [17, 18], Kubiaczyk and Saker [19], and Karpuz and 

Ocalan [20] considered the NDDE (1) when r(t) = 1 and established some new 

oscillation results sorted by the value of the function u(t). 

For further oscillation results on the oscillatory behaviour of solutions of (1), we refer 

the readers to the monographs by Gyori and Ladas [21] and Erbe et al. [22] as well as 

the papers of Yu et al. [23], Choi and Koo [24], Ocalan [25], and Candan and Dahiya 

[26]. 

The purpose of this work is to find some sufficient conditions for the oscillation of all 

solutions of the first order NDDE (1). 

 

Remark 1: (i) When we write a functional inequality we assume that it holds for all 

sufficiently large t. 

(ii) Without loss of generality, we will deal only with the positive solutions of (1). 

In the proof of out main results, we need the following well-known lemmas which can 

be found in Chuanxi and Ladas [17], Gyori and Ladas [21], and Kulenovic et al [27]. 

 

Lemma 1: Assume that 𝜌 is a positive constant. Let g ∈ C[[t0, ∞), R+], and suppose that 

 

lim
𝑡→∞

𝑖𝑛𝑓 ∫ 𝑔(𝑠) 𝑑𝑠
𝑡

𝑡 − 𝜌
 > 

1

𝑒
. (3) 

 

Then 

(i) The delay differential inequality 

 

x′(t) + g(t) x (t − 𝜌) ≤ 0, t ≥ t0, (4) 

 

has no eventually positive solution. 
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(ii) The delay differential inequality 

 

x′(t) + g(t) x ((t − 𝜌) ≥ 0, t ≥ t0, (5) 

 

has no eventually negative solution, 

 

(iii) The advanced differential inequality 

 

x′(t) − g(t) x ((t + 𝜌) ≤ 0, t ≥ t0 (6) 

 

has no eventually positive solution, 

 

(iv) The advanced differential inequality 

 

x′(t) − g(t) x ((t + 𝜌) ≥ 0, t ≥ t0 (7) 

 

has no eventually positive solution, 

 

Lemma 3: Consider the NDDE 

 

(x(t) + u(t) x (t – τ))′ + v(t) x (t – σ) = 0, t ≥ t0, (8) 

 

where u, v, τ and σ are as in (2). Assume that 

 

∫ 𝑣(𝑠)
∞

𝑡0
ds = ∞. (9) 

 

Let x(t) be an eventually positive solution of equation and set 

 

z(t) = x(t) + u(t) x (t – τ). (10) 

 

Then the following statements are true: 

(i) z(t) is an eventually decreasing function, 

(ii) if u(t) ≤ –1 then z(t) < 0, 

(iii) if –1 ≤ u(t) ≤ 0 then z(t) > 0 and lim
𝑡→∞

𝑧(𝑡) = 0. 

 

Lemma 4: Assume that (9) holds and let x(t) be an eventually positive solution of 

NDDE 

 

[(𝑥(𝑡)  +  𝑢𝑥(𝑡 –  𝜏)]′+ v(t) x (t – σ) = 0, t ≥ t0, (11) 

 

where u≠ 1, v ∈ C[[t0, ∞), R+], and τ,σ ∈ R+. set 

 

z(t) = x(t) + ux(t – τ). (12) 

 



128 P. Sharadha and V. Dharmaiah 

 

Then 

 

(a) z(t) is a decreasing function and either 

 

lim
𝑡→∞

𝑧(𝑡) = – ∞ (13) 

 

or 

 

lim
𝑡→∞

𝑧(𝑡) = 0 (14) 

 

(b) The following statements are equivalent: 

 (i) lim
𝑡→∞

𝑧(𝑡) = – ∞ holds, 

 (ii) u < –1, 

 (𝑖𝑖𝑖) lim
𝑡→∞

𝑥(𝑡) = ∞, 

 (𝑖𝑣) 𝜔(𝑡) > 0, 𝜔′(𝑡) > 0. 
 

(c) The following statements are equivalent: 

 (i) lim
𝑡→∞

𝑧(𝑡) = 0 holds, 

 (ii) u > –1, 

 (iii) lim
𝑡→∞

𝑥(𝑡) = 0, 

 (𝑖𝑣) 𝜔(𝑡) > 0, 𝜔′(𝑡) < 0 

 

 

2. Main Results 
In this section we give some new sufficient conditions for all solutions of NDDE (1) to 

be oscillatory. 

 

Theorem 5: Assume that (2) and (9) hold, u(t) ≤ –1, τ > σ, and 

 

lim
𝑡→∞

𝑖𝑛𝑓  ∫ [
𝑣(𝑠 − 𝜏)

−𝑟(𝑠 −𝜎) 𝑢 (𝑠 − 𝜎)
]

𝑡 + 𝜏

𝑡 + 𝜎
 ds > 

1

𝑒
. (15) 

 

Then every solution of NDDE (1) is oscillatory. 

 

Proof: Assume for the sake of a contradiction, that (1) has an eventually positive 

solution x(t) > 0 for all t ≥ t0 > 0. Set 

 

z(t) = x(t) + u(t) x (t – τ), (16) 

 

then by Lemma.3 we have 

 

z(t) < 0. (17) 

 



The Oscillatory Criteria of First Order Neutral Delay Differential ... 129 

 

observe that 

 

z(t) > u(t) x (t – τ). (18) 

 

from which we find eventually 

 
1

𝑢(𝑡 + 𝜏 − 𝜎)
 v(t) z (t + τ – σ) < v(t) x (t – σ) = – (r(t) z(t))′, (19) 

 

and hence 

 

z′(t) + 
𝑟′(𝑡)

𝑟(𝑡)
 𝑧(𝑡) + 

𝑣(𝑡)

𝑟(𝑡) 𝑢(𝑡 + 𝜏 − 𝜎)
 z(t + τ – σ) < 0. (20) 

 

Set 

 

z(t) = 𝑒
− ∫ (𝑟′(𝑠)/𝑟(𝑠))𝑑𝑠

𝑡
𝑡0  𝑦(𝑡). (21) 

 

This implies that y(t) < 0. 

Substituting in (20) yields for all t ≥ t0 

 

y′(t) + 
𝑣(𝑡)

𝑟(𝑡 + 𝜏 − 𝜎) 𝑢(𝑡 + 𝜏 − 𝜎)
 y(t + τ – σ) < 0. (22) 

 

or 

 

y′(t) – [
𝑣(𝑡)

– 𝑟(𝑡 + 𝜏 − 𝜎) 𝑢(𝑡 + 𝜏 − 𝜎)
] y(t + (τ – σ)) < 0. (23) 

 

In view of (15) and Lemma 2(iii), it is impossible for (23) to have an eventually negative 

solution. The contradicts that fact that y(t) < 0 and the proof is complete. 

 

Example 6: Consider NDDE 

 

[
𝑒𝑡 + 1

𝑡 + 1
 (𝑥(𝑡) – 

𝑡 + 1

𝑡
 𝑥(𝑡 −  3) )]

′

+ et + 2 x(t – 2) = 0, t > 0. (24) 

 

Here we have 

 

u(t) = – 
𝑡 + 1

𝑡
 ≤ –1, v(t) = et + 2, (25) 

 

r(t) = 
𝑒𝑡 + 1

𝑡 + 1
, τ = 3, σ = 2. 

 

Then all the hypotheses of Theorem 5 are satisfied where 
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lim
𝑡→∞

𝑖𝑛𝑓 ∫
𝑣(𝑠 – 𝜏)

–r(s –σ) u (s – σ)
 𝑑𝑠

𝑡 + 𝜏

𝑡 + 𝜎
 = lim

𝑡→∞
𝑖𝑛𝑓 ∫ (𝑠 

𝑡 + 3

𝑡 + 2
– 1) ds 

 

= lim
𝑡→∞

𝑖𝑛𝑓 (𝑡 +  
3

2
 ) 

 

= ∞ 

 

> 
1

 𝑒 
.  (26) 

 

Hence every solution of (24) is oscillatory. 

 

Remark 7: Theorem 5 is an extent of [17, Theorem 2], [15, Theorem 7], and [21, 

Theorem 6.4.3]. 

 

Theorem 8: Assume that (2) and (9) hold, –1 ≤ u(t) ≤ 0, and 

 

lim
𝑡→∞

𝑖𝑛𝑓  ∫  
𝑣(𝑠)

𝑟(𝑠 − 𝜎)
 𝑑𝑠

𝑡 

𝑡 − 𝜎
 > 

1

𝑒
. (27) 

 

Then every solution of NDDE oscillates. 

 

Proof: Assume, for the sake of contradiction, that (1) has an eventually positive 

solution x(t) > 0 for all t ≥ t0 > 0. Set 

 

z(t) = x(t) + u(t) x (t – τ). (28) 

 

Then by Lemma 3, it follows that 

 

z(t) > 0. (29) 

 

As x(t) > z(t), it follows from (1) that 

 

(r(t) z(t))′ + v(t) z (t – σ) ≤ 0. (30) 

 

Dividing the last inequality by r(t) > 0, we obtain 

 

z′(t) + 
𝑟′(𝑡)

𝑟(𝑡)
 𝑧(𝑡) + 

𝑣(𝑡)

𝑟(𝑡)
 z(t – σ) ≤ 0. (31) 

 

Let 

 

z(t) = 𝑒
–∫ (𝑟′(𝑠)/𝑟(𝑠))𝑑𝑠

𝑡
𝑡0  y(t). (32) 

 

This implies that y(t) > 0. 
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Substitution in (31) yields for all t ≥ t0 

 

y′(t) + 
𝑣(𝑡)

𝑟(𝑡 – 𝜎)
 y(t – σ) ≤ 0, t ≥ t0. (33) 

 

In view of Lemma 2(i) and (27), it is Impossible for (33) to have an eventually positive 

solution. The contradicts the fact that y(t) > 0 and the proof is complete. 

 

Example 9: Consider the NDDE 

 

[ 
1

𝑡
 (𝑥(𝑡) – 

𝑡

𝑡 + 1
 𝑥 (𝑡 –  𝜏))]

′

+ 
1

𝑡 – (5𝜋/2)
 x (𝑡 – 

5𝜋

2
) = 0, t > 

5𝜋

2
. (34) 

 

Note that all the hypotheses of Theorem 8 are satisfied. 

 

lim
𝑡→∞

𝑖𝑛𝑓  ∫  
𝑣(𝑠)

𝑟(𝑠 – 𝜎)
 𝑑𝑠

𝑡 

𝑡 – 𝜎
 = lim

𝑡→∞
𝑖𝑛𝑓  ∫  𝑑𝑠

𝑡 

𝑡 – (5𝜋/2)
 = 

5𝜋

2
 > 

1

𝑒
. (35) 

 

Therefore every solution of (34) is oscillatory. 

 

Theorem 11: Assume that (2) holds with u(t) ≡ u ≠ ± 1, r(t) ≡ r > 0, v(t) being τ periodic, 

and 

 
1

𝑟(1 + 𝑢)
 lim
𝑡→∞

𝑖𝑛𝑓  ∫  𝑣(𝑠) 𝑑𝑠
𝑡 − 𝜏

𝑡 − 𝜎
 > 

1

𝑒
. (36) 

 

Then every solution of NDDE 

 

[r(x(s)  +  ux(t –  τ))]′ + v(t) x (t – σ) = 0, t ≥ t0, (37) 

 

is oscillatory. 

 

Proof: Assume, for the sake of contradiction, that (37) has an eventually positive 

solution x(t) > 0 for all t ≥ t0 > 0. Set 

 

z(t) = x(t) + u x(t – τ), 

 

𝜔(t) = z(t) + vz(t – τ). (38) 

 

It is easily seen, by direct substituting, that z(t) and 𝜔(t) are also solutions of (37). That 

is, 

 

r z′(t) + u rz′(t – τ) + v(t) z (t – σ) = 0, (39) 

 

r 𝜔′(t) + u r 𝜔′(t – τ) + v(t) 𝜔 (t – σ) = 0. (40) 
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by Lemma 4, z(t) is decreasing and either (13) or (14) holds. 

In either case we claim that 

 

𝜔′(t – τ) ≥ 𝜔′(t). (41) 

 

Indeed, 

 

𝜔′(t) = – 
1

𝑟
 𝑣(𝑡) 𝑧 (t – σ) 

 

≤ – 
1

𝑟
 𝑣(𝑡)𝑧 (𝑡 –  𝜎 –  𝜏) 

 

= – 
1

𝑟
 𝑣(𝑡 –  𝜏) 𝑧 (𝑡 –  𝜎 –  𝜏) 

 

= 𝜔′(t – τ). (42) 

 

Furthermore, we have by Lemma 4 that as long as u ≠ ± 1, 

 

𝜔(t) > 0. (43) 

 

Using (41) in (40) implies 

 

r(1 + u) 𝜔′(t – τ) + v(t) 𝜔 (t – σ) ≤ 0 (44) 

 

or 

 

𝜔′(t – τ) + 
1

𝑟(1 + 𝑢)
 v(t) 𝜔(t – σ ) ≤ 0. (45) 

 

Since v(t) is periodic of period τ, we find 

 

𝜔′(t) + 
1

𝑟(1 + 𝑢)
 v(t) 𝜔 (t – (σ – τ)) ≤ 0, if 1 + u > 0, (46) 

 

or 

 

𝜔′(t) – [ 
1

–𝑟(1 + 𝑢)
 ] v(t) 𝜔(t + (σ – τ)) ≥ 0, if 1 + u < 0. (47) 

 

In view of Lemma 2((i) and (iv)) and (36), it is impossible for (46) and (47) to have 

eventually positive solutions. This contradicts the fact that 𝜔(t) > 0 and the proof is 

complete. 
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Conclusion: 

We considered a non-linear Neutral delay differential equations of First order. By using 

variable coefficient we find some sufficient conditions for the oscillations and 

comparision results for some new sufficient conditions. We proved oscillatory criteria 

for NDDE, and used some results to conclude to a Theorems of its solutions are 

oscillatory. These criteria extend and improve several other results in the literature. An 

example was given to support our theory. 
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