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Abstract

In this paper, some new oscillation criteria are given for first order neutral
delay differential equations with variable coefficients. Our results generalize
and extend some of the well-known results in the literature. Some examples
are considered to illustrate the main results.
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1. Introduction

In recent years, oscillation of neutral delay differential equations (or NDDEs ) has
received great attention and has been studied extensively. It is a relatively new field
with interesting applications from the real world. In fact, NDDEs appear in modeling
of the problems as transformation of information, population dynamics, the networks
containing lossless transmission lines and in the theory of automatic control [1 — 4].
Consider the first order NDDE of the form

[7(t) (x(t) + u(®)x(t- 1))]'+Vv({t) X (t—0)=0, t>to, Q)
Where

U € C [[to, ), R], 1, v € C [[to, @), R'], 7, 0 € R". @
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Let n = max{r, c}. By a solution of (1), we mean a function x € C [[t1 — n, ), R] for
some t1 > to such that x(t) + u(t)x(t — ) is continuously differentiable, and (1) is satisfied
identically for t1 > to. Such a solution of (1) is said to be oscillatory if it has arbitrarily
large zeros and nonoscillatory if it is eventually positive or eventually negative. The
NDDE (1) is called oscillatory if all its solutions are oscillatory, otherwise it is called
non oscillatory.

Some more investigations such as [5 — 7] have appeared which are concerned with the
oscillation as well as the non oscillation behaviour of NDDE (1). In fact, Zahariev and
Bainov [8] is the first work dealing with oscillation of neutral equations. A systematic
development of oscillation theory of NDDESs was initiated by Ladas and Sficas [9]. For
the oscillation of (1) when r(t) = 1 and u(t) and v(t) are constants, we refer the readers
to the articles by Gopalsamy and Zhamg [10], Zhang [11], Grammatikopoulos et al.
[12], Sficas and Stavroulakis [13], Ladas and Schults [14]. For the oscillation of (1)
when r(t) = 1 and u(t) is equal to a constant, we refer the readers to the papers by
Grammatikopoulos et al. [15], Zhang [11], Gopalsamy and Zhang [10], and Saker and
Elabbasy [16] and the references cited therein. Grammatikopoulos et al. [6], Ladas and
Schults [14], Chuanxi and Ladas [17, 18], Kubiaczyk and Saker [19], and Karpuz and
Ocalan [20] considered the NDDE (1) when r(t) = 1 and established some new
oscillation results sorted by the value of the function u(t).

For further oscillation results on the oscillatory behaviour of solutions of (1), we refer
the readers to the monographs by Gyori and Ladas [21] and Erbe et al. [22] as well as
the papers of Yu et al. [23], Choi and Koo [24], Ocalan [25], and Candan and Dahiya
[26].

The purpose of this work is to find some sufficient conditions for the oscillation of all
solutions of the first order NDDE (1).

Remark 1: (i) When we write a functional inequality we assume that it holds for all
sufficiently large t.

(i1) Without loss of generality, we will deal only with the positive solutions of (1).

In the proof of out main results, we need the following well-known lemmas which can
be found in Chuanxi and Ladas [17], Gyori and Ladas [21], and Kulenovic et al [27].

Lemma 1: Assume that p is a positive constant. Let g € C[[to, o0), R*], and suppose that
. . t 1
lim inf [/ g(s)ds>Z, ®3)

Then
(i) The delay differential inequality

X'(t) + g(t) x (t — p) <0, t>to, 4)

has no eventually positive solution.
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(i)  The delay differential inequality

X'(t) + g(t) x (t —p) >0, t>to, (5)
has no eventually negative solution,

(iii) The advanced differential inequality

x'(t) —g®) X ((t+p) <0,t>to (6)
has no eventually positive solution,

(iv) The advanced differential inequality

x'(t) —g®) X ((t+p) >0, t>to (7
has no eventually positive solution,

Lemma 3: Consider the NDDE

X +u®)x (t—1))' +v(t)x (t—0)=0,t>to, (8)
where u, v, Tand o are as in (2). Assume that

f: v(s)ds = . 9)
Let x(t) be an eventually positive solution of equation and set

z(t) = x(t) + u(t) x (t—1). (10)
Then the following statements are true:

(i)  z(t) is an eventually decreasing function,

(if) ifu(t) <-1then z(t) <0,
(i) if =1 <u(t) <0 then z(t) > 0 and gl_)rg z(t) =0.

Lemma 4: Assume that (9) holds and let x(t) be an eventually positive solution of
NDDE

[(x(t) + ux(t- )]+ Vv({t) x(t—0)=0, t>to, (11)
where u= 1, v € C[[to, ), R*], and 1,6 € R*. set

z(t) = x(t) + ux(t — 7). 12)
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Then

(@ z(t) is a decreasing function and either

lim z(t) = - o (13)
or
lim z(£) =0 (14)

(b) The following statements are equivalent:
(i) tlim z(t) =— oo holds,
(iu<-1,
(iii) tlim x(t) =,
(iv) w(t) >0, w'(t) > 0.

(c) The following statements are equivalent:
(i) tlim z(t) = 0 holds,
(i)u>-1,
(iii) tlim x(t) =0,
(iv) w() >0,w'(t) <0

2. Main Results
In this section we give some new sufficient conditions for all solutions of NDDE (1) to
be oscillatory.

Theorem 5: Assume that (2) and (9) hold, u(t) <-1, 1> o, and

t+‘c[ v(s—1)

. . 1
tlg?o inf [, 6)] ds>-. (15)

-r(s-o)u(s-—
Then every solution of NDDE (1) is oscillatory.

Proof: Assume for the sake of a contradiction, that (1) has an eventually positive
solution x(t) > 0 for all t > to > 0. Set

z(t) = x(t) + u(t) x (t—1), (16)
then by Lemma.3 we have

z(t) < 0. (17)
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observe that
z(t) > u(t) x (t—1). (18)

from which we find eventually

s VO Z (4 T—0) < V() X (- 0) =~ (r() 2(1)’ (19)
and hence

20+ 52 2(6) + 2O 7(t+1-0) <0, (20)
Set
2(t) = (r (s)/r(s))ds y(b). (21)

This implies that y(t) < 0.
Substituting in (20) yields for all t > to

/ v(t)
Y(t)+r(t+‘r—a)u(t+r—a)y(t+r_0)<o' (22)
or

/ v(t)
y(t)_[—r(t+‘r—a)u(t+‘L’—a)] y(t+(T_G))<0' (23)

In view of (15) and Lemma 2(iii), it is impossible for (23) to have an eventually negative
solution. The contradicts that fact that y(t) < 0 and the proof is complete.

Example 6: Consider NDDE

[ (k0 - 2 xte - 3 )] e 2xt-2) =0, 10 (24)

t+1
Here we have

u(t) =— == <1, v(t) = et

(25)
et+1
r(t)=t+—1,’[:3,(5=2.

Then all the hypotheses of Theorem 5 are satisfied where
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lim l"l’lf t+71 v(s-1)

— 1 . t+3
i Jovo Semouame 4 min Jyp (51 ds

= mnf (£ + 3)

> (26)
Hence every solution of (24) is oscillatory.

Remark 7: Theorem 5 is an extent of [17, Theorem 2], [15, Theorem 7], and [21,
Theorem 6.4.3].

Theorem 8: Assume that (2) and (9) hold, —1 <u(t) <0, and

lim inf [/ % ds>2. @7)

t—oo -0 r(s—o) e

Then every solution of NDDE oscillates.

Proof: Assume, for the sake of contradiction, that (1) has an eventually positive
solution x(t) > 0 for all t > tp > 0. Set

2(t) = X(t) + u(t) x (t — 7). (28)
Then by Lemma 3, it follows that

2(t) > 0. (29)
As x(t) > z(t), it follows from (1) that

(r(t) z(t)) + v(t) z (t—0) < 0. (30)

Dividing the last inequality by r(t) > 0, we obtain

! @ @ — <
z'(t) + © z(t) + e z(t—0)<0. (31)
Let
t .
Z(t) — e_fto(r (s)/r(s))ds y(t) (32)

This implies that y(t) > 0.
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Substitution in (31) yields for all t > to
y(t)+ y(t—0)<0 t > to. (33)

In view of Lemma 2(i) and (27), it is Impossible for (33) to have an eventually positive
solution. The contradicts the fact that y(t) > 0 and the proof is complete.

Example 9: Consider the NDDE

1 t ! 1 5T\ _ 51
[? (x(t) e @- T))] e (t_ 7) =0, t>= (34)
Note that all the hypotheses of Theorem 8 are satisfied.
v(s) s . t _5m_1
minf J;., gy ds = minf f;_orpy) ds =502 (39

Therefore every solution of (34) is oscillatory.

Theorem 11: Assume that (2) holds with u(t)=u # + 1, r(t) =r> 0, v(t) being t periodic,
and

minf [{”7 v(s)ds>-. (36)

r(1+w) t—>oo
Then every solution of NDDE

[r(x(s) + ux(t- 1))] +Vv(t) X (t—0)=0,t>t1o, (37)
is oscillatory.

Proof: Assume, for the sake of contradiction, that (37) has an eventually positive
solution x(t) > 0 for all t > to > 0. Set

z(t) = x(t) +ux(t—1),
w(t) = z(t) + vz(t - 7). (38)

It is easily seen, by direct substituting, that z(t) and w(t) are also solutions of (37). That
IS,

rz'(t)turz'(t-1t)+v(t) z (t—0)=0, (39)

ro't)+urw'(t—-1) +v(t) w (t-o0)=0. (40)
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by Lemma 4, z(t) is decreasing and either (13) or (14) holds.
In either case we claim that

w'(t-1)>w'(t). (41)
Indeed,

W'(t)=— v(t) z (t- o)

S—% v()z(t-o-1)

2—% v(it-1)z(t-0-1)

= w'(t—1). (42)
Furthermore, we have by Lemma 4 that as long asu # + 1,

w(t) > 0. (43)

Using (41) in (40) implies

rl+u) w't-1)+vlt) w (t—0)<0 (44)
or
w’(t—r)+r(11+u) v(t) w(t—o)<O0. (45)

Since v(t) is periodic of period t, we find

1

W)+ s VD © - (- D)0, ifL+u>0, (46)
or
w'(t)- | _r(11+ = |V ot +©-1)=0,if1+u<0. (47)

In view of Lemma 2((i) and (iv)) and (36), it is impossible for (46) and (47) to have
eventually positive solutions. This contradicts the fact that w(t) > 0 and the proof is
complete.
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Conclusion:

We considered a non-linear Neutral delay differential equations of First order. By using
variable coefficient we find some sufficient conditions for the oscillations and
comparision results for some new sufficient conditions. We proved oscillatory criteria
for NDDE, and used some results to conclude to a Theorems of its solutions are
oscillatory. These criteria extend and improve several other results in the literature. An
example was given to support our theory.
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