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Abstract

The study of queueing systems has always been an active area of research.
Applications of queueing systems may often be found in traffic control,
manufacturing and production systems, healthcare, etc. This paper investigates
a novel notion of M/M/1 queueing systems. In our systems, we consider
serving a customer as a primary duty. During an idle period, the system may
undergo a routine repair service, or the server may perform a side task. We
consider carrying out activities during idle periods as a secondary duty. The
objective is to conduct steady-state analysis of our systems. To this end, we
model our systems as a birth-death process, and recursively solve sets of flow
balance equations to establish the steady-state distribution for the number of
customers in the system. We then determine the average numbers of
customers, and the average amounts of time spent by a customer, in system
and in queue. To support the validity of our results, we undertake a simulation
study of our systems. Simulation results strongly validate our theoretical
results.

Keywords: queueing systems, simulation, operations research, optimization.

1. INTRODUCTION AND MOTIVATION

It is common that we typically will have to wait at a bank, a fast-food restaurant, or any
other places where waiting is required for service. For the most part, we do not know
how long we must wait in the queue. To answer this question, mathematical models for
queueing systems have been developed so that this and other questions may be
answered. The study of queueing systems has been rigorously carried out since the early
twentieth century. Erlang is among the pioneer researchers in queueing theory in the
early twentieth century. Erlang [1] studies the operations of telephone systems. The
commonly used notation for queueing systems (a/b/c, where a describes the arrival
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process, b indicates the service process, and c specifies the number of servers, in
queueing systems) is first proposed by Kendall [2]. Morse [3] writes the first textbook
on the subject of queueing systems. Applications of queueing systems may be widely
found in traffic control, manufacturing and production systems, healthcare, etc.
Queueing models are often applied to study traffic flow. See, for example, [4],
Kerbache and Macgregor use an expansion method on queueing networks to investigate
into traffic control. Heidemann utilizes queueing theory to approximate the queue
length and waiting time at intersections [5-7]. [8] plans and schedules transportation
vehicle fleet in a congested traffic environment.

In manufacturing and production systems, researchers have been actively applied
queueing theory. For example, see [9-11] for the ways queueing techniques are
employed to analyze manufacturing systems. Most recently, a host of researchers
actively investigate into a variant, MX/G(a, b)/c systems, of the standard M/G/1
system. Batch arrivals and machine repairs are often imposed on these systems; hence,
results obtained from their studies are most applicable to production systems; see, for
example, [12-17].

Effective healthcare delivery and access is yet another field where queueing analysis is
commonly used. For example, Worthington employs queueing models to study waiting
times in hospitals [18], and Christie and Levary use simulation in planning the
transportation of patients to hospitals following disasters [19]. In [20], Harper and
Shahani model the utilization of beds in hospitals. On the other hand, a queueing
approach is employed to manage medical appointments and to identify good nursing
levels [21, 22]. The reference [23] may provide a further review on use of queueing
models in healthcare operations.

Researchers have most recently actively studied a number of variants of M/M/1
queueing systems. See, for example, [24], where continuous service is imposed on the
server, and [25-27] impose various restrictions on the systems involving encouraged
arrivals. On the other hand, [28, 29] study a variant of M/M/1 queueing systems with
various forms of vacation imposed on the server.

The standard M/M/1 queueing system is a system where the interarrival and service
times are independently and exponentially distributed with a single server. In this
system, the server serves customers one by one when there exist customers in the
system. The server becomes idle when there are not any customers present in the
system. When a customer arrives into the system during an idle period, the customer
enters into service immediately since there is not any customer waiting in queue.
However, during a busy period, a new customer arriving into the system does not
preempt the current active service and hence must wait in the queue for their service.
We in this paper present a novel notion of the standard M/M/1 queueing system.

We call the systems under study the M/M/1 queueing system with a secondary duty.
The considered system deems serving customers as a primary duty for the server.
However, during an idle period, the server performs a side task. Carrying out a side
activity during an idle period is considered to be a secondary duty for the server.
Specifically, during a busy period, the server provides service to customers one by one
(primary duty) as does the server in the standard M/M/1 queueing system. Upon service
completion of all customers, the server immediately starts to perform a side task
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(secondary duty) as an idle period begins. If the time it takes the server to complete the
side task is shorter than the idle period (the side task is completed before the next
customer arrives), the server becomes completely idle and must now wait to serve the
next customer arriving into the system. On the other hand, if the time it takes the server
to complete the side task is longer than the idle period (the next customer arrives into
the system before the side task is completed), a newly arriving customer does not
preempt the ongoing service of the side task and must now wait in the queue for its

service. Upon completion of the side task, the server must now immediately attend to a

waiting customer from the queue. To be sure, we assume that there is one server in our

systems, and that customers arrive into the system in accordance with a Poisson process.

We further assume that service times for the primary duty and the secondary duty are

independently and exponentially distributed with typically different rates. If the two

rates are equal, our considered systems essentially degenerate into the standard M/M/1

queueing system with a smaller effective service rate. As follows, we provide two

motivating examples that may be modeled using our systems.

1. A cashier checks out customers when there are customers waiting at the counter.
However, when all customers are checked out, the cashier may leave the counter
to work on some chores, such as cleaning or stocking. The cashier does not return
to the counter until the chores are completed.

2. A machine processes jobs when there are jobs waiting in line. When all jobs are
completed, the machine undergoes a routine repair service. The machine does not
become operational until the repair service is completed.

In this paper, we conduct the steady-state analysis of, and determine common
performance measures of the M/M/1 queueing system with a secondary duty. In
addition, we carry out simulation studies to validate our theoretical results.

The remainder of the paper is organized as follows. Section 2 describes our systems in
great details. Section 3 derives the steady-state distribution of the M/M/1 queueing
system with a secondary duty. Section 4 determines the average numbers of customers
and the average times for our systems. We then conduct a simulation study to validate
our theoretical results in Section 5. Last but not least, we offer some concluding remarks
in Section 6.

2. DESCRIPTION OF OUR SYSTEMS

This section describes the M/M/1 queueing system with a secondary duty in great
details. As is the case for the standard M/M/1 queueing system, customers arrive into
our considered systems in accordance with a Poisson process having rate equal to A.
Furthermore, service times for customers with a single server is independently,
identically, and exponentially distributed with rate equal to . That the server provides
service to customers is thought to be a primary duty for the server. After all customer
are served, the server immediately embarks on undertaking a side task as soon as an
idle period begins. We assume that service times for side tasks are independently,
identically, and exponentially distributed with rate equal to g. Carrying out a side
activity during an idle period is considered to be a secondary duty for the server. If the
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time it takes the server to complete the side task is shorter than the idle period (the side
task is completed before the next customer arrives into the system), the server becomes
completely idle and must now wait to serve the next arriving customer. On the other
hand, if the time it takes the server to complete the side task is longer than the idle
period (the next customer arrives into the system before the side task is completed), a
newly arriving customer does not preempt the ongoing service of the side task and must
now wait in the queue for its service. Upon completion of the side task, the server must
now immediately attend to a waiting customer from the queue. Most notably, we
assume that the server always immediately undertakes a side task as soon as each idle
period begins.

We model the aforementioned dynamics of our systems as a birth-death process.
Generally, we define the state of our systems to be the number of customers present in
the system in conjunction with the status of the server with respect to the secondary
duty. Specifically, we employ an ordered pair (i, j),i=0, 1, 2,...,j =0, 1, to represent
a state of the system. In a state (i, j), component i (i =0, 1, 2,...) indicates the number
of customers existing in the system, whereas component j (j = 0, 1) reveals the status
of the server: 0 means that the server does not currently undertake a side task but 1
means that the server currently undertakes a side task. In a nutshell, the component j in
a state tells us the status of the server with respect to the secondary duty. If the server
does not currently work on a secondary duty, then j = 0; however, if the server currently
takes up a secondary task, then j = 1. To be clear, state (0, 0) says that there is not any
customer residing in the system and the server is completely idle (The server does not
serve any customer since there is not any customer in the system, nor does the server
carry out any side task since the server has just completed one.). State (1, 0) represents
that there is 1 customer in the system with O customers in the queue, and that the server
currently attends to the customer (primary duty) but not to a side task (secondary duty).
Likewise, (2, 0) indicates that there are 2 customers in system with 1 in queue and 1
currently being served by the server; (3, 0) means 3 customers in system with 2 in queue
and 1 currently at service; and so forth. On the other hand, (0, 1) tells us that there is
not any customer in the system, and that the server currently undertakes a side task
(during an idle period). State (1, 1) reveals that there is 1 customer in the system but
must now wait in the queue while the server works on the side task; (2, 1) specifies that
there are 2 customers in system but both must now wait in queue while the server
attends to the side task; and so on. We now may define the state space of the M/M/1
queueing system with a secondary duty as 2= {(i,j)|1=0,1, 2,...;j =0, 1}.

Figure 1 depicts a birth-death process with relevant rates for our systems. We may see
that the system makes a transition from states (i, j)to (i+1,j),i=0,1,2,...,j=0, 1,
since customers arrive into the system according to a Poisson process of rate A. Upon
completion of service, a customer leaves the system, rendering a transition from (i, 0)
to (i—1,0),i=2,3,..., with exponential rate 2. Noticeably, the system transitions from
(1, 0) to (0, 1) with rate « in that the server has just completed serving the last customer
and now immediately taken up a side task as soon as an idle period begins. Observe
also that system states go from (i, 1) to (i, 0), i =0, 1, 2,..., as the server has just
completed its side task with exponential rate £ and now immediately started to serve a
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waiting customer if the queue is not empty. We are now in a position to derive the
steady-state distribution for our systems in Section 3.

Figure 1. A rate diagram for an M/M/1 queueing system with a secondary duty.

3. DERIVATION OF THE STEADY-STATE DISTRIBUTION

This section delves into the derivation of the steady-state distribution of the number of
customers residing in the M/M/1 queueing system with a secondary duty. To this end,
we recursively solve sets of flow balance equations. Aiding the algebraic process, we

let p = % andn = % It is imperative that p < 1, and that n < 1. The aforementioned

traffic intensity requirement is to ensure the stability of the system [30—33]. We further
let the probability that the system is in state (i, j), there are i customers in the system
and the server is in status j with respect to the secondary duty, be = (i,j),1=0, 1, 2,...,
j =0, 1. We now are ready to employ net rate flows in equilibrium to construct an
algebraic process as follows.

At state (0, 0): We have (See Figure 1.)
pr(0,1) = Am(0,0),
m(0,1) = nm(0,0). 1)
At state (0, 1): u(1,0) = B (0,1) + A(0,1),
_ (B
7(1,0) = <Z + p) 7(0,1)
= (g + p) nm(0,0), using Equation (1),
= (p + pn)m(0,0)
= p(1 +n)m(0,0). (2)

We now look at Figure 2. We make a cut, cut H, (blue horizontal dashed line) that
partitions the state space (2 into two subsets 2 = {(0. 0), (1, 0), (2, 0),...} and % =
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{(0.1), (1,1),(2,1),...} where 1 " = and 21 U 2 = Q. In equilibrium, the total
rate flow from (21 to £ equals that from (2 to (2. That is, net rate flow across the cut
equals zero. As such, we have the following.

pmr(0,1) + pm(1,1) + pr(2,1) + -+ = um(1,0)

7(0,1) + m(1,1) + m(2,1) + - = B (1,0)

B
7(0,1) + n(1,1) + w(2,1) + - = % p(1 + n)m(0,0), using Equation (2),
m(0,1) + m(1,1) + ©(2,1) + - = n(1 + n)(0,0). 3)

Figure 2. Cuts partition the state space of an M/M/1 queueing system with a secondary
duty.

We apply the same approach to partition the state space of the system according to other
cuts (red vertical dashed lines) in Figure 2. We may have infinitely many such cuts. In
the following, we demonstrate flow balance equations generated by cuts 1, 2, and 3
indicated in Figure 2.

Across cut 1:

um(1,0) = Am(0,0) + Am(0,1)

Across cut 2:
ur(2,0) = An(1,0) + A (1,1)

Across cut 3:
um(3,0) = An(2,0) + An(2,1)

SEEEE )

We next sum Equations (4) to yield
um(1,0) + um(2,0) + um(3,0) + -+ = Ar(0,0) + A (0,1) + An(1,0) + Am(1,1) +
An(2,0) + An(2,1) + -+
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u(m(1,0) + m(2,0) + 7(3,0) + ---) = A[((0,0) + (1,0) + w(2,0) + - ) +
(r(0,1) + n(1,1) + m(2,1) + )]

u(m(1,0) + m(2,0) + ©(3,0) + ---) = A(1) since total probability equals 1 [30-33],
7(1,0) + 7(2,0) + 7(3,0) + - = p. (5)

At this moment, we are ready to determine the value of m7(0,0). To see this, the
following equation reveals that

m(0,0) + p +n(1 + n)r(0,0) = ©(0,0) + (= (1,0) + n(2,0) + =(3,0) + ---) +
(m(0,1) + ©(1,1) + m(2,1) + --+), using Equations (3, 5),

m(0,0) + p + n(1 + n)m(0,0) = 1, since the sum of total probability equals 1,
Q+n(1+ n))n(O,O) =1-p

m(0,0) =

(6)

1+77+772

Having obtained the value of (0,0), we may now find the values of n(O 1) and 7(1,0).
It follows that 7(0,1) =7 1P and that m(1,0) = p(1+1n) based upon

1+n+n?’
Equations (1, 2), respectively.
To derive the remaining steady-state probabilities, we first focus our attention on states
(i,1),1=1,2,.... See Figure 1 for discussion below.
At state (1, 1):
An(0,1) = Bn(1,1) + An(1,1)

r(1,1) = %n(o,n

1++2’

1_
n(1,1) =7 (1+n) 1+n+ -, knowing that 7(0,1) =7 1+n+pnz-

At state (2, 1):
An(1,1) = pr(2,1) + An(2,1)
7(2,1) = %n(l,l)

) =) 2

1+n+n?’

At state (3, 1):
An(2,1) = Bn(3,1) + A (3,1)
7(3,1) = %n(z,n

o =0 () 22

140402’
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Repeating the above process produces the following general results.

. Log—p .
n(i,1) =1 (ﬁ) 1+11-|f)112 1=012,... O
We now proceed to determining the last set of steady-state probabilities, #(i, 0), i = 2,

3,.... To this end, we return to Equations (4). Recall that 7(0,0) = 1:7:”2 (Equation

(6)), and that ©(1,0) = p(1 + 1) 1:7:172. Equations (4) give rise to the following.
um(1,0) = An(0,0) + Am(0,1)

m(1,0) = p(n(0,0) + 7(0,1))

7(1,0) = p(1 + n) —=—, by Equations (6, 7),

1+n+n2’
_ pn(1+m) _n 1-p (1+n) B
7'[(1,0) - ['D + p(1+m)—-n (P 1+n)] 1+n+n2’ where p(1+m)—-n (P 1+17) 1

Now, look at
um(2,0) = An(1,0) + An(1,1)
m(2,0) = p((1,0) + m(1,1))

— pn(1+n) _.n n_ 1-p
—F <p * p(1+m)-7 (p 1+n) +n (1+n)> 1+n+n?’
by the above result and Equation (7),

pn(1+mn) oo +p(1+77)—77( U ) 1-p
p(L+mn) —n 1+n  p(A+m \1+n/)[1+n+n?

_ pn(1+mn) U U U 1-p
=plp+ p— +(1- 2
p(1+n)—n 1+n p(L+n)/\1+n/ ] |1+n+n
B pn(1+mn) 1/ n \? 1-p
=plpt—F————\|p—— 2
p(1+n)—n p\l+n 1+n+n
_ |2, pn@+n) [ o LZ 1-p
—[P +p(1+n)—n<p (1+n) )]1+n+n2'
Further observe that

um(3,0) = An(2,0) + An(2,1)
m(3,0) = p(n(2,0) + (2,1))

= p2 4 £naEm (o (n)? )\ _1-p
- P (p + p(1+m)-n (p (1+n) ) T (1+n) > 1+n+n?’
by the above result and Equation (7),

(o, m@+m) o, N pAEn) NV 1-p
_p<p +p(1+n)—n<p <1+n) " p(1+mn) (1+n) >>1+n+n2

=p<p+%(ﬁ—(1"7,,)2+(1—,)(1177))(1177)2))1;;@2

=p
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—p ,,+M(pz_l( n )3> 1=p
p(1+n)—n p\1+n 1+n+n?

|3, ena+m (3 n\? 1-p
- [P +p(1+7])—7] (’D (1+n) )] 1+n+n?’

It is obvious that the above process generates a repeating pattern for our last results.

n(i,O)z[pi+M<pi—(L)i)] 1P i=0,1,2 ... (8)

p(1+n)-n 1+n 1+n+n2’

We have now successfully derived the complete steady-state distribution for our
systems. Essentially, Equations (7, 8) represent the steady-state distribution on the state
space £2 of our systems. The next section seeks to determine the average numbers of
customers and the average times for our systems.

4. DERIVATION OF THE AVERAGE NUMBERS OF CUSTOMERS AND THE
AVERAGE TIMES

The aim of this section is to establish the average numbers of customers and the average
amounts of time spent by a customer in two subsections. Specifically, Subsection 4.1.
deals with the average number L of customers present in the system. The average
amount of time W a customer spends in the system is discussed as well in this
subsection. On the other hand, Subsection 4.2. handles the average number Lq of
customers residing in the queue, as well as the average amount of time Wq a customer
spends in the queue. Basically, we employ Equations (7, 8) to determine the average
numbers of customers; Little’s Law [30-33] is invoked to find the average times.

4-1. The Average Number L of Customers and the Average Time W in System
We establish the average number L of customers present in the system as follows.

L =0(r(0,0) + 7(0,1)) + 1(7(1,0) + m(1,1)) + 2(n(2,0) + =(2,1)) +
3(m(3,0) +m(3,1)) + -

1+ Nl 1- 11—
p(1+n)—n 1+7n 1+n+n? 1+n/ 1+n+n?
pn(1+1) n )\ 1-p n\ 1-p

D - () )
{lp p(1+n)—n <p 147 14+n+n? 1 1+n/ 14+n+n?

pn(1+n) 7 \3\] _1-p 7\ 1-p _
{[P el = @) vt + () it + - by Eauations

pn(1+n) n \! n\)| 1-p
= 11+—11—1(—) +1( ) +
{p p(1+n)—n<p 1+n7 n 1+n7 1+n+n?
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pn(1+1n) 2 n V)] 1-p

s 9D (o2 ) )2

{’0 +p(1+n)—n<p 1+n +an 1+n 1+77+772+
pn(1+1n) 3 n\)] 1-p

3+ o (30 3 () ) ()

{’0 +p(1+n)—n(’0 1+n + 31 1+n 1+77+772+

- {(lpl +2p% +3p3 + )

‘d

=

pn(1+mn)
p(1+n)—n

_ (1 (1"7”)1 +2 <1nTn)2 +3 (1"Tn>3 + ))
<1n (1 Z n)l + 21 (1%7)2 +3n (1T’Tnf + )}%

= {p(l +2p* +3p% +-+)

((1,01 + 2p% 4+ 3p3 + )

pn(1+n)
p(1+n)—

(1 2 () ) )
e (12 ) () 4 et

(p(l +2p' +3p% + )

_n _n
p__ Pn(+m) P T N T 1-p
(1-p)? p(1+n)—n|1-p)? (1_L)2 (1_L)2 1+n+n?
1+n 1+n
_ p pn(1+mn) p
B {(1—;))2 + p(1+m)-7n ((1—p)2 n(+ TI)) +n (1 + TI)} 1+n+n ©)

Equation (9) calculates the average number of customers in the system. In order to
determine the average amount of time a customer spends in the system, we may resort
to Little’s Law for ease of computation. Subsequently, the average time spent in the

system by a customer is W = %

4-2. The Average Number Lq of Customers and the Average Time Wq in Queue
We want to obtain the average number Lq of customers in the queue here. The average
amount of time a customer spends in the queue will subsequently be determined as well.
Ly = 0(m(0,0) + 7(0,1) + 7(1,0)) + 1(m(2,0) + 7(1,1)) +

2(n(3,0) + ©(2,1)) + 3(7(4,0) + ©(3,1)) + -
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1+ 2 1-— 1 1—
_ | g endtm pz_( U ) p +n< U ) P,
p(1+m)—n 1+7) J|1+n+92" "O+9) 1+n+n2
1+ 3 1-— 2 1—
(G ) pg_( U ) p H]( n ) P,
.0(1+77)— 1+n 1+77+772 1+n 1+77+772

pn(1+m) 7 \N\] 1-p 1\ 1-p
{[p p(1+1)- n(p _(E) )] 1+n+n2+n(m) m}-l_
by Equations (7, 8),

pn(1 +n) % 7 \) 1-p
102 +—— 2 |1 __1_( ) +1 ( ) +
{p p(1+n) - 77('0 1+7 ) 1 1+n) |1+n+n?
pen(1+m) ( n )3 ( n )2 1—p
20% —2(——) | +2 +
{ ,0(1"'77) U(p 1+7 1 1+n) |14+n+n2
3p* —3(——) | +3 +
{ ,0(1"'77) U(p 1+7 1 1+n) |14+n+n2

= {(1/02 +2p3+3p*t+-)

pn(1+mn)

- (1) +2(1WTn)3+3(1nTn>4+"'>>
() () e ) -

= {p2(1 +2p" +3p* + )

pn(1+mn)
p(1+n)—n

() (e o) <o) )

n ( n )1 ( Ul >2 1-p
+n——I(14+2(——) +3(——) + - |}-
njl_k']( 1 +7n ],+'n ]»+.n +.n2

<p2(1 +2pt +3p% + )

n 2
pr__pm+m P> () N v 1—p
1-p)? pA+n)—-n\A-p)? (1_L)2 (1_L)2 1+1n+ 72
1+7 1+

_{( e \* | en+m) (( p \?
- {(E) T oG «E) —1 )+’I a +’l)}1+,,+,, (10)
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Equation (10) returns the average number of customers waiting in queue. Based up
Little’s Law, the average amount of time a customer spends in queue is readily

. _ Lq
available, W, = ~

The next section sees a simulation study to validate our theoretical results obtained in
the preceding discussions.

5. SIMULATION RESULTS AND DISCUSSION

Section 5 provides a simulation study to validate afore-derived theoretical results. To
this end, we essentially compare theoretical values against simulated values for
accuracy.

We select a number of theoretical results for validation purposes. Specifically, we may
want to know that the fraction of time the server may spend on a primary duty in our
systems; notably, the fraction of time spent on the primary duty by the server equals p,
see Equation (5). That the server conducts a secondary duty during an idle period is an
important feature of our systems. We are in particular interested in gaining insight into
the fraction of time the server spends on the secondary duty; Equation (3) basically
returns this information. There will be time when the server is completely idle.
Therefore, the fraction of time the server being idle may be of interest as well; this is
given by 7(0, 0) (Equation (6)). In addition, we also look at the average numbers of
customers showing up in system and in queue. Finally, we examine the average
amounts of time a customer spends in system and in queue.

We prespecify both pand 7=10.25, 0.50, and 0.75 for our simulation study. Throughout
the study, 4 = 1 customer per minute is adopted. As such, ¢ and g are obtained

accordingly for the study. Recall that p = % andn = %. Hence, if p=0.25, then =4

customers per minute. As another example, if 7 =0.75, then g = %jobs per minute. We

simulate our systems in ARENA simulation package. Each independent simulation run
is administrated for 1,000,000,000 minutes. Figure 3 depicts an ARENA model for our
systems. We present and discuss simulation results in the sequel.

BB

= e

Figure 3. An ARENA model of an M/M/1 queueing system with a secondary duty.
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Table 1. Fraction of time on primary duty, secondary duty, and being idle.

pln Fraction Time on Fraction Time on Fraction Time Being
Primary Duty Secondary Duty Idle
Theoretical | Simulated | Theoretical | Simulated | Theoretical [Simulated
0.25/0.25] 0.2500 0.2500 0.1786 0.1786 0.5714 0.5714
0.50, 0.2500 0.2500 0.3214 0.3214 0.4286 0.4286
0.75 0.2500 0.2500 0.4257 0.4257 0.3243 0.3243
0.50[0.25] 0.5000 0.5000 0.1190 0.1191 0.3810 0.3810
0.50, 0.5000 0.5000 0.2143 0.2143 0.2857 0.2857
0.75 0.5000 0.5000 0.2838 0.2838 0.2162 0.2162
0.75/0.25] 0.7500 0.7500 0.0595 0.0595 0.1905 0.1905
0.50, 0.7500 0.7500 0.1071 0.1071 0.1429 0.1428
0.75 0.7500 0.7500 0.1419 0.1419 0.1081 0.1081

Table 1 contains both theoretical and simulated values for the fractions of time on a
primary duty, on a secondary duty, as well as being idle. It is obvious that simulated
values equal theoretical values for various combinations of pand 7 values.
Table 2 shows results for average numbers of customers in system and in queue. It
reveals that both theoretical and simulated values are approximately equal.

Table 2. Average numbers of customers in system and in queue.

p | n |Average Number L of Customers in| Average Number Lq of Customers
System in Queue
Theoretical Simulated Theoretical Simulated
0.25(0.25 0.3929 0.3929 0.1429 0.1429
0.50 0.5476 0.5476 0.2976 0.2976
0.75 0.7590 0.7590 0.5090 0.5090
0.50(0.25 1.0595 1.0596 0.5595 0.5596
0.50 1.2143 1.2144 0.7143 0.7144
0.75 1.4257 1.4257 0.9257 0.9257
0.75(0.25 3.0595 3.0601 2.3095 2.3101
0.50 3.2143 3.2152 2.4643 2.4652
0.75 3.4257 3.4263 2.6757 2.6763

The average amounts of time a customer spends in system and in queue are presented
on Table 3. Once again, both theoretical and simulated results are very close, as can be
seen on the table.
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Table 3. Average times in system and in queue.

p | n |Average Time W in System/Average Time Wq in Queue
Theoretical | Simulated | Theoretical | Simulated
0.250.25 0.3929 0.3929 0.1429 0.1429
0.50 0.5476 0.5476 0.2976 0.2976
0.75 0.7590 0.7590 0.5090 0.5090
0.50(0.25 1.0595 1.0596 0.5595 0.5596
0.50 1.2143 1.2144 0.7143 0.7144
0.75 1.4257 1.4258 0.9257 0.9258
0.75/0.25 3.0595 3.0601 2.3095 2.3101
0.50 3.2143 3.2152 2.4643 2.4652
0.75 3.4257 3.4263 2.6757 2.6763

The above simulation study has provided a strong support for the accuracy of our
theoretical results.

6. CONCLUSIONS

In this paper, we looked into a variant of the standard M/M/1 queueing system. In our
systems, the server may be slated to carry out a secondary duty as soon as an idle period
begins. We dubbed the considered systems M/M/1 queueing systems with a secondary
duty. We derived the steady-state distribution for our systems. The average numbers of
customers present in the system and in the queue were established as well.
Subsequently, Little’s Law was applied to obtain the average amounts of time a
customer spends in system and in queue. We conducted a simulation study to validate
our theoretical results. Our simulation results strongly supported the accuracy of our
derived results. Future work may research into such systems with non-Markovian
arrival process or nonexponential service times.
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