Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 19, Number 1 (2023), pp. 151-156
© Research India Publications
http://www.ripublication.com/gjpam.htm

Quantum Algorithm for 3-SAT Problem by Grover
Iteration with CCCNOT Gate (=Control Toffoli Gate)
on QCEngine

Toru Fujimura

Art and Physical Education area security office,
University of Tsukuba, Ibaraki-branch,
Rising Sun Security Service Co., Ltd., 1-1-1, Tennodai, Tsukuba,
Ibaraki 305-8577, Japan « E-mail: tfujimura8@gmail.com

Abstract

A quantum algorithm for the 3-SAT problem by the Grover iteration with the
CCCNOT gate (=control Toffoli gate) on the QCEngine, and its example are
reported. In this method, there are 3 literals with 2 ‘OR’s in each clause that is
used the CCCNOT gate. The times of iterations are about (z/4)(2"/m)¥?, where
n is a number of qubits, and m is a number of marked terms. This method is
simple and powerful.

Keywords: Quantum algorithm, 3-SAT problem, Grover iteration, CCCNOT
gate (=control Toffoli gate), QCEngine.

AMS subject classification: Primary 81-08; Secondary 81-10, 68Q12.

1. Introduction

The 3-SAT problem has been discussed by Cook for the complexity. [1] Quantum
computer’s example of 3-SAT problem is reported by Johnston, Harrigan, and Gimeno-
Segovia with QCEngine (free on-line quantum computer simulator). [2]

According to my advanced study, when there are 3 literals with 2 “OR”s in each clause,
one clause is able to program by one “OR” gate operator. This method is simple and
powerful.

Therefore, because the quantum algorithm for the 3-SAT problem is examined by the
Grover iteration with CCCNOT gate (=control Toffoli gate) on the QCEngine, its result
is reported.

152 Toru Fujimura

2. 3-SAT Problem

In the 3-SAT problem, it is assumed that (i) each value of n variables becomes “TRUE”
or “FALSE”, “~”is “NOT”, “V”’is “OR”, “&” is “AND?, (ii) “V”, “~”, and 3 different
variables are included in each parentheses (=clause) that are connected by “&”. If a
value of logical formula by the literals and the logical connectives is “TRUE”, it is
decided whether there is at least one combination of values of the variables or not. [1,
2]

3. Quantum Algorithm

The following conditions are assumed. (1) Each value of variables xi, X2, ..., Xn-1, and
Xn becomes “TRUE” [=1] or “FALSE” [=0]. “~” is “NOT”. “V” is “OR”. “&” is
“AND”. For example, it is assumed in this algorithm that (1 V1V 1), (1V 1V 0),and
(1VOVO0)become1,and (0V 0V O0)becomesO. (1) “V”, “~”, and 3 different variables
in X1, X2, ..., Xn-1, @nd Xn are included in each clause, and then the clauses are connected
by “&”. In these conditions, if a value of logical formula by the literals and the operators
is “TRUE”, it is searched whether there is at least one combination of values of the
variables or not. It is assumed that n is number of qubits.

First of all, query quantum registers |xi> [3 <i<n. i is an integer.] and work quantum
registers (=ancilla qubits) |wp [1 <] <u. j and u are integers. u is a necessary number
for work.] are prepared.

Step 1: Each qubit of |xi» and |w;j> is set |0>.

Step 2: The Hadamard gate H| [2-7] acts on each qubit of |xp». It changes them for
entangled states.

Step 3: Each clause is presented by [xi, |wj>, CCCNOT gate, and quantum operators.
Step 4: For |wj>, the flip is done. The one-marked-term’s rotation angle is 180 degrees
by z-axis.

Step 5: Uncomputation is done.

Step 6: For |x>, Grover-iteration is done.

Step 7: For |w;j> and |xi», the probes are done.

Step 8: Step 3 — 7 are returned by about (n/4)(2"/m)Y? times [2] [m is a number of
marked terms.].

Step 9: Each of |xi is read. The one-marked-term is obtained.

4. Example of Numerical Computation

For example at n =4, it is assumed that the one-marked-term =8, logical formula: (x: V
X2V Xa) & (~x1V X2V X3) & X1V ~X2V Xa) & (~x2V X3V Xa) & (X1 V ~X3 V Xa) & (~X1
VXxoV~x3) & (~x2V X3V ~X4) & (X1 V ~X3V ~X4) & (~x1 V ~X2V ~X3) & (~x1 V ~x2 V
~Xa), and each value of x1-4: X1 =x2 =x3 =0, X4 =1, and work qubits =u =10.

An example of program on the QCEngine is the following.

10 var query_qubits =4;

20 var work_qubits =10;

30 qc.reset(query_qubits + work_qubits);

40 var query =gint.new(query_qubits, 'query’);

Quantum Algorithm for 3-SAT Problem by Grover Iteration with... 153

50 var work =gint.new(work_qubits, 'work’);

60 qc.label('s 97);

70 query.write(0);

80 query.hadamard();

90 qc.label(");

100 qc.label('s w");

110 work.write(0);

120 var query8 =8;

130 var work0 =0;

140 var number_of _iterations =4;

150 for (var i =0; i < number_of _iterations; ++i)

160 {

170 qc.label('Gate');

180 qc.not(query.bits(0x1)|query.bits(0x2)|query.bits(0x8));

190 qc.cnot(work.bits(0x1), query.bits(0x1)|query.bits(0x2)|query.bits(0x8));
200 gc.not(query.bits(0x1)|query.bits(0x2)|query.bits(0x8)|work.bits(0x1));
210 qc.not(query.bits(0x2)|query.bits(0x4));

220 gc.cnot(work.bits(0x2), query.bits(0x1)|query.bits(0x2)|query.bits(0x4));
230 gc.not(query.bits(0x2)|query.bits(0x4)|work.bits(0x2));

240 gc.not(query.bits(0x1)|query.bits(0x8));

250 gc.cnot(work.bits(0x4), query.bits(0x1)|query.bits(0x2)|query.bits(0x8));
260 gc.not(query.bits(0x1)|query.bits(0x8)|work.bits(0x4));

270 gc.not(query.bits(0x4)|query.bits(0x8));

280 gc.cnot(work.bits(0x8), query.bits(0x2)|query.bits(0x4)|query.bits(0x8));
290 gc.not(query.bits(0x4)|query.bits(0x8)|work.bits(0x8));

300 gc.not(query.bits(0x1)|query.bits(0x8));

310 gc.cnot(work.bits(0x10), query.bits(0x1)|query.bits(0x4)|query.bits(0x8));
320 gc.not(query.bits(0x1)|query.bits(0x8)|work.bits(0x10));

330 qgc.not(query.bits(0x2));

340 gc.cnot(work.bits(0x20), query.bits(0x1)|query.bits(0x2)|query.bits(0x4));
350 gc.not(query.bits(0x2)|work.bits(0x20));

360 gc.not(query.bits(0x4));

370 gc.cnot(work.bits(0x40), query.bits(0x2)|query.bits(0x4)|query.bits(0x8));
380 gc.not(query.bits(0x4)|work.bits(0x40));

390 qgc.not(query.bits(0x1));

400 gc.cnot(work.bits(0x80), query.bits(0x1)|query.bits(0x4)|query.bits(0x8));
410 gc.not(query.bits(0x1)|work.bits(0x80));

420 gc.cnot(work.bits(0x100), query.bits(Ox1)|query.bits(0x2)|query.bits(0x4));
430 gc.not(work.bits(0x100));

440 gc.cnot(work.bits(0x200), query.bits(0x1)|query.bits(0x2)|query.bits(0x8));
450 gc.not(work.bits(0x200));

460 qc.label('Flip");

470 work.cphase(180, 0x1|0x2|0x4|0x8|0x10|0x20|0x40|0x80|0x100]|0x200);
480 qc.label('Uncompute’);

490 gc.not(work.bits(0x200));

154 Toru Fujimura

500 gc.cnot(work.bits(0x200), query.bits(0x1)|query.bits(0x2)|query.bits(0x8));
510 gc.not(work.bits(0x100));

520 gc.cnot(work.bits(0x100), query.bits(0x1)|query.bits(0x2)|query.bits(0x4));
530 gc.not(query.bits(0x1)|work.bits(0x80));

540 gc.cnot(work.bits(0x80), query.bits(0x1)|query.bits(0x4)|query.bits(0x8));
550 gc.not(query.bits(0x1));

560 gc.not(query.bits(0x4)|work.bits(0x40));

570 gc.cnot(work.bits(0x40), query.bits(0x2)|query.bits(0x4)|query.bits(0x8));
580 gc.not(query.bits(0x4));

590 gc.not(query.bits(0x2)|work.bits(0x20));

600 qgc.cnot(work.bits(0x20), query.bits(0x1)|query.bits(0x2)|query.bits(0x4));
610 gc.not(query.bits(0x2));

620 gc.not(query.bits(0x1)|query.bits(0x8)|work.bits(0x10));

630 gc.cnot(work.bits(0x10), query.bits(0x1)|query.bits(0x4)|query.bits(0x8));
640 gc.not(query.bits(0x1)|query.bits(0x8));

650 gc.not(query.bits(0x4)|query.bits(0x8)|work.bits(0x8));

660 gc.cnot(work.bits(0x8), query.bits(0x2)|query.bits(0x4)|query.bits(0x8));
670 gc.not(query.bits(0x4)|query.bits(0x8));

680 gc.not(query.bits(0x1)|query.bits(0x8)|work.bits(0x4));

690 gc.cnot(work.bits(0x4), query.bits(0x1)|query.bits(0x2)|query.bits(0x8));
700 gc.not(query.bits(0x1)|query.bits(0x8));

710 gc.not(query.bits(0x2)|query.bits(0x4)|work.bits(0x2));

720 qc.cnot(work.bits(0x2), query.bits(0x1)|query.bits(0x2)|query.bits(0x4));
730 gc.not(query.bits(0x2)|query.bits(0x4));

740 gc.not(query.bits(0x1)|query.bits(0x2)|query.bits(0x8)|work.bits(0x1));
750 gc.cnot(work.bits(0x1), query.bits(0x1)|query.bits(0x2)|query.bits(0x8));
760 gc.not(query.bits(0x1)|query.bits(0x2)|query.bits(0x8));

770 gc.label('Grover');

780 query.hadamard();

790 query.not();

800 query.cphase(180);

810 query.not();

820 query.hadamard();

830 var prob0 =0;

840 prob0 +=work.peekProbability(work0);

850 // Print output work-Probs

860 gc.print(' Prob_workO0: ' + prob0);

870 var prob8 =0;

880 prob8 +=query.peekProbability(query8);

890 // Print output query-Probs

900 gc.print(' Prob_query8: ' + prob8);

910}

920 //read

930 qgc.label('Rq";

940 var b2 =query.read();

Quantum Algorithm for 3-SAT Problem by Grover Iteration with... 155

950 // Print output result

960 gc.print(' Read query ="' + b2 +.");

970 //lend

When this program is copied on Programming Quantum Computers https: //orelly-qgc.
github. io/# [free on-line quantum computation simulator QCEngine] [2], you can run
it. [Caution!: Please delate the line numbers.]

A result of this program is the following, where T is the time of Grover iterations.

The probe value of |wj» =0: 1.0000 [T =1 — 4].

The probe value of |xi =8: T =1; 0.4727, T =2; 0.9084, T =3; 0.9613, T =4, 0.5817.
The read of |x =8.

Therefore, the best times of Grover iterations are 3 for n =4.

5. Discussion

In this time, when each clause includes 3 literals with 2 “OR”s, (for example) the
program is qc. not (query. bits (Ox1)| query. bits (0x2)| query. bits (0x4)); — gc. cnot
(work. bits (0x1), query. bits (0x1)| query. bits (0x2)| query. bits (0x4)); — gc. not
(query. bits (0x1)| query. bits (0x2)| query. bits (0x4)| work. bits (0x1));.

If each clause includes k literals with (k-1) “OR”s [k > 3. k is an integer.], (for example)
the program is gc. not(query. bits (0x1)| query. bits (0x2)| ... | query. bits (Ox[address
number of qubit for k-th literal])); — qc. cnot (work. bits (0x1), query. bits (0x1)| query.
bits (0x2)| ... | query. bits (Ox[address number of qubit for k-th literal])); — qgc. not
(query. bits (0x1)| query. bits (0x2)| ... | query. bits (Ox[address number of qubit for k-
th literal])| work. bits (0x1));.

6. Summary

When each clause includes 3 literals with 2 ”OR”s, simple program that includes
CCCNOT gate (=control Toffoli gate) is done, and the times of Grover iterations are
about (1/4)(2"/m)*2 [n is a number of query qubits, and m is a number of marked terms.].
This method is simple and powerful.

| will apply this method for other problems.

References

[1] Cook, S. A, 1971, “The complexity of theorem proving procedures, > Proc. 3rd
Annu. ACM Symp. Theory of Computing, pp.151-158

[21 Johnston, E.R., Harrigan, N., and Gimeno-Segovia, M., 2019, Programing
Quantum Computers, O’Reilly, ISBN 978-1-492-03968-6.

[3] Takeuchi, S., 2005, Ryoshi Konpyuta (Quantum Computer), Kodansha, Tokyo,
Japan [in Japanese].

[4] Grover, L. K., 1996, “A fast quantum mechanical algorithm for database search,
” Proc. 28th Annu. ACM Symp. Theory of Computing, pp.212-219.

156 Toru Fujimura

[5] Grover, L. K., 1998, “A framework for fast quantum mechanical algorithms, ”
Proc. 30th Annu. ACM Symp. Theory of Computing, pp.53-62.

[6] Fujimura, T., 2023, “Quantum algorithm for knapsack problem by usual Grover
iteration with z-axis-rotation (180 degrees) on QCEngine, ” Glob. J. Pure Appl.
Math., 19, 23-29.

[71 Miyano, K., and Furusawa, A., 2008, Ryoshi Konpyuta Nyumon (An Introduction
to Quantum Computation), Nipponhyoronsha, Tokyo, Japan [in Japanese].

