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Abstract

In this paper, we consider a mixed boundary value problem for the stationary Kirchhoft-
type equation containing p(-)-Laplacian. More precisely, we are concerned with the
problem with the Dirichlet condition on a part of the boundary and the Steklov boundary
condition on an another part of the boundary. We show the existence of at least three weak
solutions under some hypotheses on given functions and the values of parameters, applying
the Ricceri theorem.
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1. INTRODUCTION
In this paper, we consider the following Kirchhoff-type problem

=M (@ (w))div [Sy(z, [Vu(2)]?) Vu(@)] = Mo(z, u(@)) + pfi(z, u(z)) inQ,

u(z) =0 onTy, (1.1)
M (@ (u)Si(z, [Vu(z) ) ga(2) = Ago(, u(x)) + pgi(z, u()) on I'y.

Here 2 is a bounded domain of R? (d > 2) with a Lipschitz-continuous (C%! for short)
boundary I" satisfying that

I'; and I', are disjoint open subsets of I such that Ty UTy = ' and I'; # 0, (1.2)
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and the vector field n denotes the unit, outer, normal vector to I'. The function
S(z,t) is a Carathéodory function on 2 x [0, co) satisfying some structure conditions
associated with an anisotropic exponent function p(z) and S; = 0S/0t. Then the
operator u — div [S;(z, |Vu(z)|?)Vu(z)] is more general than the p(-)-Laplacian
Apyu(z) = div [[Vu(z)[P®~2Vu(z)]. This generality brings about difficulties and
requires some conditions. The function M = M/(s) defined in [0, c0) satisfies the
following condition (M).

(M) M : [0,00) — [0,00) is a monotone increasing and continuously differentiable
(C! for short) function, and there exist 0 < my < m; < oo and « > 1 such that

mos® ! < M(s) < mys* ! forall s > 0.

Furthermore, the function ®(u) is defined by
1
B(u) = / S(z, |Vu()|?)dz. (1.3)
Q

Thus we impose the mixed boundary conditions, that is, the Dirichlet condition on I'y
and the Steklov condition on I's. The givendata f; : @ x R - Randg; : I'x; x R - R
for 7 = 0, 1 are Carathéodory functions, and )\, i are real parameters. The first equation
in (1.1) is non-local in the sense that the equation is not a pointwise identity according
to the term M (P (u)).

The study of differential equations with p(-)-growth conditions is a very interesting
topic recently. Studying such problem stimulated its application in mathematical
physics, in particular, in elastic mechanics (Zhikov [35]), in electrorheological fluids
(Diening [15], Halsey [20], Mihailescu and Radulescu [26], RuZicka [28]).

For physical motivation to the problem (1.1), we consider the case where I' = I'; and
p(z) = 2. Then the equation

M(HVuHiz(Q))Au(x) = f(z,u(x)) (1.4)

is the Kirchhoff equation with the Dirichlet boundary condition, which arises in
nonlinear vibration, namely

Uy — M(||Vu||ig(m)Au = f(z,u) inQ x (0,7,
u=20 onI'x (0,7), (1.5)
u(z,0) = ug(x), w(z,0) = uy(x).

Equation (1.4) is the stationary counterpart of (1.5). Such a hyperbolic equation is a
general version of the Kirchhoff equation
2
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presented by Kirchhoff [24]. This equation extends the classical d’Alembert wave
equation by considering the effect of the changes in the length of the strings during
the vibrations, where L, h, E/, p and p, are constants.

Over the last two decades, there are many articles on the existence of weak solutions
for the Dirichlet or the Steklov boundary condition, (for example, see Arosio and
Pannizi [9], Cavalcante and Cavalcante [11], Corréa and Figueiredo [13], D’ Ancona
and Spagnolo [14], He and Zou, [21], Yiicedag [31, 32], Alessa [1], Ali [2], Hsini et al.
[22], Avci [10], Khiddi and Sbai [23]).

However, since we can not find a paper associate with the problem with the mixed
boundary condition in variable exponent Sobolev space as in (1.1). We are convinced
of the reason for existence of this paper.

Under some assumptions on f;, g; (i = 0, 1) and parameters A and y in (1.1), we show
the existence of at least three weak solutions using at least three critical points theorem
of Ricceri [27] associated with corresponding to the energy functional. Here functions
f1 and g; represent perturbation terms.

The paper is organized as follows. Section 2 consists of three subsections. In
Subsection 2.1, we recall some results on variable exponent Lebesgue-Sobolev spaces.
In Subsection 2.2, we introduce a Carathéodory function S(z, t) satisfying the structure
conditions and some properties. In Subsection 2.3, we consider the known properties of
the associate functionals. Section 3 is devoted to the setting of problem (1.1) rigorously
and give a main theorem (Theorem 3.2) and its corollary (Corollary 3.3) on the existence
of at least three weak solutions. The proofs of Theorem 3.2 and its Corollary 3.3 are
given in Section 4.

2. PRELIMINARIES

Let 2 be a bounded domain in R¢ (d > 2) with a C%!-boundary I. Moreover, we
assume that I" satisfies (1.2).

Throughout this paper, we only consider vector spaces of real valued functions over
R. For any space B, we denote B? by the boldface character B. Hereafter, we
use this character to denote vectors and vector-valued functions, and we denote the
standard inner product of vectors @ = (ay,...,aq) and b = (by,...,by) in R? by
a-b=>"" ab; and |a| = (a- a)"/? Furthermore, we denote the dual space of B by
B* and the duality bracket by (-, -) g+ p.

2.1. Variable exponent Lebesgue and Sobolev spaces

In this subsection, we recall some well-known results on variable exponent Lebesgue-
Sobolev spaces. See Diening et al. [16], Fan and Zhang [17], Kov4c€ik and Réacosnik
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[25] and references therein for more detail. Throughout this paper, let {2 be a bounded
domain in R? with a C%!-boundary I" and 2 is locally on the same side of I". Define
P(2) ={p:Q — [1,00); pis a measurable function}. Define

pT =esssupp(x) and p~ = ess glfp(.ili).
e

ISy

For any measurable function u on €2, a modular p,.) = p,(.) o is defined by

Pp() (U / Ju(z) [P

The variable exponent Lebesgue space is defined by
LPO(Q) = {u;u : Q — R is a measurable function satisfying p,((u) < oo}

equipped with the Luxemburg norm

. u
1wl o) () = inf {)\ > 05 ppy <X> < 1} .
Then LP0) () is a Banach space. We also define, for any integer m > 0,
Wwmp() (Q )—{UGLp ( ): 0%u € PO () for |a| < m},

where a = (ag,...,qq) is a multi-index, |a| = 2?21 a;, 0% = O --- 03" and
0; = 0/0x;, endowed with the norm

[ullwmser ) = Z [0%ul| Lo (@) -

|a|<m

Of course, WP (Q) = LP0)(Q)). Define

W PO(Q) = the closure of the set of W()(Q)-functions

with compact supports in €.

The following three propositions are well known (see Fan et al. [19], Wei and Chen
[29], Fan and Zhao [18], Zhao et al. [34], Yiicedag [30]).

Proposition 2.1. Let p € P(Q) and let u,u, € LP")(Q) (n =1,2,...). Then we have
) lull ey < L(=1,> 1) <= ppy(u) < 1(=1,>1).

i) [[ull ooy > 1= [l 0y < 2ot (1) < el

(

(

(i) [ull poer@y < 1= [l < Por () < Nl g

(iv) limy oo [[tn — ull oy (@) = 0 == limy o0 pp() (U — u) = 0.
(

V) [[tnl ooy @) = 00 as n — 00 <= py()(un) — 00 asn — oc.
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The following proposition is a generalized Holder inequality.

Proposition 2.2. Let p € P, (2), where

P ={pePQ);l<p <p"<oo}
(i) For any € > 0, there exists a constant C(¢) > 0 such that

< epp(y (1) + C (&) ppy (v) for all u € LPY(Q) and v € LF O (Q).

/Qu(x)v(x)dx

(ii) For any u € LP)(Q) and v € L") (Q), we have

1 1
[ el < (= + o ) Relzsoollollvig < 2o oo

Here and from now on, p'(-) is the conjugate exponent of p(-), that is, ﬁ + Iﬁz) =1

For p € P(£2), define

dp(z)
p* (ZE) — dfp(z) lfp(l') < d7
00 if p(x) > d.

Proposition 2.3. Let Q) be a bounded domain with C*'-boundary and let p € P, (Q)
and m > 0 be an integer. Then we have the following:

(i) The spaces LPY)(Q)) and W™ P0)(Q) are separable, reflexive and uniformly convex
Banach spaces.

(ii) If q(-) € P4 (Q) and satisfies q(x) < p(x) for all x € Q, then W™P0)(Q) —
Wma0)(Q), where < means that the embedding is continuous.

(ili) If q(z) € P4 (Q) satisfies that q(z) < p*(x) for all x € Q, then the embedding
WLP(Q) — L1O)(Q) is compact.

We say that p € P(£) belongs to P°8(€2) if p has the log-Holder continuity in €2, that
is, p : 2 — R satisfies that there exists a constant Ci,e(p) > 0 such that

Clog(p)

— < for all Q.
Ip(z) =2yl < logle + 1/[z—yl) Y€
We also write P'%5(Q) = {p € P¢(Q);1 < p~ < pT < o0}.

Proposition 2.4. If p € P2(Q) and m > 0 is an integer, then D(Q) := C5°(Q) is
dense in Wgﬁb’p(')(Q).
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For the proof, see [16, Corollary 11.2.4].

Next we consider the trace. Let 2 be a domain of R? with a C%!-boundary I" and
p € P4 (Q). Since W0 (Q) ¢ Wb (Q), the trace y(u) = u}r to ' of any function u
in W1?0)(Q) is well defined as a function in L _(T"). We define

loc
Te(WO(Q)) = (TeWPO)(T) = {f; f is the trace to T of a function F € W) (Q)}
equipped with the norm

1l ety oy = WEL sy F € WHO(Q) satisfying F| = £}

for f € (TrW1P0))(T), where the infimum can be achieved. Then (TrIW1P0))(T) is a
Banach space. More precisely, see [16, Chapter 12]. In the later we also write F' ‘r:
by F' = g on I'. Moreover, we denote

(TeWPONTy) = {f|.; f € (WO (D)} fori = 1,2
equipped with the norm
191l ooy = WELLE | ooy my: £ € (TeWPO)(T) satisfying f‘pi: g},

where the infimum can also be achieved, so for any g € (TrWW'P0))(T';), there exists
F € WH0O(Q) such that F|. = g and || F|ly1.00(0) = 9]l mewroor,)-

Letq € P.(I") := {q € P(I'); ¢~ > 1} and denote the surface measure on I" induced
from the Lebesgue measure dx on () by do. We define

L) = {u; u : I' = R is a measurable function with respect to do

satisfying /]u(x)|q<:”)da < oo}
r

q(=)
do <1,

z)

and the norm is defined by

. Uu
I

and we also define a modular on L?")(T") by

/ ]u ‘q(r

Proposition 2.5. We have the following properties.
. - +
(1) ||U||Lq<~)(r) > 1= ||“”qu<-> (I) < Pq(-)vf(u) < HquLq<~> )

(i) lfull ooy < 1= allfoer gy < Patrr(®) < llullfyey gy
) — (™)
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Proposition 2.6. Let Q) be a bounded domain with a C*'-boundary T and let p €
POEQ). If f € (TeWPOYT), then f € LPO(T) and there exists a constant C' > 0
such that

”fHLP(')(F) < CHfH(%WLp(»))(F)-

In particular, if f € (TeW'O)D), then f € LPO(Ty) and ||f]l Loy
CHfH(TrWLPH)(F)-

For p € P (), define

(d=Dp(@)
pa(fﬂ) — d—p(x) lfp(l') < d7
00 if p(z) > d.

Proposition 2.7. Let p € P, (). Then if q(z) € P(Q) satisfies q(x) < p°(z) for
all v € T, then the trace mapping W?0) (Q) — LiC)/(T) is well defined and compact.
In particular, the trace mapping W*0)(Q) — LPU)(T') is compact and there exists a
constant C' > 0 such that

[ull Lotr 0y < Cllullwrvo @) for uw € Wl’p(')(Q)-
Define a basic space of this paper by
X={vew”(Q)v=00nT,}. (2.1)
Then it is clear to see that X is a closed subspace of W'P()(Q), so X is a reflexive and

separable Banach space. We show the following Poincaré type inequality (cf. Ciarlet
and Dinca [12]).

Lemma 2.8. Ler p € P}fg(ﬂ). Then there exists a constant C' = C(2,d, p) > 0 such
that

1wl Loy ) < CHVuHLp(.)(Q)for allu € X.
In particular, |V ul| o) o) is equivalent to ||ul|y1.p0) (o) for u € X.

For the direct proof, see Aramaki [5, Lemma 2.5].

Thus we can define the norm on X so that
||U||X = HVUHLP(-)(Q) forv € X> 2.2)

which is equivalent to [v||y1.() () from Lemma 2.8.
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2.2. A Carathéodory function

Let p € P'%%(Q) be fixed. Let S(,t) be a Carathéodory function on Q x [0, c0) and
assume that for a.e. = € Q, S(z,t) € C?*((0,00)) N C([0, 00)) satisfies the following
structure conditions: there exist positive constants 0 < s, < s* < oo such that for a.e.
x €}

S(z,0) = 0 and 5,tP@=2/2 < §,(z,1) < s*tP@=2/2 for t > 0. (2.3a)
s, P22 < G (1) + 2t Sy (x,1) < s tP@=2/2 for t > 0. (2.3b)
Su(z,t) < 0when 1 < p(x) < 2and Sy (x,t) > 0 when p(z) > 2 fort > 0, (2.3c)

where S; = 9S/0t and Sy; = 92S/0t%. We note that from (2.3a), we have

2 2
— 5, P2 < Sz, 1) < ——5*tP@/2 for t > 0. (2.4)
p(z) p(x)

We introduce two examples.

Example 2.9. (i) When S(z,t) = v(z);5t"*)/?, where v is a measurable function in
Q) satisfying 0 < v, < v(z) < v* < oo for a.e. in (2, the function S(z,t) satisfies
(2.3a)-(2.3¢). If v(x) = 1, this example corresponds to the p(z)-Laplacian.

(i1) As an another example, we can take

ae Yt +a fort >0,
g(t) = _
a fort =0,

where a > 0 is a constant. Then we can see that S(z,t) = 1/(x)g(t)yﬁﬂ”(@)/2 satisfies
(2.3a)-(2.3¢) if p(z) > 2 for all 2 € Q, (cf. Aramaki [4]).

We have the following estimate of S;.

Lemma 2.10. Under the hypotheses (2.3a)-(2.3c), there exists a constant ¢ > 0
depending only on s, and p* such that for any a,b € R,

(Si(z,lal*)a — Si(z, [b*)b) - (a — b)

S cla — b[P®) when p(z) > 2,
~ | c(la| + |b))P@2la — b> when 1 < p(z) < 2.

For the proof, see Aramaki [3, Lemma 3.6].
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2.3. The properties of the functional ¢, J and K

Proposition 2.11. The functional ® on X defined by (1.3) has the following properties.
(i) ® € CY(X,R).

(ii) The functional ® is sequentially weakly lower semicontinuous, coercive on X, that

is,

D (u)

im =
Jullx—o0 [|ul|x
and bounded on every bounded subset of X.

(i) ® € Wy, that is, if u, — u weakly in X and liminf,_,. ®(u,) < ®(u), then
{u,} has a subsequence converging to u strongly in X.
(iv) The Fréchet derivative @' of ® is strictly monotone on X, bounded on every

bounded subset of X and coercive in the sense that

i (P, W x

lulx—oe Jullx
(v) @ is of (S )-type, that is, u,, — u weakly in X and

lim Sup<q)/(un)7 Up — u>X*,X S 0
n—00

imply u,, — u strongly in X.

(vi) @' : X — X* is a homeomorphism.

For the proof, see [8, Proposition 3.2, 3.3] and Aramaki [7, 6, 5].
From now on we suppose the following conditions. For: = 0, 1,
(f;) A Carathéodory function f; : Q x R — R satisfies

@@=l foraez € Qandallt € R,

|fi(z,t)] < Cri+ Coult

where C ; and Cy; are non-negative constants and o; € Pfg (ﬁ) satisfies that o; () <
p*(z) forall z € Q.

(g;) A Carathéodory function g; : I'; x R — R satisfies

gi(2, )] < Dy + Dy|t|P @~ foraex € Tyand all t € R,

where D;; and D,; are non-negative constants and 3, € Pf & (F_Q) satisfies that
Bi(x) < p?(z) for all z € Ty.
We want to solve the problem (1.1). For this purpose, we consider the functional on X
defined by

I(u) =¥(u) — AJ(u) — pK(u) foru € X,
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where
U(u) =
J(u) =
K(u) =

Here forevery : =0, 1,
M(t)
Fi(x,1)

Gi(l‘, t)

M(s)ds fort > 0,

gi(x, s)ds for (z,t) € I'y x R.

/
_ /Ot filw, s)ds for (x,£) € 2 x R,
/

Junichi Aramaki

2.5)
(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

Proposition 2.12. Assume the f; and g; (i = 0,1) satisfy (f;) and (g;), respectively.

Then the following holds.
(i) J, K € CY(X,R).

(i) J', K" : X — X* are sequentially weakly-strongly continuous, namely, if u, — u
weakly in X, then J'(u,) — J'(u) and K'(u,,) — K'(u) strongly in X*, so J' and K’
are compact operators. Moreover, J and K are sequentially weakly continuous.

For the proof, see [8, Proposition 3.4].

3. THE MAIN THEOREM

We introduce the notion of weak solutions for the problem (1.1).

Definition 3.1. We say u € X is a weak solution of (1.1), if

M(CID(u))/QSt(x, (Vu(2)]?)Vu(r) - Vo(z)dr

=\ (/Q fo(z,u(x))v(x)dr + /112 go(x,u(a:))v(a:)da)

+ ( /Q Fi(, u(@))o(a)dz + /F 2 gl(x,u(x))v(x)da> forallv € X. (3.1)

We are in a position to state the main theorem.

Theorem 3.2. Let Q2 be a bounded domain of R¢ (d > 2) with a C*'-boundary T
satisfying (1.2), and let p € P'%%(Q) verify

apt <

@=Dp e 4.
d—p~

(3.2)
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Assume that functions fy and go satisfy (fo) and (go). Moreover, suppose that

Fo(x,t Fo(z,t
max { lim sup esssupme“f(x’ ) Jimsup E5Wac o@D Ly (55
t—0 |t|ap [t| =00 map
Go(z,t Go(z,t
max { lim sup —o o Peels 0T 1) 1 gup S Gol@ D Ly 5y
t—0 |t|op |t|—o0 |t]or
and
sup J(u) > 0. (3.5)
ueX
Set v
0 = inf { J((Z)) cu € X with J(u) > o} . (3.6)

Then for each compact interval [a,b] C (0,00), there exists v > 0 with the following
property: for every \ € [a,b] and any functions f, and g, satisfying (f1) and (g1), there
exists § > 0 such that for each p. € [0, 9], problem (1.1) has at least three weak solutions
whose norms are less than r.
Now we state a corollary of Theorem 3.2. Assume that
(f}) A Carathéodory function fj, : 2 x R — R satisfies

|fo(z,t)| < Crg + Coplt|*™ ! forae. x € Qandall t € R,

where C o and U5 o are non-negative constants, and o € Pfg(Q) satisfies

t
af < ap” and lin% —|‘];T(Z;+’ )1’ = 0 uniformly for a.e. x € 2. 3.7
— o —

gy) A Carathéodory function gy : I'y x R — R satisfies
0 y
lgo(x,t)] < Dy + DQ’O|75|’80(3”)_1 fora.e. z € I'yandall t € R,

where D, o and D, are non-negative constants, and 3, € Pf & (ﬁ) satisfies

+ - . |go(,t)]
fy < ap” and lim Tt

= 0 uniformly for a.e. x € I's. (3.8)
(h) There exists dy > 0 such that

fo(z,t) > 0 for (x,t) € Q x (0,dp] and go(x,t) > 0 for (z,t) € T'y x (0,99] (3.9)
or

fo(z,t) > 0 for (x,t) € Q x (0,80 and go(x,t) > 0 for (z,t) € 'y x (0,50] (3.10)

Then we obtain the following corollary of Theorem 3.2.

Corollary 3.3. Let 2 be a bounded domain with a C**-boundary T satisfying (1.2) and
p € P(Q) satisfy (3.2). Assume that (f3), (gh) and (h) holds. Then the conclusion of
Theorem 3.2 holds, that is, problem (1.1) has at least three weak solutions.
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4. PROOFS OF THEOREM 3.2 AND COROLLARY 3.3
In this section, we give proofs of Theorem 3.2 and Corollary 3.3.

Define an energy functional / : X — R by

I(v) =¥ (v) — AJ(v) — K(v) forv € X. 4.1)

We apply the following result of [27, Theorem 2].

Theorem 4.1. Let B be a separable, reflexive and real Banach space. Assume that a
functional V : B — R is coercive, sequentially weakly lower semi-continuous, of C'-
functional belonging to Wp, that is, if u,, — u weakly in B and liminf,,_,., ¥(u,) <
U(u), then the sequence {u,} has a subsequence converging to u strongly in B,
bounded on every bounded subset of B and the derivative V' : B — B* admits a
continuous inverse (9')~' : B* — B. Moreover, assume that J : B — R is a C'-
functional with compact derivative, and assume that V has a strictly local minimum
ug € B with V(ug) = J(ug) = 0. Finally, put

: J(u) . J(u)
a = max < 0, lim sup JJimsup —= 7, 4.2)
{ full oo (W) umsue B(u)
J
8= sup ﬂ, 4.3)
u€®~1((0,00)) (U’)

and assume that o« < 3. Then for each compact interval |a,b] C (%, i) (with the
% = 00, i = 0), there exists r > 0 with the following property: for every
A € |a,b] and every C'-functional K : B — R with compact derivative, there exists
d > 0 such that for each u € [0, 6], the equation V' (u) = A\J'(u) + pK'(u) has at least

three solutions in B whose norms are less that r.

conventions

We give a lemma and some propositions.

Lemma 4.2. Let v € X. Then we have the following properties.

(@) If lvllx > 1, then
i N
() ot

s*\ ¢ -
(p—_) Joliee.

o |3

mo Sx “ ap™
() i < v <
(i) If ||v||x < 1, then

mo Sk

« N i
—<p—+) loll” < w(w) <

o3

(0%
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Proof. From (M) and the definition of M. , we have

t
M40 < M (1) = / M(s)ds < "Lt for t > 0.
a 0 «

From (2.4),

o v(x)[P@ dx v all v(z)[P@ dz.
| SIve@Pds < o) < [ 2o vu@)pta

Thus we have

*

(%M-)(Vu))a < P(v)* < (;—Pp<.)(vv))a_

Since [|[v|lx = [[Vv| r0)(q), the conclusions of (i) and (ii) follow from Proposition

2.1. U

We give the properties of the functional W.

Proposition 4.3. The functional V has the following properties.
(i) ¥ € CHX,R) and V'(u) = M(P(u))®' (u) foru € X.

(i) W is sequentially weakly lower semicontinuous on X.

(ili) W is coercive on X, that is,

Ulu)

lullx—oo |ullx

(iv) U is bounded on every bounded subset of X.

(v) ¥ € Wy, that is, if u, — u weakly in X and liminf,_, . V(u,) < V(u), then the
sequence {u,} has a subsequence converging to u strongly in X.

Proof. (i) Since M is a C'-function on [0, 00) and ® € C''(X, R) by Proposition 2.11,
clearly ¥ € C*(X,R) and ¥'(u) = M (P (u))®'(u) foru € X.

(i1) Let u,, — u weakly in X. Since ® is sequentially weakly lower semicontinuous on
X from Proposition 2.11, we have ®(u) < liminf,,_,, ®(u,). Since M is an increasing
and continuous function, we have

—

(M o ®)(u) < M(liminf ®(u,)) = M( lim inf {®(u,)}) = lim M( inf {@(u,)}).

n—00 N—ocon>N :]\}ﬁoo
Since inf,>n{®(u,)} < P(u,,) for all m > N, we have ]\/Z(infnzN{CI)(un)}) <
M(®(uy,)) for all m > N.  Therefore, we have M (inf,>n{®P(u,)}) <

—

inf,sy M(®(u,)). Thus we see that (M o ®)(u) < liminf, o M (P (uy)).
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(i) Let [|u]| x > 1. By Lemma 4.2, U (u) = (M o ®)(u) > ™o <—+>a [ul|3P". By (M),

p
ap” > 1,s0
U (u)

11m —_—
lull x oo ||| x

(iv) Let ||u||x < C. Since ® is bounded on every bounded subset of X by Proposition
2.11, 0 < ®(u) < O for some constant C; > 0. Since M is continuous on [0, 00),
M o ®(u) is bounded.

(v) Let u,, — u weakly in X and lim infnﬁw(ﬁo D) (u,) < (]\/Zo ®)(u). Then there

exists a subsequence {u,} of {u,} such that

lim (M o ®)(uy) = liminf(M o ®)(u,) = M( lim ®(u,)) < (M o ®)(u).

n’—o0 n—00 n'/—o00

Since M is a strictly monotone increasing function on [0,00), we have
lim,, 00 P ) < ®(u). Since & € Wy from [8, Proposition 3.2 (iii)], the sequence
{u,} has a subsequence converging to u strongly in X. [l

Next, we study the properties of W',

Proposition 4.4. The Fréchet differential V' : X — X* of VU has the following
properties.

(i) The operator V' is strictly monotone.
(i) The operator V' is bounded on every bounded subset of X.

(iii) The operator V' is coercive, that is,

'’ .
lim (W'(w), u)x-x >XX:oo.
llull x —o00 Il ul|x

(iv) The operator V' is of (S, )-type, that is, if u,, — u weakly in X and
lim Sup<qj/(un)a Up — u)X*,X S 07
n—oo

then u,, — u strongly in X.

Proof. (i) Let uy, us € X and u; # us. Then we have

(‘I”(Ul) - ‘I’/(U2)a Uy — Uz) x+ X
1
= </ i\I/ "(Tup + (1 — 7)us)dr, ug — u2>
o dr XX

/ / dT O(1uy + (1 — 7)ug))S(z, |[TVuy (z) + (1 — T)V’LQ(Z‘)’Q)

X (TVui(z) + (1 = 7)Vua(z)) - (Vur(z) — Vus(z))]drda
=5+ L+ I,
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where
L = /01 M(®(ruy + (1 — 7)un) /Q Si(x, |TVur (@) + (1 = 7) Vuy(2)[?)
Vi (x) — us()*dedr
L - /OlM(cp(ml (1 _T)uz)/gzstt(x, [TVui(z) + (1 — 7) Vua(x)?)
% ((TVur (@) + (1 = 7) V() - (Vus (2) — Vus(a))) *dedr
I, = /01 M (®(rur + (1= T)uz) (@' (Tur + (1 = T)uz), ur — uz) 3 x-

Since M’ > 0 from the hypothesis (M), we see that I3 > 0. If we put Q; = {z €
Q;p(x) > 2} and Qy = {z € Q;p(z) < 2}, then we can write [; + [y = Ly + Lo + Ls,
where

L, = /01 M(®@(rus + (1 — 7)us) /Q Si(z, |TVuy (z) + (1 — 7) Vua(z)]?)
x|Vuy(z) — Vuy(z)*dedr

L, = /01 M(®(Tuy + (1 — 7)uy) /Q 28 (2, [TV uy(2) + (1 = 1) Vuy(2)[”
(Vg (2) + (1 = 7)Vuy(2)) - (Vuy (2) — Vuy(2))) ddr

L — / M@ + (1 7)) / 2{&@, 7V () + (1 = 7) Vag(a)])
28, (, [TV ur (2) + (1 — 7)Vus(z)[?)

X ((TVUl () + (1 = 7)Vus(zx)) - (Vuy(z) — VuQ(x)))Q}d:ch.

By the hypothesis (2.3¢), we have Sy (x, |[TVui(z) + (1 — 7)Vug(z)|*)dx > 0in ,
s0 Ly > 0. Since Sy (z,t) < 0 for (z,t) € Qy x [0, 00),

Sy, [TV ui (@) +(1-7) Vua(2)]?) (T Vi (2)+(1
> Sy(, |[7Vuy (2)+(1—7) Vug (2)]?) |7V (2)+(1

)V uz(2))-(Vuy ()~ Vug(z)))*
)Vu2(x)\2]Vu1 (a:)—Vug(x)|2.

—T
—T
By (2.3b), we have
1
L4l > / M(@(rur + (1 — T)us))
0
« / 5. [PV (@) + (1 — ) Va(2) "D Vs (2) — Vo (z)|2dadr
Q

Since if u; # uy in X, then Vu; # Vuy in Lp(’)(Q), so Iy + I, > 0. Hence ¥’ is
strictly monotone.
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(ii) Let ||ul]|x < C. Since ¢’ is bounded on every bounded subset of X from Proposition
2.9 (iv), we have ||®'(u)||x+ < C; for some constant C; > 0. By Proposition 2.11 (ii),
¢ is bounded on every bounded subset of X, so 0 < &(u) < C, for some constant
Cy > 0. Since M is continuous on the compact interval [0, Cs], U'(u) = M (P (u))P’ (u)
is bounded.

(iii) Let ||u||x > 1. We remember
B(u) > 2= / V()@ dz > 52 > 0,
—rtJa ot
Since M is monotone increasing and M (s) > 0 for s > 0, there exists a constant ¢ > 0
such that M (®(u)) > c for all u € X with |lu]|x > 1. Since ® is coercive from
Proposition 2.11 (ii), we have
(V'(w), wpxex _ M@)N®'(w), wpx-x o (P'(w), u)x-x

lullx lullx N lullx

— 0

as ||ul|x — oo.
(iv) Let u,, — v weakly in X and lim sup,,_, . (V' (uy,), u, — u) x+ x < 0.

If inf,, { M (®(u,))} = 0, then necessarily we have o > 1. So there exists a subsequence
{uy} of {u,} such that lim,/_,o M(P(u,)) = 0. Since M satisfies the condition (M)
and o > 1, we see that lim,_,, ®(u,s) = 0. Since ;—ipp(-)(vun/) < D(uy) — 0,
it follows from Proposition 2.1 (iv) that u,, — 0 strongly in X, so v = 0. By the
convergent principle (cf. Zeidler [33, Proposition 10.13 (i)], u,, — 0 strongly in X.

If inf,{M(®(u,)) = ¢ > 0, since u,, — u weakly in X, {u,} is bounded in X, so
M (®(u,,)) < C for some constant C' > 0. Thereby, we have

Mmmmx@wmwﬁmpxz{
Therefore, we have lim,, o (®'(uy), 4, — u) x+ x < 0. Since ¢’ is of (S, )-type from

Proposition 2.11 (v), we have u,, — u strongly in X. ]

Proposition 4.5. The operator V' : X — X* has a continuous inverse (0')~! : X* —
X.

Proof. Step 1. V' is surjective. In fact, for any f € X*, define a functional I, on X by
In(v) = ¥(v) — (f,v) x« x forv e X.
We note that /j is sequentially weakly lower semicontinuous on X. Since

mo Sk

o0) = ¥(0) = {Frobyee 2 22 (22) ol = 17l ol

(D (up), up —u)x+x i (@' (up), up —u)x«x >0
C(Q (up), up — uyx= x  if (D' (up), up — u) x+ x <O.

b



Existence of Three Weak Solutions for the Stationary Kirchhoft-type Problem... 183

for any v € X with ||v||x > 1 and ap~ > 1, I; is weakly coercive, that is, Io(v) — oo
as ||v]|x — oo. By [33, Theorem 25.D], I, has a minimum u € X, so Ij(u) = 0.
Hence V' (u) = f.

Step 2. W' is injective. This follows from the strictly monotonicity of W'.

Step 3. By Step 1 and Step 2, (¥/)~! exists. We show that (¥/)~! : X* — X is
continuous. Let f,,, f € X* and f,, — f in X*. Then there exists u,,, v € X such that
U (up) = fu, ¥'(u) = f. It suffices to show that u,, — u in X.

The sequence {u,,} is bounded in X. Indeed, if {u,} is unbounded, then there exists a
subsequence {u,} of {u,} such that ||u,/||x — oo as n’ — co. We see that

<\Il/(un’)7un’>X*,X - <fn’7un’>X*,X < ||fn|

x|t || x < Chllun | x

because since f, — f in X*, we have {f,} is bounded, so || f,||x+ < C) for some
constant C'; > 0. This contradicts the coerciveness of U’.

Since {u,,} is bounded in a reflexive Banach space X, there exists a subsequence {u,~ }
of {u,} and uy € X such that u,» — uo weakly in X as n” — oo. Now we have

/l/im <\I”(un//), Unprr — u0>X*7X = /llim <\If/(un//) — \If’(u),unu — u0>X*7X
n'’—oo n''—oo

= n,l,igloo<fn” — fyunr — ug)x+ x = 0.

Since V' is of (S, )-type from Proposition 4.4 (iv), we see that u,,» — u strongly in X.
Since U’ is continuous, V' (u,») = for — V(ug) = f = ¥ (u). Since V' is injective,
we have uy = u. Using again the convergent principle (cf. [33, Proposition 10.13 (i)]),
the full sequence u,, — u strongly in X.

]

Proof of Theorem 3.2.

We note that if w € X is a critical point of the functional I, that is, I'(u) =
U'(u) — AJ' (u) — pK'(u) = 0, then u is a weak solution of (1.1). Under the hypotheses
of Theorem 3.2, we derive the hypotheses of Theorem 4.1 with B = X defined by (2.1)
and the functionals ¥, J and K defined by (2.5), (2.6) and (2.7), respectively. Since
U(u) > 0 forall w € X, and ¥(u) = 0 if and only if u = 0, we see that ¥ has a
strictly local minimum u = 0, and by the definitions of Fj, and G, clearly J(0) = 0,
so U(0) = J(0) = 0. Moreover, the hypotheses on ¥ and .J follows from Propositions
4.3, 4.4 and 4.5.

Fix ¢ > 0. From (3.3) and (3.4), there exist p; and p; with 0 < p; < 1 < ps such that

Fo(z,t) <elt|®”  forall (z,t) € Q x [—p1, pil, (4.4)
Fo(z,t) <elt|*”  forall (z,t) € Q x (R\ [—p2, pa]) 4.5)
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and

eltf*r”  forall (x,t) € Ty x [—p1, pu], (4.6)
elt|*” forall (z,t) € Ty x (R\ [—p2, pa]). 4.7)

Thus we have
Fy(a,t) < elt|*”" forall (x,t) € Q x (R\ ([=p2, —p1] U [p1, p2]))

and
Go(x,t) < elt]*?” forall (z,t) € Ty x (R\ ([=pa, —p1] U [p1, p2])).

On the other hand, since f; and g satisfy (fj) and (go), respectively, we have

CQ() CZO

ao(z)

|Fo(z,t)| < Cuolt| + ]t|a0(‘” for (x,t) € Q@ x R

|tyao < Cplt| + —=
and
D20 B (l’ 20 B (gj
|Go(z,t)| < Diglt| + Bo( >]t| ol < Dy olt| + == 5 |t|7°*) for (z,t) € T'y x R.

0

Hence Fj is bounded on each bounded subset of {2 x R and G, is bounded on each
bounded subset of I'y x R .

From the hypothesis (3.2),

dp dp(x) -
—+ *
ap’ < < =p(x)ifp” <d
d—p- = d—p(z) )
" @1y _ (A= Dpla)
N —1)p~ —Dp(z) 5, o
ap’ < < =p(x)ifp” <d.
d—p- d —p(x) )
If we choose ¢ € R such that ap™ < q < p?(x) forall z € T'y and ap™ < ¢ < p*(7)

for all z € (), then we have
Fo(z,t) < elt|®" + ¢|t|]? forall (z,t) € @ x R (4.8)

and
Golx,t) < elt|*?” + c|t|? forall (z,t) € Ty x R (4.9)

for some constant ¢ > 0. Since the embedding mappings X — L' (Q), L?" (I';),
L3(€2), L4(I"y) are continuous, there exist positive constants C,+ and C, such that

[l ert () < Cot lulles 1l pars () < Cpt llullx,

[l Loy < Collullx and [[ul| Lar,) < Colfullx
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for all u € X. Thus, from (4.8) and (4.9), there exists a constant ¢; > 0 such that

J(u) = /Q Fo(, u())dx + / Go(x, u(z))do

T

< e/|u(x)|ap*dx+c1/ lw(z)|%dz +e | |u@)| do+c | |u(z)|%do
Q Q Iy

s
< 207 elullX + 2aCglull-
When ||lu||x < 1, it follows Proposition 2.1 that

+ +
2077 ellullX” + 2¢Clull

« +
m (2) |l

<

Since ¢ > ap™, we have

JF «
limsup 2 < 9@ (p—) cor' e, (4.10)

w0 U(u) = “mg \s. ) P

On the other hand, since the embedding mappings X — L% (Q2), L (I'y) are
continuous, there exists a constant C,,- > 0 such that

ull por- () < Cp-l[ullx and [Jul| pap- (1) < Cp-Jullx forallu € X.

Since Fj and GG are bounded on each bounded subset of {2 x R and I'; X R, respectively,
when ||u||x > 1, it follows from (4.5) and (4.7) that there exists a constant C; > 0 such
that

J(u) = Fo(x,u(x))dx Fo(x,u(x))dx
W = [ o R | (2. u(a))

{ze|u(z)[>p2}

+/ Gg(x,u(:v))da—i-/ Go(z,u(x))do
{2€Ts|u(w)|<p2} {2€Ts;|u(w)|>p2}

< 20 +2eC07 ul|¥

Hence ; N\ a
i sup 28 < 90 (p—) cor e, @.11)
lullx—oo Y(w) = @ \ s,
Since € > 0 is arbitrary, it follows from (4.10) and (4.11) that
, J(u) . J(u)
max < limsup ——, limsup ——= » < 0.
{ w0 W(U) " s W(u)

Therefore, we have &« = 0 in Theorem 4.1. By the hypothesis (3.5), we have § > 0
in (4.3). Thus all the hypotheses of Theorem 4.1 hold. If we put # = 1/4, then the
conclusion of Theorem 3.2 is verified. This completes the proof of Theorem 3.2.
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Proof of Corollary 3.3

From (3.7), for any ¢ > 0, there exists 6 > 0 such that if [t| < J, then |fy(x,t)| <
e|t|*P" 1. Hence, for |t| < &, |Fy(z,t)| < O@%|t|"‘p+, so we have

esssup,cq Fo(x,t) €

lim sup < .
£-0 [t|or* ap*

Since € > 0 is arbitrary, we have

limn sup ess SUP,cq fo(%ﬂ <0.
t—0 |t|ap

On the other hand, since f; is bounded on each bounded subset of ©2 x R from (f{),
there exists a constant C' > 0 such that | fo(z,t)] < C for (z,t) € Q x [0,1]. When
t] > 1,

[fola, )] < Cro+ gl < O + Coolt] 5,

so we have |fo(z,t)] < Cf o+ Cg,o|t|°‘3*1 for all (z,t) € Q x R. Thus |Fy(z,t)| <

+
/ ! Q / !/ 3 + —
C1olt] + Cylt|* for some constants C1 ; and C7 . Therefore, since ay < ap™,

ess sup,cq Fo(x,t) <0

lim sup t|or s 0,

[t| =00

so (3.3) holds.

Similarly, using (g;,), we can derive

€ss SUP,er, Go(, ) €ss SUP,er, Go(, )

lim su < 0and limsu - <0,
t—0 P |t|ap+ - |t\—>oop |t|ap
so (3.4) holds.

Under (h), since we can easily choose 0 # ¢ € X with 0 < ¢(z) < dy such that

/Fo(x,go(x))der/ Go(x,¢(x))do > 0,
Q

I

(3.5) holds. Thus, since all the hypotheses of Theorem 3.2 hold, the conclusion of
Corollary 3.3 follows from Theorem 3.2.
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