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Abstract

In this paper, we consider a mixed boundary value problem for the stationary Kirchhoff-
type equation containing p(·)-Laplacian. More precisely, we are concerned with the
problem with the Dirichlet condition on a part of the boundary and the Steklov boundary
condition on an another part of the boundary. We show the existence of at least three weak
solutions under some hypotheses on given functions and the values of parameters, applying
the Ricceri theorem.
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1. INTRODUCTION

In this paper, we consider the following Kirchhoff-type problem
−M(Φ(u))div [St(x, |∇u(x)|2)∇u(x)] = λf0(x, u(x)) + µf1(x, u(x)) in Ω,

u(x) = 0 on Γ1,

M(Φ(u))St(x, |∇u(x)|2) ∂u
∂n

(x) = λg0(x, u(x)) + µg1(x, u(x)) on Γ2.

(1.1)

Here Ω is a bounded domain of Rd (d ≥ 2) with a Lipschitz-continuous (C0,1 for short)
boundary Γ satisfying that

Γ1 and Γ2 are disjoint open subsets of Γ such that Γ1 ∪ Γ2 = Γ and Γ1 ̸= ∅, (1.2)
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and the vector field n denotes the unit, outer, normal vector to Γ. The function
S(x, t) is a Carathéodory function on Ω × [0,∞) satisfying some structure conditions
associated with an anisotropic exponent function p(x) and St = ∂S/∂t. Then the
operator u 7→ div [St(x, |∇u(x)|2)∇u(x)] is more general than the p(·)-Laplacian
∆p(x)u(x) = div [|∇u(x)|p(x)−2∇u(x)]. This generality brings about difficulties and
requires some conditions. The function M = M(s) defined in [0,∞) satisfies the
following condition (M).

(M) M : [0,∞) → [0,∞) is a monotone increasing and continuously differentiable
(C1 for short) function, and there exist 0 < m0 ≤ m1 < ∞ and α ≥ 1 such that

m0s
α−1 ≤ M(s) ≤ m1s

α−1 for all s ≥ 0.

Furthermore, the function Φ(u) is defined by

Φ(u) =
1

2

∫
Ω

S(x, |∇u(x)|2)dx. (1.3)

Thus we impose the mixed boundary conditions, that is, the Dirichlet condition on Γ1

and the Steklov condition on Γ2. The given data fi : Ω× R → R and gi : Γ2 × R → R
for i = 0, 1 are Carathéodory functions, and λ, µ are real parameters. The first equation
in (1.1) is non-local in the sense that the equation is not a pointwise identity according
to the term M(Φ(u)).

The study of differential equations with p(·)-growth conditions is a very interesting
topic recently. Studying such problem stimulated its application in mathematical
physics, in particular, in elastic mechanics (Zhikov [35]), in electrorheological fluids
(Diening [15], Halsey [20], Mihăilescu and Rădulescu [26], Růz̆ic̆ka [28]).

For physical motivation to the problem (1.1), we consider the case where Γ = Γ1 and
p(x) = 2. Then the equation

M(∥∇u∥2L2(Ω))∆u(x) = f(x, u(x)) (1.4)

is the Kirchhoff equation with the Dirichlet boundary condition, which arises in
nonlinear vibration, namely

utt −M(∥∇u∥2
L2(Ω)

)∆u = f(x, u) in Ω× (0, T ),

u = 0 on Γ× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x).

(1.5)

Equation (1.4) is the stationary counterpart of (1.5). Such a hyperbolic equation is a
general version of the Kirchhoff equation

ρutt −

(
ρ0
h

+
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0
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presented by Kirchhoff [24]. This equation extends the classical d’Alembert wave
equation by considering the effect of the changes in the length of the strings during
the vibrations, where L, h,E, ρ and ρ0 are constants.

Over the last two decades, there are many articles on the existence of weak solutions
for the Dirichlet or the Steklov boundary condition, (for example, see Arosio and
Pannizi [9], Cavalcante and Cavalcante [11], Corrêa and Figueiredo [13], D’Ancona
and Spagnolo [14], He and Zou, [21], Yücedaĝ [31, 32], Alessa [1], Ali [2], Hsini et al.
[22], Avci [10], Khiddi and Sbai [23]).

However, since we can not find a paper associate with the problem with the mixed
boundary condition in variable exponent Sobolev space as in (1.1). We are convinced
of the reason for existence of this paper.

Under some assumptions on fi, gi (i = 0, 1) and parameters λ and µ in (1.1), we show
the existence of at least three weak solutions using at least three critical points theorem
of Ricceri [27] associated with corresponding to the energy functional. Here functions
f1 and g1 represent perturbation terms.

The paper is organized as follows. Section 2 consists of three subsections. In
Subsection 2.1, we recall some results on variable exponent Lebesgue-Sobolev spaces.
In Subsection 2.2, we introduce a Carathéodory function S(x, t) satisfying the structure
conditions and some properties. In Subsection 2.3, we consider the known properties of
the associate functionals. Section 3 is devoted to the setting of problem (1.1) rigorously
and give a main theorem (Theorem 3.2) and its corollary (Corollary 3.3) on the existence
of at least three weak solutions. The proofs of Theorem 3.2 and its Corollary 3.3 are
given in Section 4.

2. PRELIMINARIES

Let Ω be a bounded domain in Rd (d ≥ 2) with a C0,1-boundary Γ. Moreover, we
assume that Γ satisfies (1.2).

Throughout this paper, we only consider vector spaces of real valued functions over
R. For any space B, we denote Bd by the boldface character B. Hereafter, we
use this character to denote vectors and vector-valued functions, and we denote the
standard inner product of vectors a = (a1, . . . , ad) and b = (b1, . . . , bd) in Rd by
a · b =

∑d
i=1 aibi and |a| = (a · a)1/2. Furthermore, we denote the dual space of B by

B∗ and the duality bracket by ⟨·, ·⟩B∗,B.

2.1. Variable exponent Lebesgue and Sobolev spaces

In this subsection, we recall some well-known results on variable exponent Lebesgue-
Sobolev spaces. See Diening et al. [16], Fan and Zhang [17], Kovác̆ik and Rácosnı́k
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[25] and references therein for more detail. Throughout this paper, let Ω be a bounded
domain in Rd with a C0,1-boundary Γ and Ω is locally on the same side of Γ. Define
P(Ω) = {p : Ω → [1,∞); p is a measurable function}. Define

p+ = ess sup
x∈Ω

p(x) and p− = ess inf
x∈Ω

p(x).

For any measurable function u on Ω, a modular ρp(·) = ρp(·),Ω is defined by

ρp(·)(u) =

∫
Ω

|u(x)|p(x)dx.

The variable exponent Lebesgue space is defined by

Lp(·)(Ω) = {u;u : Ω → R is a measurable function satisfying ρp(·)(u) < ∞}

equipped with the Luxemburg norm

∥u∥Lp(·)(Ω) = inf
{
λ > 0; ρp(·)

(u
λ

)
≤ 1
}
.

Then Lp(·)(Ω) is a Banach space. We also define, for any integer m ≥ 0,

Wm,p(·)(Ω) = {u ∈ Lp(·)(Ω); ∂αu ∈ Lp(·)(Ω) for |α| ≤ m},

where α = (α1, . . . , αd) is a multi-index, |α| =
∑d

i=1 αi, ∂α = ∂α1
1 · · · ∂αd

d and
∂i = ∂/∂xi, endowed with the norm

∥u∥Wm,p(·)(Ω) =
∑
|α|≤m

∥∂αu∥Lp(·)(Ω).

Of course, W 0,p(·)(Ω) = Lp(·)(Ω). Define

W
m,p(·)
0 (Ω) = the closure of the set of Wm,p(·)(Ω)-functions

with compact supports in Ω.

The following three propositions are well known (see Fan et al. [19], Wei and Chen
[29], Fan and Zhao [18], Zhao et al. [34], Yücedağ [30]).

Proposition 2.1. Let p ∈ P(Ω) and let u, un ∈ Lp(·)(Ω) (n = 1, 2, . . .). Then we have

(i) ∥u∥Lp(·)(Ω) < 1(= 1, > 1) ⇐⇒ ρp(·)(u) < 1(= 1, > 1).

(ii) ∥u∥Lp(·)(Ω) > 1 =⇒ ∥u∥p
−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥p

+

Lp(·)(Ω)
.

(iii) ∥u∥Lp(·)(Ω) < 1 =⇒ ∥u∥p
+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥p

−

Lp(·)(Ω)
.

(iv) limn→∞ ∥un − u∥Lp(·)(Ω) = 0 ⇐⇒ limn→∞ ρp(·)(un − u) = 0.

(v) ∥un∥Lp(·)(Ω) → ∞ as n → ∞ ⇐⇒ ρp(·)(un) → ∞ as n → ∞.
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The following proposition is a generalized Hölder inequality.

Proposition 2.2. Let p ∈ P+(Ω), where

P+(Ω) = {p ∈ P(Ω); 1 < p− ≤ p+ < ∞}.

(i) For any ε > 0, there exists a constant C(ε) > 0 such that∣∣∣∣∫
Ω

u(x)v(x)dx

∣∣∣∣ ≤ ερp(·)(u) + C(ε)ρp′(·)(v) for all u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω).

(ii) For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have∫
Ω

|u(x)v(x)|dx ≤
(

1

p−
+

1

(p′)−

)
∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω) ≤ 2∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω).

Here and from now on, p′(·) is the conjugate exponent of p(·), that is, 1
p(x)

+ 1
p′(x)

= 1.

For p ∈ P(Ω), define

p∗(x) =

{
dp(x)
d−p(x)

if p(x) < d,

∞ if p(x) ≥ d.

Proposition 2.3. Let Ω be a bounded domain with C0,1-boundary and let p ∈ P+(Ω)

and m ≥ 0 be an integer. Then we have the following:

(i) The spaces Lp(·)(Ω) and Wm,p(·)(Ω) are separable, reflexive and uniformly convex
Banach spaces.

(ii) If q(·) ∈ P+(Ω) and satisfies q(x) ≤ p(x) for all x ∈ Ω, then Wm,p(·)(Ω) ↪→
Wm,q(·)(Ω), where ↪→ means that the embedding is continuous.

(iii) If q(x) ∈ P+(Ω) satisfies that q(x) < p∗(x) for all x ∈ Ω, then the embedding
W 1,p(·)(Ω) ↪→ Lq(·)(Ω) is compact.

We say that p ∈ P(Ω) belongs to P log(Ω) if p has the log-Hölder continuity in Ω, that
is, p : Ω → R satisfies that there exists a constant Clog(p) > 0 such that

|p(x)− p(y)| ≤ Clog(p)

log(e+ 1/|x− y|)
for all x, y ∈ Ω.

We also write P log
+ (Ω) = {p ∈ P log(Ω); 1 < p− ≤ p+ < ∞}.

Proposition 2.4. If p ∈ P log
+ (Ω) and m ≥ 0 is an integer, then D(Ω) := C∞

0 (Ω) is
dense in W

m,p(·)
0 (Ω).
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For the proof, see [16, Corollary 11.2.4].

Next we consider the trace. Let Ω be a domain of Rd with a C0,1-boundary Γ and
p ∈ P+(Ω). Since W 1,p(·)(Ω) ⊂ W 1,1

loc (Ω), the trace γ(u) = u
∣∣
Γ

to Γ of any function u

in W 1,p(·)(Ω) is well defined as a function in L1
loc(Γ). We define

Tr(W 1,p(·)(Ω)) = (TrW 1,p(·))(Γ) = {f ; f is the trace to Γ of a function F ∈ W 1,p(·)(Ω)}

equipped with the norm

∥f∥(TrW 1,p(·))(Γ) = inf{∥F∥W 1,p(·)(Ω);F ∈ W 1,p(·)(Ω) satisfying F
∣∣
Γ
= f}

for f ∈ (TrW 1,p(·))(Γ), where the infimum can be achieved. Then (TrW 1,p(·))(Γ) is a
Banach space. More precisely, see [16, Chapter 12]. In the later we also write F

∣∣
Γ
= g

by F = g on Γ. Moreover, we denote

(TrW 1,p(·))(Γi) = {f
∣∣
Γi
; f ∈ (TrW 1,p(·))(Γ)} for i = 1, 2

equipped with the norm

∥g∥(TrW 1,p(·))(Γi) = inf{∥f∥(TrW 1,p(·))(Γ); f ∈ (TrW 1,p(·))(Γ) satisfying f
∣∣
Γi
= g},

where the infimum can also be achieved, so for any g ∈ (TrW 1,p(·))(Γi), there exists
F ∈ W 1,p(·)(Ω) such that F

∣∣
Γi
= g and ∥F∥W 1,p(·)(Ω) = ∥g∥(TrW 1,p(·))(Γi).

Let q ∈ P+(Γ) := {q ∈ P(Γ); q− > 1} and denote the surface measure on Γ induced
from the Lebesgue measure dx on Ω by dσ. We define

Lq(·)(Γ) =

{
u;u : Γ → R is a measurable function with respect to dσ

satisfying
∫
Γ

|u(x)|q(x)dσ < ∞
}

and the norm is defined by

∥u∥Lq(·)(Γ) = inf

{
λ > 0;

∫
Γ

∣∣∣∣u(x)λ

∣∣∣∣q(x) dσ ≤ 1

}
,

and we also define a modular on Lq(·)(Γ) by

ρq(·),Γ(u) =

∫
Γ

|u(x)|q(x)dσ.

Proposition 2.5. We have the following properties.

(i) ∥u∥Lq(·)(Γ) ≥ 1 =⇒ ∥u∥q
−

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ∥u∥q

+

Lq(·)(Γ)
.

(ii) ∥u∥Lq(·)(Γ) < 1 =⇒ ∥u∥q
+

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ∥u∥q

−

Lq(·)(Γ)
.
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Proposition 2.6. Let Ω be a bounded domain with a C0,1-boundary Γ and let p ∈
P log

+ (Ω). If f ∈ (TrW 1,p(·))(Γ), then f ∈ Lp(·)(Γ) and there exists a constant C > 0

such that

∥f∥Lp(·)(Γ) ≤ C∥f∥(TrW 1,p(·))(Γ).

In particular, if f ∈ (TrW 1,p(·))(Γ), then f ∈ Lp(·)(Γ1) and ∥f∥Lp(·)(Γ1) ≤
C∥f∥(TrW 1,p(·))(Γ).

For p ∈ P+(Ω), define

p∂(x) =

{
(d−1)p(x)
d−p(x)

if p(x) < d,

∞ if p(x) ≥ d.

Proposition 2.7. Let p ∈ P+(Ω). Then if q(x) ∈ P+(Ω) satisfies q(x) < p∂(x) for
all x ∈ Γ, then the trace mapping W 1,p(·)(Ω) → Lq(·)(Γ) is well defined and compact.
In particular, the trace mapping W 1,p(·)(Ω) → Lp(·)(Γ) is compact and there exists a
constant C > 0 such that

∥u∥Lp(·)(Γ) ≤ C∥u∥W 1,p(·)(Ω) for u ∈ W 1,p(·)(Ω).

Define a basic space of this paper by

X = {v ∈ W 1,p(·)(Ω); v = 0 on Γ1}. (2.1)

Then it is clear to see that X is a closed subspace of W 1,p(·)(Ω), so X is a reflexive and
separable Banach space. We show the following Poincaré type inequality (cf. Ciarlet
and Dinca [12]).

Lemma 2.8. Let p ∈ P log
+ (Ω). Then there exists a constant C = C(Ω, d, p) > 0 such

that

∥u∥Lp(·)(Ω) ≤ C∥∇u∥Lp(·)(Ω) for all u ∈ X.

In particular, ∥∇u∥Lp(·)(Ω) is equivalent to ∥u∥W 1,p(·)(Ω) for u ∈ X .

For the direct proof, see Aramaki [5, Lemma 2.5].

Thus we can define the norm on X so that

∥v∥X = ∥∇v∥Lp(·)(Ω) for v ∈ X, (2.2)

which is equivalent to ∥v∥W 1,p(·)(Ω) from Lemma 2.8.
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2.2. A Carathéodory function

Let p ∈ P log
+ (Ω) be fixed. Let S(x, t) be a Carathéodory function on Ω × [0,∞) and

assume that for a.e. x ∈ Ω, S(x, t) ∈ C2((0,∞)) ∩ C([0,∞)) satisfies the following
structure conditions: there exist positive constants 0 < s∗ ≤ s∗ < ∞ such that for a.e.
x ∈ Ω

S(x, 0) = 0 and s∗t
(p(x)−2)/2 ≤ St(x, t) ≤ s∗t(p(x)−2)/2 for t > 0. (2.3a)

s∗t
(p(x)−2)/2 ≤ St(x, t) + 2tStt(x, t) ≤ s∗t(p(x)−2)/2 for t > 0. (2.3b)

Stt(x, t) < 0 when 1 < p(x) < 2 and Stt(x, t) ≥ 0 when p(x) ≥ 2 for t > 0, (2.3c)

where St = ∂S/∂t and Stt = ∂2S/∂t2. We note that from (2.3a), we have

2

p(x)
s∗t

p(x)/2 ≤ S(x, t) ≤ 2

p(x)
s∗tp(x)/2 for t ≥ 0. (2.4)

We introduce two examples.

Example 2.9. (i) When S(x, t) = ν(x) 1
p(x)

tp(x)/2, where ν is a measurable function in
Ω satisfying 0 < ν∗ ≤ ν(x) ≤ ν∗ < ∞ for a.e. in Ω, the function S(x, t) satisfies
(2.3a)-(2.3c). If ν(x) ≡ 1, this example corresponds to the p(x)-Laplacian.

(ii) As an another example, we can take

g(t) =

{
ae−1/t + a for t > 0,

a for t = 0,

where a > 0 is a constant. Then we can see that S(x, t) = ν(x)g(t) 1
p(x)

tp(x)/2 satisfies
(2.3a)-(2.3c) if p(x) ≥ 2 for all x ∈ Ω, (cf. Aramaki [4]).

We have the following estimate of St.

Lemma 2.10. Under the hypotheses (2.3a)-(2.3c), there exists a constant c > 0

depending only on s∗ and p+ such that for any a, b ∈ Rd,

(
St(x, |a|2)a− St(x, |b|2)b

)
· (a− b)

≥
{

c|a− b|p(x) when p(x) ≥ 2,

c(|a|+ |b|)p(x)−2|a− b|2 when 1 < p(x) < 2.

For the proof, see Aramaki [3, Lemma 3.6].
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2.3. The properties of the functional Φ, J and K

Proposition 2.11. The functional Φ on X defined by (1.3) has the following properties.

(i) Φ ∈ C1(X,R).
(ii) The functional Φ is sequentially weakly lower semicontinuous, coercive on X , that
is,

lim
∥u∥X→∞

Φ(u)

∥u∥X
= ∞

and bounded on every bounded subset of X .

(iii) Φ ∈ WX , that is, if un → u weakly in X and lim infn→∞Φ(un) ≤ Φ(u), then
{un} has a subsequence converging to u strongly in X .

(iv) The Fréchet derivative Φ′ of Φ is strictly monotone on X , bounded on every
bounded subset of X and coercive in the sense that

lim
∥u∥X→∞

⟨Φ′(u), u⟩X∗,X

∥u∥X
= ∞.

(v) Φ′ is of (S+)-type, that is, un → u weakly in X and

lim sup
n→∞

⟨Φ′(un), un − u⟩X∗,X ≤ 0

imply un → u strongly in X .

(vi) Φ′ : X → X∗ is a homeomorphism.

For the proof, see [8, Proposition 3.2, 3.3] and Aramaki [7, 6, 5].

From now on we suppose the following conditions. For i = 0, 1,

(fi) A Carathéodory function fi : Ω× R → R satisfies

|fi(x, t)| ≤ C1,i + C2,i|t|αi(x)−1 for a.e x ∈ Ω and all t ∈ R,

where C1,i and C2,i are non-negative constants and αi ∈ P log
+ (Ω) satisfies that αi(x) <

p∗(x) for all x ∈ Ω.

(gi) A Carathéodory function gi : Γ2 × R → R satisfies

|gi(x, t)| ≤ D1,i +D2,i|t|βi(x)−1 for a.e x ∈ Γ2 and all t ∈ R,

where D1,i and D2,i are non-negative constants and βi ∈ P log
+ (Γ2) satisfies that

βi(x) < p∂(x) for all x ∈ Γ2.

We want to solve the problem (1.1). For this purpose, we consider the functional on X

defined by
I(u) = Ψ(u)− λJ(u)− µK(u) for u ∈ X,
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where

Ψ(u) = (M̂ ◦ Φ)(u) = M̂(Φ(u)), (2.5)

J(u) =

∫
Ω

F0(x, u(x))dx+

∫
Γ2

G0(x, u(x))dσ, (2.6)

K(u) =

∫
Ω

F1(x, u(x))dx+

∫
Γ2

G1(x, u(x))dσ. (2.7)

Here for every i = 0, 1,

M̂(t) =

∫ t

0

M(s)ds for t ≥ 0, (2.8)

Fi(x, t) =

∫ t

0

fi(x, s)ds for (x, t) ∈ Ω× R, (2.9)

Gi(x, t) =

∫ t

0

gi(x, s)ds for (x, t) ∈ Γ2 × R. (2.10)

Proposition 2.12. Assume the fi and gi (i = 0, 1) satisfy (fi) and (gi), respectively.
Then the following holds.

(i) J,K ∈ C1(X,R).
(ii) J ′, K ′ : X → X∗ are sequentially weakly-strongly continuous, namely, if un → u

weakly in X , then J ′(un) → J ′(u) and K ′(un) → K ′(u) strongly in X∗, so J ′ and K ′

are compact operators. Moreover, J and K are sequentially weakly continuous.

For the proof, see [8, Proposition 3.4].

3. THE MAIN THEOREM

We introduce the notion of weak solutions for the problem (1.1).

Definition 3.1. We say u ∈ X is a weak solution of (1.1), if

M(Φ(u))

∫
Ω

St(x, |∇u(x)|2)∇u(x) · ∇v(x)dx

= λ

(∫
Ω

f0(x, u(x))v(x)dx+

∫
Γ2

g0(x, u(x))v(x)dσ

)
+ µ

(∫
Ω

f1(x, u(x))v(x)dx+

∫
Γ2

g1(x, u(x))v(x)dσ

)
for all v ∈ X. (3.1)

We are in a position to state the main theorem.

Theorem 3.2. Let Ω be a bounded domain of Rd (d ≥ 2) with a C0,1-boundary Γ

satisfying (1.2), and let p ∈ P log
+ (Ω) verify

αp+ <
(d− 1)p−

d− p−
if p− < d. (3.2)
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Assume that functions f0 and g0 satisfy (f0) and (g0). Moreover, suppose that

max

{
lim sup

t→0

ess supx∈Ω F0(x, t)

|t|αp+
, lim sup

|t|→∞

ess supx∈Ω F0(x, t)

|t|αp−

}
≤ 0, (3.3)

max

{
lim sup

t→0

ess supx∈Γ2
G0(x, t)

|t|αp+
, lim sup

|t|→∞

ess supx∈Γ2
G0(x, t)

|t|αp−

}
≤ 0 (3.4)

and
sup
u∈X

J(u) > 0. (3.5)

Set

θ = inf

{
Ψ(u)

J(u)
;u ∈ X with J(u) > 0

}
. (3.6)

Then for each compact interval [a, b] ⊂ (θ,∞), there exists r > 0 with the following
property: for every λ ∈ [a, b] and any functions f1 and g1 satisfying (f1) and (g1), there
exists δ > 0 such that for each µ ∈ [0, δ], problem (1.1) has at least three weak solutions
whose norms are less than r.

Now we state a corollary of Theorem 3.2. Assume that

(f ′
0) A Carathéodory function f0 : Ω× R → R satisfies

|f0(x, t)| ≤ C1,0 + C2,0|t|α0(x)−1 for a.e. x ∈ Ω and all t ∈ R,

where C1,0 and C2,0 are non-negative constants, and α0 ∈ P log
+ (Ω) satisfies

α+
0 < αp− and lim

t→0

|f0(x, t)|
|t|αp+−1

= 0 uniformly for a.e. x ∈ Ω. (3.7)

(g′0) A Carathéodory function g0 : Γ2 × R → R satisfies

|g0(x, t)| ≤ D1,0 +D2,0|t|β0(x)−1 for a.e. x ∈ Γ2 and all t ∈ R,

where D1,0 and D2,0 are non-negative constants, and β0 ∈ P log
+ (Ω) satisfies

β+
0 < αp− and lim

t→0

|g0(x, t)|
|t|αp+−1

= 0 uniformly for a.e. x ∈ Γ2. (3.8)

(h) There exists δ0 > 0 such that

f0(x, t) > 0 for (x, t) ∈ Ω× (0, δ0] and g0(x, t) ≥ 0 for (x, t) ∈ Γ2 × (0, δ0] (3.9)

or

f0(x, t) ≥ 0 for (x, t) ∈ Ω× (0, δ0] and g0(x, t) > 0 for (x, t) ∈ Γ2 × (0, δ0] (3.10)

Then we obtain the following corollary of Theorem 3.2.

Corollary 3.3. Let Ω be a bounded domain with a C0,1-boundary Γ satisfying (1.2) and
p ∈ P log

+ (Ω) satisfy (3.2). Assume that (f ′
0), (g

′
0) and (h) holds. Then the conclusion of

Theorem 3.2 holds, that is, problem (1.1) has at least three weak solutions.



178 Junichi Aramaki

4. PROOFS OF THEOREM 3.2 AND COROLLARY 3.3

In this section, we give proofs of Theorem 3.2 and Corollary 3.3.

Define an energy functional I : X → R by

I(v) = Ψ(v)− λJ(v)−K(v) for v ∈ X. (4.1)

We apply the following result of [27, Theorem 2].

Theorem 4.1. Let B be a separable, reflexive and real Banach space. Assume that a
functional Ψ : B → R is coercive, sequentially weakly lower semi-continuous, of C1-
functional belonging to WB, that is, if un → u weakly in B and lim infn→∞Ψ(un) ≤
Ψ(u), then the sequence {un} has a subsequence converging to u strongly in B,
bounded on every bounded subset of B and the derivative Ψ′ : B → B∗ admits a
continuous inverse (Ψ′)−1 : B∗ → B. Moreover, assume that J : B → R is a C1-
functional with compact derivative, and assume that Ψ has a strictly local minimum
u0 ∈ B with Ψ(u0) = J(u0) = 0. Finally, put

α = max

{
0, lim sup

∥u∥→∞

J(u)

Φ(u)
, lim sup

u→u0

J(u)

Φ(u)

}
, (4.2)

β = sup
u∈Φ−1((0,∞))

J(u)

Φ(u)
, (4.3)

and assume that α < β. Then for each compact interval [a, b] ⊂
(

1
β
, 1
α

)
(with the

conventions 1
0
= ∞, 1

∞ = 0), there exists r > 0 with the following property: for every
λ ∈ [a, b] and every C1-functional K : B → R with compact derivative, there exists
δ > 0 such that for each µ ∈ [0, δ], the equation Ψ′(u) = λJ ′(u) + µK ′(u) has at least
three solutions in B whose norms are less that r.

We give a lemma and some propositions.

Lemma 4.2. Let v ∈ X . Then we have the following properties.

(i) If ∥v∥X ≥ 1, then

m0

α

(
s∗
p+

)α

∥v∥αp
−

X ≤ Ψ(v) ≤ m1

α

(
s∗

p−

)α

∥v∥αp
+

X .

(ii) If ∥v∥X < 1, then

m0

α

(
s∗
p+

)α

∥v∥αp
+

X ≤ Ψ(v) ≤ m1

α

(
s∗

p−

)α

∥v∥αp
−

X .
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Proof. From (M) and the definition of M̂ , we have

m0

α
tα ≤ M̂(t) =

∫ t

0

M(s)ds ≤ m1

α
tα for t ≥ 0.

From (2.4), ∫
Ω

s∗
p(x)

|∇v(x)|p(x)dx ≤ Φ(v) ≤
∫
Ω

s∗

p(x)
|∇v(x)|p(x)dx.

Thus we have (
s∗
p+

ρp(·)(∇v)

)α

≤ Φ(v)α ≤
(
s∗

p−
ρp(·)(∇v)

)α

.

Since ∥v∥X = ∥∇v∥Lp(·)(Ω), the conclusions of (i) and (ii) follow from Proposition
2.1.

We give the properties of the functional Ψ.

Proposition 4.3. The functional Ψ has the following properties.

(i) Ψ ∈ C1(X,R) and Ψ′(u) = M(Φ(u))Φ′(u) for u ∈ X .

(ii) Ψ is sequentially weakly lower semicontinuous on X .

(iii) Ψ is coercive on X , that is,

lim
∥u∥X→∞

Ψ(u)

∥u∥X
= ∞.

(iv) Ψ is bounded on every bounded subset of X .

(v) Ψ ∈ WX , that is, if un → u weakly in X and lim infn→∞Ψ(un) ≤ Ψ(u), then the
sequence {un} has a subsequence converging to u strongly in X .

Proof. (i) Since M̂ is a C1-function on [0,∞) and Φ ∈ C1(X,R) by Proposition 2.11,
clearly Ψ ∈ C1(X,R) and Ψ′(u) = M(Φ(u))Φ′(u) for u ∈ X .

(ii) Let un → u weakly in X . Since Φ is sequentially weakly lower semicontinuous on
X from Proposition 2.11, we have Φ(u) ≤ lim infn→∞Φ(un). Since M̂ is an increasing
and continuous function, we have

(M̂ ◦ Φ)(u) ≤ M̂(lim inf
n→∞

Φ(un)) = M̂( lim
N→∞

inf
n≥N

{Φ(un)}) = lim
N→∞

M̂( inf
n≥N

{Φ(un)}).

Since infn≥N{Φ(un)} ≤ Φ(um) for all m ≥ N , we have M̂(infn≥N{Φ(un)}) ≤
M̂(Φ(um)) for all m ≥ N . Therefore, we have M̂(infn≥N{Φ(un)}) ≤
infn≥N M̂(Φ(un)). Thus we see that (M̂ ◦ Φ)(u) ≤ lim infn→∞ M̂(Φ(un)).
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(iii) Let ∥u∥X > 1. By Lemma 4.2, Ψ(u) = (M̂ ◦Φ)(u) ≥ m0

α

(
s∗
p+

)α
∥u∥αp

−

X . By (M),
αp− > 1, so

lim
∥u∥X→∞

Ψ(u)

∥u∥X
= ∞.

(iv) Let ∥u∥X ≤ C. Since Φ is bounded on every bounded subset of X by Proposition
2.11, 0 ≤ Φ(u) ≤ C1 for some constant C1 > 0. Since M̂ is continuous on [0,∞),
M̂ ◦ Φ(u) is bounded.

(v) Let un → u weakly in X and lim infn→∞(M̂ ◦ Φ)(un) ≤ (M̂ ◦ Φ)(u). Then there
exists a subsequence {un′} of {un} such that

lim
n′→∞

(M̂ ◦ Φ)(un′) = lim inf
n→∞

(M̂ ◦ Φ)(un) = M̂( lim
n′→∞

Φ(un′)) ≤ (M̂ ◦ Φ)(u).

Since M̂ is a strictly monotone increasing function on [0,∞), we have
limn′→∞Φ(un′) ≤ Φ(u). Since Φ ∈ WX from [8, Proposition 3.2 (iii)], the sequence
{un′} has a subsequence converging to u strongly in X .

Next, we study the properties of Ψ′.

Proposition 4.4. The Fréchet differential Ψ′ : X → X∗ of Ψ has the following
properties.

(i) The operator Ψ′ is strictly monotone.

(ii) The operator Ψ′ is bounded on every bounded subset of X .

(iii) The operator Ψ′ is coercive, that is,

lim
∥u∥X→∞

⟨Ψ′(u), u⟩X∗,X

∥u∥X
= ∞.

(iv) The operator Ψ′ is of (S+)-type, that is, if un → u weakly in X and

lim sup
n→∞

⟨Ψ′(un), un − u⟩X∗,X ≤ 0,

then un → u strongly in X .

Proof. (i) Let u1, u2 ∈ X and u1 ̸= u2. Then we have

⟨Ψ′(u1)−Ψ′(u2), u1 − u2⟩X∗,X

=

〈∫ 1

0

d

dτ
Ψ′(τu1 + (1− τ)u2)dτ, u1 − u2

〉
X∗,X

=

∫
Ω

∫ 1

0

d

dτ

[
M(Φ(τu1 + (1− τ)u2))St(x, |τ∇u1(x) + (1− τ)∇u2(x)|2)

×(τ∇u1(x) + (1− τ)∇u2(x)) · (∇u1(x)−∇u2(x))
]
dτdx

= I1 + I2 + I3,
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where

I1 =

∫ 1

0

M(Φ(τu1 + (1− τ)u2)

∫
Ω

St(x, |τ∇u1(x) + (1− τ)∇u2(x)|2)

|∇u1(x)− u2(x)|2dxdτ

I2 =

∫ 1

0

M(Φ(τu1 + (1− τ)u2)

∫
Ω

2Stt(x, |τ∇u1(x) + (1− τ)∇u2(x)|2)

×
(
(τ∇u1(x) + (1− τ)∇u2(x)) · (∇u1(x)−∇u2(x))

)2
dxdτ

I3 =

∫ 1

0

M ′(Φ(τu1 + (1− τ)u2))⟨Φ′(τu1 + (1− τ)u2), u1 − u2⟩2X∗,X .

Since M ′ ≥ 0 from the hypothesis (M), we see that I3 ≥ 0. If we put Ω1 = {x ∈
Ω; p(x) ≥ 2} and Ω2 = {x ∈ Ω; p(x) < 2}, then we can write I1 + I2 = L1 +L2 +L3,
where

L1 =

∫ 1

0

M(Φ(τu1 + (1− τ)u2)

∫
Ω1

St(x, |τ∇u1(x) + (1− τ)∇u2(x)|2)

×|∇u1(x)−∇u2(x)|2dxdτ

L2 =

∫ 1

0

M(Φ(τu1 + (1− τ)u2)

∫
Ω1

2Stt(x, |τ∇u1(x) + (1− τ)∇u2(x)|2

×
(
(τ∇u1(x) + (1− τ)∇u2(x)) · (∇u1(x)−∇u2(x))

)2
dxdτ

L3 =

∫ 1

0

M(Φ(τu1 + (1− τ)u2)

∫
Ω2

{
St(x, |τ∇u1(x) + (1− τ)∇u2(x)|2)

+2Stt(x, |τ∇u1(x) + (1− τ)∇u2(x)|2)

×
(
(τ∇u1(x) + (1− τ)∇u2(x)) · (∇u1(x)−∇u2(x))

)2}
dxdτ.

By the hypothesis (2.3c), we have Stt(x, |τ∇u1(x) + (1 − τ)∇u2(x)|2)dx ≥ 0 in Ω1,
so L2 ≥ 0. Since Stt(x, t) < 0 for (x, t) ∈ Ω2 × [0,∞),

Stt(x, |τ∇u1(x)+(1−τ)∇u2(x)|2)
(
(τ∇u1(x)+(1−τ)∇u2(x))·(∇u1(x)−∇u2(x))

)2
≥ Stt(x, |τ∇u1(x)+(1−τ)∇u2(x)|2)|τ∇u1(x)+(1−τ)∇u2(x)|2|∇u1(x)−∇u2(x)|2.

By (2.3b), we have

I1 + I2 ≥
∫ 1

0

M(Φ(τu1 + (1− τ)u2))

×
∫
Ω

s∗|τ∇u1(x) + (1− τ)∇u2(x)|p(x)−2|∇u1(x)−∇u2(x)|2dxdτ.

Since if u1 ̸= u2 in X , then ∇u1 ̸= ∇u2 in Lp(·)(Ω), so I1 + I2 > 0. Hence Ψ′ is
strictly monotone.



182 Junichi Aramaki

(ii) Let ∥u∥X ≤ C. Since Φ′ is bounded on every bounded subset of X from Proposition
2.9 (iv), we have ∥Φ′(u)∥X∗ ≤ C1 for some constant C1 > 0. By Proposition 2.11 (ii),
Φ is bounded on every bounded subset of X , so 0 ≤ Φ(u) ≤ C2 for some constant
C2 > 0. Since M is continuous on the compact interval [0, C2], Ψ′(u) = M(Φ(u))Φ′(u)

is bounded.

(iii) Let ∥u∥X > 1. We remember

Φ(u) ≥ s∗
p+

∫
Ω

|∇u(x)|p(x)dx ≥ s∗
p+

> 0.

Since M is monotone increasing and M(s) > 0 for s > 0, there exists a constant c > 0

such that M(Φ(u)) ≥ c for all u ∈ X with ∥u∥X > 1. Since Φ is coercive from
Proposition 2.11 (ii), we have

⟨Ψ′(u), u⟩X∗,X

∥u∥X
=

M(Φ(u))⟨Φ′(u), u⟩X∗,X

∥u∥X
≥ c

⟨Φ′(u), u⟩X∗,X

∥u∥X
→ ∞

as ∥u∥X → ∞.

(iv) Let un → u weakly in X and lim supn→∞⟨Ψ′(un), un − u⟩X∗,X ≤ 0.

If infn{M(Φ(un))} = 0, then necessarily we have α > 1. So there exists a subsequence
{un′} of {un} such that limn′→∞M(Φ(un′)) = 0. Since M satisfies the condition (M)
and α > 1, we see that limn′→∞Φ(un′) = 0. Since s∗

p+
ρp(·)(∇un′) ≤ Φ(un′) → 0,

it follows from Proposition 2.1 (iv) that un′ → 0 strongly in X , so u = 0. By the
convergent principle (cf. Zeidler [33, Proposition 10.13 (i)], un → 0 strongly in X .

If infn{M(Φ(un)) = c > 0, since un → u weakly in X , {un} is bounded in X , so
M(Φ(un)) ≤ C for some constant C > 0. Thereby, we have

M(Φ(un))⟨Φ′(un), un−u⟩X∗.X ≥
{

c⟨Φ′(un), un − u⟩X∗,X if ⟨Φ′(un), un − u⟩X∗,X ≥ 0,

C⟨Φ′(un), un − u⟩X∗,X if ⟨Φ′(un), un − u⟩X∗,X < 0.

Therefore, we have limn→∞⟨Φ′(un), un − u⟩X+,X ≤ 0. Since Φ′ is of (S+)-type from
Proposition 2.11 (v), we have un → u strongly in X .

Proposition 4.5. The operator Ψ′ : X → X∗ has a continuous inverse (Ψ′)−1 : X∗ →
X .

Proof. Step 1. Ψ′ is surjective. In fact, for any f ∈ X∗, define a functional I0 on X by

I0(v) = Ψ(v)− ⟨f, v⟩X∗,X for v ∈ X.

We note that I0 is sequentially weakly lower semicontinuous on X . Since

I0(v) = Ψ(v)− ⟨f, v⟩X∗,X ≥ m0

α

(
s∗
p+

)α

∥v∥αp
−

X − ∥f∥X∗∥v∥X
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for any v ∈ X with ∥v∥X > 1 and αp− > 1, I0 is weakly coercive, that is, I0(v) → ∞
as ∥v∥X → ∞. By [33, Theorem 25.D], I0 has a minimum u ∈ X , so I ′0(u) = 0.
Hence Ψ′(u) = f .

Step 2. Ψ′ is injective. This follows from the strictly monotonicity of Ψ′.

Step 3. By Step 1 and Step 2, (Ψ′)−1 exists. We show that (Ψ′)−1 : X∗ → X is
continuous. Let fn, f ∈ X∗ and fn → f in X∗. Then there exists un, u ∈ X such that
Ψ′(un) = fn,Ψ

′(u) = f . It suffices to show that un → u in X .

The sequence {un} is bounded in X . Indeed, if {un} is unbounded, then there exists a
subsequence {un′} of {un} such that ∥un′∥X → ∞ as n′ → ∞. We see that

⟨Ψ′(un′), un′⟩X∗,X = ⟨fn′ , un′⟩X∗,X ≤ ∥fn∥X∗∥un′∥X ≤ C1∥un′∥X

because since fn → f in X∗, we have {fn} is bounded, so ∥fn∥X∗ ≤ C1 for some
constant C1 > 0. This contradicts the coerciveness of Ψ′.

Since {un} is bounded in a reflexive Banach space X , there exists a subsequence {un′′}
of {un} and u0 ∈ X such that un′′ → u0 weakly in X as n′′ → ∞. Now we have

lim
n′′→∞

⟨Ψ′(un′′), un′′ − u0⟩X∗,X = lim
n′′→∞

⟨Ψ′(un′′)−Ψ′(u), un′′ − u0⟩X∗,X

= lim
n′′→∞

⟨fn′′ − f, un′′ − u0⟩X∗,X = 0.

Since Ψ′ is of (S+)-type from Proposition 4.4 (iv), we see that un′′ → u0 strongly in X .
Since Ψ′ is continuous, Ψ′(un′′) = fn′′ → Ψ′(u0) = f = Ψ′(u). Since Ψ′ is injective,
we have u0 = u. Using again the convergent principle (cf. [33, Proposition 10.13 (i)]),
the full sequence un → u strongly in X .

Proof of Theorem 3.2.

We note that if u ∈ X is a critical point of the functional I , that is, I ′(u) =

Ψ′(u)−λJ ′(u)−µK ′(u) = 0, then u is a weak solution of (1.1). Under the hypotheses
of Theorem 3.2, we derive the hypotheses of Theorem 4.1 with B = X defined by (2.1)
and the functionals Ψ, J and K defined by (2.5), (2.6) and (2.7), respectively. Since
Ψ(u) ≥ 0 for all u ∈ X , and Ψ(u) = 0 if and only if u = 0, we see that Ψ has a
strictly local minimum u = 0, and by the definitions of F0 and G0, clearly J(0) = 0,
so Ψ(0) = J(0) = 0. Moreover, the hypotheses on Ψ and J follows from Propositions
4.3, 4.4 and 4.5.

Fix ε > 0. From (3.3) and (3.4), there exist ρ1 and ρ2 with 0 < ρ1 < 1 < ρ2 such that

F0(x, t) ≤ ε|t|αp+ for all (x, t) ∈ Ω× [−ρ1, ρ1], (4.4)

F0(x, t) ≤ ε|t|αp− for all (x, t) ∈ Ω×
(
R \ [−ρ2, ρ2]

)
(4.5)
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and

G0(x, t) ≤ ε|t|αp+ for all (x, t) ∈ Γ2 × [−ρ1, ρ1], (4.6)

G0(x, t) ≤ ε|t|αp− for all (x, t) ∈ Γ2 ×
(
R \ [−ρ2, ρ2]

)
. (4.7)

Thus we have

F0(x, t) ≤ ε|t|αp+ for all (x, t) ∈ Ω×
(
R \ ([−ρ2,−ρ1] ∪ [ρ1, ρ2])

)
and

G0(x, t) ≤ ε|t|αp+ for all (x, t) ∈ Γ2 ×
(
R \ ([−ρ2,−ρ1] ∪ [ρ1, ρ2])

)
.

On the other hand, since f0 and g0 satisfy (f0) and (g0), respectively, we have

|F0(x, t)| ≤ C1,0|t|+
C2,0

α0(x)
|t|α0(x) ≤ C1,0|t|+

C2,0

α−
0

|t|α0(x) for (x, t) ∈ Ω× R

and

|G0(x, t)| ≤ D1,0|t|+
D2,0

β0(x)
|t|β0(x) ≤ D1,0|t|+

D2,0

β−
0

|t|β0(x) for (x, t) ∈ Γ2 × R.

Hence F0 is bounded on each bounded subset of Ω × R and G0 is bounded on each
bounded subset of Γ2 × R .

From the hypothesis (3.2),

αp+ <
dp−

d− p−
≤ dp(x)

d− p(x)
= p∗(x) if p− < d

and

αp+ <
(d− 1)p−

d− p−
≤ (d− 1)p(x)

d− p(x)
= p∂(x) if p− < d.

If we choose q ∈ R such that αp+ < q < p∂(x) for all x ∈ Γ2 and αp+ < q < p∗(x)

for all x ∈ Ω, then we have

F0(x, t) ≤ ε|t|αp+ + c|t|q for all (x, t) ∈ Ω× R (4.8)

and
G0(x, t) ≤ ε|t|αp+ + c|t|q for all (x, t) ∈ Γ2 × R (4.9)

for some constant c > 0. Since the embedding mappings X ↪→ Lαp+(Ω), Lαp+(Γ2),
Lq(Ω), Lq(Γ2) are continuous, there exist positive constants Cp+ and Cq such that

∥u∥Lαp+ (Ω) ≤ Cp+∥u∥X , ∥u∥Lαp+ (Γ2)
≤ Cp+∥u∥X ,

∥u∥Lq(Ω) ≤ Cq∥u∥X and ∥u∥Lq(Γ2) ≤ Cq∥u∥X
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for all u ∈ X . Thus, from (4.8) and (4.9), there exists a constant c1 > 0 such that

J(u) =

∫
Ω

F0(x, u(x))dx+

∫
Γ2

G0(x, u(x))dσ

≤ ε

∫
Ω

|u(x)|αp+dx+ c1

∫
Ω

|u(x)|qdx+ ε

∫
Γ2

|u(x)|αp+dσ + c1

∫
Γ2

|u(x)|qdσ

≤ 2Cαp+

p+ ε∥u∥αp
+

X + 2c1C
q
q∥u∥

q
X .

When ∥u∥X < 1, it follows Proposition 2.1 that

J(u)

Ψ(u)
≤

2Cαp+

p+ ε∥u∥αp
+

X + 2cCq
q∥u∥

q
X

m0

α

(
s∗
p+

)α
∥u∥αp+X

.

Since q > αp+, we have

lim sup
u→0

J(u)

Ψ(u)
≤ 2

α

m0

(
p+

s∗

)α

Cαp+

p+ ε. (4.10)

On the other hand, since the embedding mappings X ↪→ Lαp−(Ω), Lαp−(Γ2) are
continuous, there exists a constant Cp− > 0 such that

∥u∥Lαp− (Ω) ≤ Cp−∥u∥X and ∥u∥Lαp− (Γ2)
≤ Cp−∥u∥X for all u ∈ X.

Since F0 and G0 are bounded on each bounded subset of Ω×R and Γ2×R, respectively,
when ∥u∥X > 1, it follows from (4.5) and (4.7) that there exists a constant C1 > 0 such
that

J(u) =

∫
{x∈Ω;|u(x)|≤ρ2}

F0(x, u(x))dx+

∫
{x∈Ω;|u(x)|>ρ2}

F0(x, u(x))dx

+

∫
{x∈Γ2;|u(x)|≤ρ2}

G0(x, u(x))dσ +

∫
{x∈Γ2;|u(x)|>ρ2}

G0(x, u(x))dσ

≤ 2C1 + 2εCαp−

p− ∥u∥αp
−

X .

Hence

lim sup
∥u∥X→∞

J(u)

Ψ(u)
≤ 2

m0

α

(
p+

s∗

)α

Cαp−

p− ε. (4.11)

Since ε > 0 is arbitrary, it follows from (4.10) and (4.11) that

max

{
lim sup

u→0

J(u)

Ψ(u)
, lim sup

∥u∥→∞

J(u)

Ψ(u)

}
≤ 0.

Therefore, we have α = 0 in Theorem 4.1. By the hypothesis (3.5), we have β > 0

in (4.3). Thus all the hypotheses of Theorem 4.1 hold. If we put θ = 1/β, then the
conclusion of Theorem 3.2 is verified. This completes the proof of Theorem 3.2.
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Proof of Corollary 3.3

From (3.7), for any ε > 0, there exists δ > 0 such that if |t| < δ, then |f0(x, t)| ≤
ε|t|αp+−1. Hence, for |t| < δ, |F0(x, t)| ≤ ε

αp+
|t|αp+ , so we have

lim sup
t→0

ess supx∈Ω F0(x, t)

|t|αp+
≤ ε

αp+
.

Since ε > 0 is arbitrary, we have

lim sup
t→0

ess supx∈Ω F0(x, t)

|t|αp+
≤ 0.

On the other hand, since f0 is bounded on each bounded subset of Ω × R from (f ′
0),

there exists a constant C > 0 such that |f0(x, t)| ≤ C for (x, t) ∈ Ω × [0, 1]. When
|t| > 1,

|f0(x, t)| ≤ C1,0 + C2,0|t|α0(x)−1 ≤ C1,0 + C2,0|t|α
+
0 −1,

so we have |f0(x, t)| ≤ C ′
1,0 + C2,0|t|α

+
0 −1 for all (x, t) ∈ Ω × R. Thus |F0(x, t)| ≤

C ′
1,0|t|+ C ′

2,0|t|α
+
0 for some constants C ′

1,0 and C ′
2,0. Therefore, since α+

0 < αp−,

lim sup
|t|→∞

ess supx∈Ω F0(x, t)

|t|αp−
≤ 0,

so (3.3) holds.

Similarly, using (g′0), we can derive

lim sup
t→0

ess supx∈Γ2
G0(x, t)

|t|αp+
≤ 0 and lim sup

|t|→∞

ess supx∈Γ2
G0(x, t)

|t|αp−
≤ 0,

so (3.4) holds.

Under (h), since we can easily choose 0 ̸≡ φ ∈ X with 0 ≤ φ(x) ≤ δ0 such that∫
Ω

F0(x, φ(x))dx+

∫
Γ2

G0(x, φ(x))dσ > 0,

(3.5) holds. Thus, since all the hypotheses of Theorem 3.2 hold, the conclusion of
Corollary 3.3 follows from Theorem 3.2.
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with Variable Exponent, Lecture Notes in Mathematics, Springer, 2017.

[17] X. L. Fan and Q. H Zhang, Existence of solutions for p(x)-Laplacian Dirichlet
problem, Nonlinear Analysis, 2003, 52, 1843-1852.

[18] X.L. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), Journal of
Mathematical Analysis and Applications, 2001, 263, 424–446.

[19] X.L. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet
problem, Journal of Mathematical Analysis and Applications, 2015, 302, 306–
317.

[20] T. C. Halsey, Electrorheological fluids, Science, 1992, 258, 761–766.

[21] H. He and W. Zou, Infinitely many positive solutions for Kirchhoff-type problem,
Nonlinear Analysis, 2009, 70, 1407-1414.

[22] M. Hsini, N. Irzi and K. Kefi, Nonhomogeneous p(x)-Laplacian Steklov problem
with weights, Complex Variables and Elliptic Equations, 2020, 65(3), 440-454.

[23] M. Khiddi and S. M. Sbai, Infinitely many solutions for non-local elliptic non-
degenerate p-Kirchhoff equations with critical exponent, Complex Variables and
Elliptic Equations, 2020, 65(3), 363-380.

[24] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
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[31] Z. Yücedağ, Existence and multiplicity of solutions for p(x)-Kirchhoff-type
problem, Annals of University of Craiolva, Mathematical Computer Science
Series, 2017, 44(1), 21-29.
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