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Abstract

A quantum algorithm for the traveling salesman problem by the Shor’s Fourier
transform with the RAM on the QCEngine, and its example are reported. A route of
the shortest distance is decided on turning round n points with fixing a starting point.
When the counter routes are excluded, a complexity of a classical computation is (n -
1)! /2 times. In the quantum algorithm by the Shor’s Fourier transform with the REM,
its search is done by about (several times) xlogz N, where N is 2™ [m = n (n - 1)/2].
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INTRODUCTION

The traveling salesman problem has been discussed by Watanabe. [1] A quantum
algorithm for the traveling salesman problem has been reported by Fujimura. [2] Still
more, Fujimura discussed a quantum algorithm for the knapsack problem by the
Shor’s Fourier transform with the RAM on the QC Engine. [3]

According to my advanced study, when the traveling salesman problem is regarded as
a special pattern of the knapsack problem, the complexity of the traveling salesman
problem is able to be about (several times)xlog> N, where N is 2™ [m = n(n - 1)/2].

Therefore, because the quantum algorithm for the traveling salesman problem is
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examined by the Shor’s Fourier transform with the RAM on the QCEngine, its result
IS reported.

Traveling Salesman Problem

It is the traveling salesman problem to decide a route that turns round n points in the
shortest distance. A complexity of a classical computation is (n - 1)!/2 times, because
a starting point is fixed and counter routes are excluded. [1, 2]

Quantum Algorithm

It is assumed that n is number of points, m is number of sides (m = n(n - 1)/2, and
number of data qubits), and j is number of work qubits that included the sum of
distances (distance is length between two points.).

First of all, query quantum registers |xi> [1 <i<m. iand m are integers. m is a number
of sides.], workl quantum registers |wy, j» [1 <j <t.jand t are integers. t is a necessary
number for the sum of distances.], work2 quantum registers w2, p» [1 <p <t +1.pand
t are integers. t is a necessary number for the sum of distances. +1 is a qubit for the
negative integer. [4]], and ancilla quantum qubits |ag [q iS a necessary number for
decrement with modulus.] are prepared.

Step 1: The distance data [d(u;, vi): i-th distance between u; and vi. Ui # vi. Ui and v; are
points.] are introduced to the RAM [4].

Step 2: Each qubit of |xi», |w1,j>, W2, p>, and |ag is set |0>.

Step 3: The Hadamard gate [H| [1-9] acts on each qubit of |xp. It changes them for

entangled states.

Step 4: For |xi», RAM [i - 1] [RAM has distance data of 0 — (m - 1).] is incremented
in |wo, p>. In a function, F = Xi=1_ md(ui, vi)xi is computed, where d(ui, vi) is i-th
distance. This operation makes entangled data base.

Step 5: For |wz, p», mod(k) [k is a length of a route, and at random.] is done, where
mod(k) is made by subtraction and addition in this program. [4] Therefore, the
subtraction and the addition are done by necessary times, where workl quantum
registers are added work2 quantum registers, and the uncompute is done.

Step 6: For |xi», the quantum Fourier transform (= QFT) [1, 3-7] is done.
Step 7: For |xi> and |wz, j», the proves are done.
Step 8: For |xp, the read is done.

Step 9: A number of spikes is estimated by the function (https: //oreilly-gc. github. i0?
p = 12-4 [4]), where the function estimate_num_spikes (spike, range) [spike: read
value, range: 2™ is used.

Step 10: From candidates of the number of spikes, the repeat period P is obtained.

Step 11: From P = 2% +2x2 + 223 + 2%x4 + ... +2™2xm, when there is k = d(u1, vi)x1
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+ d(uz, v2)x2 + ... + d(Um, Vm)Xm, it is answer [number of combination of necessary
distances].

Step 12: The repeating times is log2 N [N = 2™] to obtain a minimum length Kmin. [10]
Example of Numerical Computation

It is assumed that 10 (= m) distances are d(uz, v1) = d(1, 2) =1, d(uz, v2) = d(2, 3) = 1,
d(us, v3) =d(3, 4) = 1, d(us, va4) = d(4, 5) = 1, d(us, vs) = d(5, 1) = 1, d(us, V) = d(1, 3)
=2, d(u7, v7) =d(1, 4) = 2, d(us, v8) = d(2, 4) = 2, d(ug, Vo) = d(2, 5) = 2, d(u10, V10) =
d(3, 5) = 2, and the upper bound of the length is 15, and n = 5 . Furthermore, it is
assumed that the mod(kmin) = mod(5), and query quantum register qubits i = m = 10.
In this example, when mod(5) is 0, P is 0, 31, 39, 43, 45, 46, 51, 53, 54, 57, 58, 60,
168, 176, 193, 194, 196, 200, 208, 239, 247, 251, 253, 254, 263, 267, 269, 270, 275,
277, 278, 281, 282, 284, 289, 290, 292, 296, 304, 321, 322, 324, 328, 336, 367, 375,
379, 381, 382, 385, 386, 388, 392, 400, 431, 439, 443, 445, 446, 463, 471, 475, 477,
478, 483, 485, 486, 489, 490, 492, 497, 498, 500, 504, 519, 523, 525, 526, 531, 533,
534, 537, 538, 540, 545, 546, 548, 552, 560, 577, 578, 580, 584, 592, 623, 631, 635,
637, 638, 641, 642, 644, 648, 656, 687, 695, 699, 701, 702, 719, 727, 731, 733, 734,
739, 741, 742, 745, 746, 748, 753, 754, 756, 760, 769, 770, 772, 776, 784, 815,823,
827, 829, 830, 847, 855, 859, 861, 862, 867, 869, 870, 873, 874, 876, 881, 882, 884,
888, 911, 919, 923, 925, 926, 931, 933, 934, 937, 938, 940, 945, 946, 948, 952, 963,
965, 966, 969, 970, 972, 977, 978, 980, 984, 992, and 1023.

An example of program on the QCEngine is the following.
10vara=1[1,1,1,1,1,2,2, 2,2, 2];// RAM_a, distance data.
20 var query_qubits = 10;

30 var workl_qubits = 4;

40 var work2_qubits = 5;

50 var ancilla_qubits = 3; // subtractions of 3 times are able.
60 qc.reset(query_qubits + work1 _qubits + work2_qubits + ancilla_qubits);
70 var query = gint.new(query_qubits, ‘query’);

80 var work1 = gint.new(work1_qubits, ‘work1’);

90 var work2 = gint.new(work2_qubits, 'work2');

100 var ancilla = gint.new(ancilla_qubits, 'ancilla’);

110 qc.label('q"); // set query

120 query.write(0);

130 query.hadamard();

140 gc.label(" ");

150 qc.label('wl"); // set work1
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160 work1.write(0);

170 qc.label('w2"); // set work?2

180 work2.write(0);

190 qc.label('a’); // set ancilla

200 ancilla.write(0);

210 gc.print(RAM before increment: '+a+%¥n’);
220 var query31 = 31, // one of query

230 var k = 5; // one of length

240 var workl 0 =0; // one of workl. one of mod(k). k = 5.
250 gc.label(‘increment));

260 work?2.add(a[0],query.bits(0x1));

270 work?2.add(a[1],query.bits(0x2));

280 work?2.add(a[2],query.bits(0x4));

290 work?2.add(a[3],query.bits(0x8));

300 work?2.add(a[4],query.bits(0x10));

310 work?2.add(a[5],query.bits(0x20));

320 work?2.add(a[6],query.bits(0x40));

330 work?2.add(a[7],query.bits(0x80));

340 work?2.add(a[8],query.bits(0x100));

350 work?2.add(a[9],query.bits(0x200));

360 gc.label('mod(' + k +)");

370 work2.subtract(k);

380 gc.cnot(ancilla.bits(0x1),work2.bits(0x10));
390 work?2.add(k, ancilla.bits(0x1));

400 work2.subtract(k);

410 gc.cnot(ancilla.bits(0x2),work2.bits(0x10));
420 work2.add(k, ancilla.bits(0x2));

430 work?2.subtract(k);

440 gc.cnot(ancilla.bits(0x4),work2.bits(0x10));
450 work2.add(k, ancilla.bits(0x4));

460 work1.add(work2);
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470 gc.label('uncompute’);

480 work2.subtract(k,ancilla.bits(0x4));

490 gc.cnot(ancilla.bits(0x4),work2.bits(0x10));
500 work2.add(k);

510 work?2.subtract(k,ancilla.bits(0x2));

520 gc.cnot(ancilla.bits(0x2),work2.bits(0x10));
530 work2.add(k);

540 work?2.subtract(k,ancilla.bits(0x1));

550 qgc.cnot(ancilla.bits(0x1),work?2.bits(0x10));
560 work?2.add(k);

570 work?2.subtract(a[9],query.bits(0x200));
580 work?2.subtract(a[8],query.bits(0x100));
590 work?2.subtract(a[7],query.bits(0x80));

600 work?2.subtract(a[6],query.bits(0x40));

610 work?2.subtract(a[5],query.bits(0x20));

620 work?2.subtract(a[4],query.bits(0x10));

630 work?2.subtract(a[3],query.bits(0x8));

640 work?2.subtract(a[2],query.bits(0x4));

650 work?2.subtract(a[1],query.bits(0x2));

660 work?2.subtract(a[0],query.bits(0x1));

670 qc.label('QFT";

680 query.QFT();

690 var prob31 =0;

700 prob31 += query.peekProbability(query31);
710 // Print output query-Prob

720 qgc.print(’ Prob_query31: ' + prob31);

730 var prob0 = 0;

740 prob0 += work1.peekProbability(workl 0); // workl 0=0
750 // Print output work1-Prob

760 qgc.print(' Prob_workl 0: "'+ prob0);

770 // read
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780 gc.label('RQ");

790 var b2 = query.read();

800 // Print output result

810 gc.print(' Read query ="'+ b2 +.");
820 // end

When this program is copied on Programming Quantum Computers https: //orelly-gc.
github. io/# [free on-line quantum computation simulator QCEngine] [4], you can run
it. [Caution!: Please delate the line numbers.]

A result of this program is the following.
The probe value of |wy, jp =0 : = 0.1992.
The probe value of |xj» = 31 : =~ 0.0004289.

The example of 10 times test: The read value of |xi» = 86, 160, 544, 354, 533, 424, 891,
763, 671, 145. (= spike)

The candidates of number of spikes are estimated by the function [the function
estimate_num_spikes (spike, range) [spike: read value, range: 2™ = 210 = 1024]:

86 —12, 24, 36, 48, 60, 71, 83, 95, 107, 119, 131, 262, 381, 512 ; 160 — 6, 13, 19, 32,
64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448, 480, 512, 544, 576, 608,
640, 672, 704, 736, 768, 800, 832 ; 544 — 2, 4, 6, 9, 11, 13, 15, 17, 32, 64, 96, 128,
160, 192, 224, 256, 288, 320, 352, 384, 416, 448, 480, 512 ; 354 — 3,6, 9, 12, 14, 17,
20, 23, 26, 52, 55, 81, 162, 243, 269, 350, 431, 512 ; 533 — 2, 4, 6, §, 10, 13, 15, 17,
19, 21, 23, 25, 48, 73, 146, 171, 244, 317 ; 424 — 3, 5, 10, 12, 17, 29, 58, 70, 99, 128,
256, 384, 512 ; 891 — 8, 15, 23, 46, 54, 77, 154, 231, 348, 385, 462, 539, 562, 639,
716, 793, 870 ; 763 — 4, 8, 12, 16, 20, 24, 27, 31, 35, 39, 43, 47, 51, 102, 153, 204,
255, 306, 357, 408, 459, 510, 514, 565, 616, 667, 718 ; 671 — 3, 6, 9, 12, 15, 17, 20,
23, 26, 27, 58, 87, 116, 145, 174, 177, 206, 235, 264, 293, 322, 351 ; 145 — 7, 14, 21,
28, 35,42, 49,57, 64, 71, 78, 85, 92, 99, 106, 113, 226, 339, 482, 565, 572, 685, 798.

When P is 31, 291 + 21x2 + 22x3 + 23x4 + 2%%s + 25%g + 2%%7 + 27xg + 28xg + 2%10:
20x1 + 21x1 + 22x]1 + 23x1 + 2%x1 + 2°x0 + 25%0 + 27x0 + 28x0 + 29x0 = 31.

There is d(1, 2)x1 + d(2, 3)x2 + d(3, 4)x3+ d(4, 5)xa+ d(5, L)xs+ d(1, 3)xe + d(1, 4)x7 +
d(2, 4)xg + d(2, 5)xe + d(3, 5)x10:

1x1 + 1x1 + 1x1 + 1x1 + 1x1 + 2x0 + 2x0 + 2x0 + 2x0 + 2x0 = 5 (= Kmin).

The repeating times is logz 21° = 10 [N = 2™, m = n(n — 1)/2 = 5x4/2 = 10] to obtain a
minimum length Kmin.

Forn=4and m=6:

RAM; a =[1, 1, 1, 1, 2, 2], 2% = 64, mod(k) = mod(4), where query_qubits = 6,
workl_qubits = 4, work2_qubits = 5, queryl5 = 15, and necessary changes are done.
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In this example, when mod(4) is 0, P is 0, 15, 19, 21, 22, 25, 26, 28, 35, 37, 38, 41, 42,
44, 48, and 63.

The probe value of |wy, j» =0 : = 0. 2500.
The probe value of |xi» = 15 : = 0.003440.

The example of 10 times test: The read value of |xi» = 20, 47, 29, 0, 63, 35, 3, 0, 19,
59.

The candidates of number of spikes are estimated by the function [the function
estimate_num_spikes (spike, range) [spike: read value, range 2™ = 2% = 64]:

20— 3,6,10,13,16,32 ;47— 4,8,11,15,30,34;29 —»2,4,7,9,11,22,33;0 —
nothingness ; 63 —nothingness ; 35 — 2,4, 7,9, 11, 22,33 ;3 —21,43;19 — 3,7,
10, 17, 27, 37 ; 59 — 13, 26, 38, 51.

When P is 15, 2%; + 212 + 2%x3 + 23X4 + 2*Xs + 2°%e:

20x1 + 21x1 + 22x1 + 23x1 + 2%x0 + 25x0 = 15.

There is d(L, 2)x1 + d(2, 3)x2 + d(3, 4)xs + d(4, L)xa+ d(L, 3)xs + d(2, 4)xs:
1x1 + 1x1 + 1x1 + 1x1 + 2x0 + 2x0= 4 (= Kmin).

The repeating times is logz 26 = 6 [N = 2™, m = n(n — 1)/2 = 4x3/2 = 6] to obtain a
minimum length Kmin.

DISCUSSION

In the knapsack problem, there are many combinations of luggages to obtain a value.
In the traveling salesman problem, when the shortest value is obtained, there is only
one combination of distances (distance is length between two points).

Therefore, the search is difficult.

In section 4, n points’ graph has m = n(n — 1)/2 bases. And then, in m bases, the
shortest combination is selected. When N is 2™, in the Grover’s method, the
complexity is N*2logz N, in the Shor’s Fourier transform, it is (several times)xlog N.

Inn =4, N*logz N = 2%log, 2 = 8x6 = 48, and (several times)xlogz N < 10x6 = 60.

Inn =5, N"2log2 N = 25log, 2% = 32x10 = 320, and (several times)xlog, N < 10x10 =
100.

In this range, the Shor’s Fourier transform is less than the complexity of the Grover’s
method at n =5 and m = 10.

SUMMARY

The quantum algorithm for the traveling salesman problem by the Shor’s Fourier
transform with the RAM on the QCEngine, and its example are reported.
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The complexity of this method is (several times)xlog. N, where N is 2™ [m = n(n —

1)/2].

| will apply this method for other problems.
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