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Abstract 

A quantum algorithm for the traveling salesman problem by the Shor’s Fourier 

transform with the RAM on the QCEngine, and its example are reported. A route of 

the shortest distance is decided on turning round n points with fixing a starting point. 

When the counter routes are excluded, a complexity of a classical computation is (n - 

1)! /2 times. In the quantum algorithm by the Shor’s Fourier transform with the REM, 

its search is done by about (several times) ×log2 N, where N is 2m [m = n (n - 1)/2]. 
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INTRODUCTION 

The traveling salesman problem has been discussed by Watanabe. [1] A quantum 

algorithm for the traveling salesman problem has been reported by Fujimura. [2] Still 

more, Fujimura discussed a quantum algorithm for the knapsack problem by the 

Shor’s Fourier transform with the RAM on the QC Engine. [3]  

According to my advanced study, when the traveling salesman problem is regarded as 

a special pattern of the knapsack problem, the complexity of the traveling salesman 

problem is able to be about (several times)×log2 N, where N is 2m [m = n(n - 1)/2]. 

Therefore, because the quantum algorithm for the traveling salesman problem is 
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examined by the Shor’s Fourier transform with the RAM on the QCEngine, its result 

is reported. 

Traveling Salesman Problem 

It is the traveling salesman problem to decide a route that turns round n points in the 

shortest distance. A complexity of a classical computation is (n - 1)!/2 times, because 

a starting point is fixed and counter routes are excluded. [1, 2]  

Quantum Algorithm 

It is assumed that n is number of points, m is number of sides (m = n(n - 1)/2, and 

number of data qubits), and j is number of work qubits that included the sum of 

distances (distance is length between two points.). 

First of all, query quantum registers |xi› [1 ≤ i ≤ m. i and m are integers. m is a number 

of sides.], work1 quantum registers |w1, j› [1 ≤ j ≤ t. j and t are integers. t is a necessary 

number for the sum of distances.], work2 quantum registers |w2, p› [1 ≤ p ≤ t +1. p and 

t are integers. t is a necessary number for the sum of distances. +1 is a qubit for the 

negative integer. [4]], and ancilla quantum qubits |aq› [q is a necessary number for 

decrement with modulus.] are prepared. 

Step 1: The distance data [d(ui, vi): i-th distance between ui and vi. ui ≠ vi. ui and vi are 

points.] are introduced to the RAM [4]. 

Step 2: Each qubit of |xi ›, |w1, j ›, |w2, p ›, and |aq› is set |0›. 

Step 3: The Hadamard gate H [1-9] acts on each qubit of |xi›. It changes them for 

entangled states. 

Step 4: For |xi›, RAM [i - 1] [RAM has distance data of 0 → (m - 1).] is incremented 

in |w2, p›. In a function, F = Σi = 1 → m d(ui, vi)xi is computed, where d(ui, vi) is i-th 

distance. This operation makes entangled data base. 

Step 5: For |w2, p›, mod(k) [k is a length of a route, and at random.] is done, where 

mod(k) is made by subtraction and addition in this program. [4] Therefore, the 

subtraction and the addition are done by necessary times, where work1 quantum 

registers are added work2 quantum registers, and the uncompute is done. 

Step 6: For |xi›, the quantum Fourier transform (= QFT) [1, 3-7] is done. 

Step 7: For |xi› and |w1, j›, the proves are done. 

Step 8: For |xi›, the read is done. 

Step 9: A number of spikes is estimated by the function (https: //oreilly-qc. github. io? 

p = 12-4 [4]), where the function estimate_num_spikes (spike, range) [spike: read 

value, range: 2m] is used. 

Step 10: From candidates of the number of spikes, the repeat period P is obtained. 

Step 11: From P = 20x1 +21x2 + 22x3 + 23x4 + … +2m-1xm, when there is k = d(u1, v1)x1 
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+ d(u2, v2)x2 + … + d(um, vm)xm, it is answer [number of combination of necessary 

distances]. 

Step 12: The repeating times is log2 N [N = 2m] to obtain a minimum length kmin. [10] 

Example of Numerical Computation 

It is assumed that 10 (= m) distances are d(u1, v1) = d(1, 2) = 1, d(u2, v2) = d(2, 3) = 1, 

d(u3, v3) = d(3, 4) = 1, d(u4, v4) = d(4, 5) = 1, d(u5, v5) = d(5, 1) = 1, d(u6, v6) = d(1, 3) 

= 2, d(u7, v7) = d(1, 4) = 2, d(u8, v8) = d(2, 4) = 2, d(u9, v9) = d(2, 5) = 2, d(u10, v10) = 

d(3, 5) = 2, and the upper bound of the length is 15, and n = 5 . Furthermore, it is 

assumed that the mod(kmin) = mod(5), and query quantum register qubits i = m = 10. 

In this example, when mod(5) is 0, P is 0, 31, 39, 43, 45, 46, 51, 53, 54, 57, 58, 60, 

168, 176, 193, 194, 196, 200, 208, 239, 247, 251, 253, 254, 263, 267, 269, 270, 275, 

277, 278, 281, 282, 284, 289, 290, 292, 296, 304, 321, 322, 324, 328, 336, 367, 375, 

379, 381, 382, 385, 386, 388, 392, 400, 431, 439, 443, 445, 446, 463, 471, 475, 477, 

478, 483, 485, 486, 489, 490, 492, 497, 498, 500, 504, 519, 523, 525, 526, 531, 533, 

534, 537, 538, 540, 545, 546, 548, 552, 560, 577, 578, 580, 584, 592, 623, 631, 635, 

637, 638, 641, 642, 644, 648, 656, 687, 695, 699, 701, 702, 719, 727, 731, 733, 734, 

739, 741, 742, 745, 746, 748, 753, 754, 756, 760, 769, 770, 772, 776, 784, 815,823, 

827, 829, 830, 847, 855, 859, 861, 862, 867, 869, 870, 873, 874, 876, 881, 882, 884, 

888, 911, 919, 923, 925, 926, 931, 933, 934, 937, 938, 940, 945, 946, 948, 952, 963, 

965, 966, 969, 970, 972, 977, 978, 980, 984, 992, and 1023. 

An example of program on the QCEngine is the following. 

10 var a = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2]; // RAM_a, distance data. 

20 var query_qubits = 10; 

30 var work1_qubits = 4; 

40 var work2_qubits = 5; 

50 var ancilla_qubits = 3; // subtractions of 3 times are able.  

60 qc.reset(query_qubits + work1_qubits + work2_qubits + ancilla_qubits); 

70 var query = qint.new(query_qubits, 'query'); 

80 var work1 = qint.new(work1_qubits, 'work1'); 

90 var work2 = qint.new(work2_qubits, 'work2'); 

100 var ancilla = qint.new(ancilla_qubits, 'ancilla'); 

110 qc.label('q'); // set query 

120 query.write(0); 

130 query.hadamard(); 

140 qc.label(' '); 

150 qc.label('w1'); // set work1 
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160 work1.write(0); 

170 qc.label('w2'); // set work2 

180 work2.write(0); 

190 qc.label('a'); // set ancilla 

200 ancilla.write(0); 

210 qc.print('RAM before increment: '+a+'¥n'); 

220 var query31 = 31; // one of query 

230 var k = 5; // one of length 

240 var work1_0 = 0; // one of work1. one of mod(k). k = 5. 

250 qc.label('increment'); 

260 work2.add(a[0],query.bits(0x1)); 

270 work2.add(a[1],query.bits(0x2)); 

280 work2.add(a[2],query.bits(0x4)); 

290 work2.add(a[3],query.bits(0x8)); 

300 work2.add(a[4],query.bits(0x10)); 

310 work2.add(a[5],query.bits(0x20)); 

320 work2.add(a[6],query.bits(0x40)); 

330 work2.add(a[7],query.bits(0x80)); 

340 work2.add(a[8],query.bits(0x100)); 

350 work2.add(a[9],query.bits(0x200)); 

360 qc.label('mod(' + k + ')'); 

370 work2.subtract(k); 

380 qc.cnot(ancilla.bits(0x1),work2.bits(0x10)); 

390 work2.add(k, ancilla.bits(0x1)); 

400 work2.subtract(k); 

410 qc.cnot(ancilla.bits(0x2),work2.bits(0x10)); 

420 work2.add(k, ancilla.bits(0x2)); 

430 work2.subtract(k); 

440 qc.cnot(ancilla.bits(0x4),work2.bits(0x10)); 

450 work2.add(k, ancilla.bits(0x4)); 

460 work1.add(work2); 
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470 qc.label('uncompute'); 

480 work2.subtract(k,ancilla.bits(0x4)); 

490 qc.cnot(ancilla.bits(0x4),work2.bits(0x10)); 

500 work2.add(k); 

510 work2.subtract(k,ancilla.bits(0x2)); 

520 qc.cnot(ancilla.bits(0x2),work2.bits(0x10)); 

530 work2.add(k); 

540 work2.subtract(k,ancilla.bits(0x1)); 

550 qc.cnot(ancilla.bits(0x1),work2.bits(0x10)); 

560 work2.add(k); 

570 work2.subtract(a[9],query.bits(0x200)); 

580 work2.subtract(a[8],query.bits(0x100)); 

590 work2.subtract(a[7],query.bits(0x80)); 

600 work2.subtract(a[6],query.bits(0x40)); 

610 work2.subtract(a[5],query.bits(0x20)); 

620 work2.subtract(a[4],query.bits(0x10)); 

630 work2.subtract(a[3],query.bits(0x8)); 

640 work2.subtract(a[2],query.bits(0x4)); 

650 work2.subtract(a[1],query.bits(0x2)); 

660 work2.subtract(a[0],query.bits(0x1)); 

670 qc.label('QFT'); 

680 query.QFT(); 

690 var prob31 = 0; 

700 prob31 += query.peekProbability(query31); 

710 // Print output query-Prob 

720 qc.print(' Prob_query31: ' + prob31); 

730 var prob0 = 0; 

740 prob0 += work1.peekProbability(work1_0); // work1_0 = 0 

750 // Print output work1-Prob 

760 qc.print(' Prob_work1_0: ' + prob0); 

770 // read 
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780 qc.label('Rq'); 

790 var b2 = query.read(); 

800 // Print output result 

810 qc.print(' Read query = ' + b2 + '.'); 

820 // end 

When this program is copied on Programming Quantum Computers https: //orelly-qc. 

github. io/# [free on-line quantum computation simulator QCEngine] [4], you can run 

it. [Caution!: Please delate the line numbers.] 

A result of this program is the following. 

The probe value of |w1, j› = 0 : ≈ 0.1992. 

The probe value of |xi› = 31 : ≈ 0.0004289. 

The example of 10 times test: The read value of |xi› = 86, 160, 544, 354, 533, 424, 891, 

763, 671, 145. (= spike) 

The candidates of number of spikes are estimated by the function [the function 

estimate_num_spikes (spike, range) [spike: read value, range: 2m = 210 = 1024]: 

86 →12, 24, 36, 48, 60, 71, 83, 95, 107, 119, 131, 262, 381, 512 ; 160 → 6, 13, 19, 32, 

64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 

640, 672, 704, 736, 768, 800, 832 ; 544 → 2, 4, 6, 9, 11, 13, 15, 17, 32, 64, 96, 128, 

160, 192, 224, 256, 288, 320, 352, 384, 416, 448, 480, 512 ; 354 → 3, 6, 9, 12, 14, 17, 

20, 23, 26, 52, 55, 81, 162, 243, 269, 350, 431, 512 ; 533 → 2, 4, 6, 8, 10, 13, 15, 17, 

19, 21, 23, 25, 48, 73, 146, 171, 244, 317 ; 424 → 3, 5, 10, 12, 17, 29, 58, 70, 99, 128, 

256, 384, 512 ; 891 → 8, 15, 23, 46, 54, 77, 154, 231, 348, 385, 462, 539, 562, 639, 

716, 793, 870 ; 763 → 4, 8, 12, 16, 20, 24, 27, 31, 35, 39, 43, 47, 51, 102, 153, 204, 

255, 306, 357, 408, 459, 510, 514, 565, 616, 667, 718 ; 671 → 3, 6, 9, 12, 15, 17, 20, 

23, 26, 27, 58, 87, 116, 145, 174, 177, 206, 235, 264, 293, 322, 351 ; 145 → 7, 14, 21, 

28, 35, 42, 49, 57, 64, 71, 78, 85, 92, 99, 106, 113, 226, 339, 482, 565, 572, 685, 798. 

When P is 31, 20x1 + 21x2 + 22x3 + 23x4 + 24x5 + 25x6 + 26x7 + 27x8 + 28x9 + 29x10: 

20×1 + 21×1 + 22×1 + 23×1 + 24×1 + 25×0 + 26×0 + 27×0 + 28×0 + 29×0 = 31. 

There is d(1, 2)x1 + d(2, 3)x2 + d(3, 4)x3 + d(4, 5)x4 + d(5, 1)x5 + d(1, 3)x6 + d(1, 4)x7 + 

d(2, 4)x8 + d(2, 5)x9 + d(3, 5)x10: 

1×1 + 1×1 + 1×1 + 1×1 + 1×1 + 2×0 + 2×0 + 2×0 + 2×0 + 2×0 = 5 (= kmin). 

The repeating times is log2 2
10 = 10 [N = 2m, m = n(n – 1)/2 = 5×4/2 = 10] to obtain a 

minimum length kmin. 

For n = 4 and m = 6: 

RAM; a = [1, 1, 1, 1, 2, 2], 26 = 64, mod(k) = mod(4), where query_qubits = 6, 

work1_qubits = 4, work2_qubits = 5, query15 = 15, and necessary changes are done. 
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In this example, when mod(4) is 0, P is 0, 15, 19, 21, 22, 25, 26, 28, 35, 37, 38, 41, 42, 

44, 48, and 63. 

The probe value of |w1, j› = 0 : ≈ 0. 2500. 

The probe value of |xi› = 15 : ≈ 0.003440. 

The example of 10 times test: The read value of |xi› = 20, 47, 29, 0, 63, 35, 3, 0, 19, 

59. 

The candidates of number of spikes are estimated by the function [the function 

estimate_num_spikes (spike, range) [spike: read value, range 2m = 26 = 64]: 

20 → 3, 6, 10, 13, 16, 32 ; 47 → 4, 8, 11, 15, 30, 34 ; 29 → 2, 4, 7, 9, 11, 22, 33 ; 0 → 

nothingness ; 63 →nothingness ; 35 → 2, 4, 7, 9, 11, 22, 33 ; 3 → 21, 43 ; 19 → 3, 7, 

10, 17, 27, 37 ; 59 → 13, 26, 38, 51. 

When P is 15, 20x1 + 21x2 + 22x3 + 23x4 + 24x5 + 25x6: 

20×1 + 21×1 + 22×1 + 23×1 + 24×0 + 25×0 = 15. 

There is d(1, 2)x1 + d(2, 3)x2 + d(3, 4)x3 + d(4, 1)x4 + d(1, 3)x5 + d(2, 4)x6: 

1×1 + 1×1 + 1×1 + 1×1 + 2×0 + 2×0= 4 (= kmin). 

The repeating times is log2 2
6 = 6 [N = 2m, m = n(n – 1)/2 = 4×3/2 = 6] to obtain a 

minimum length kmin. 

 

DISCUSSION 

In the knapsack problem, there are many combinations of luggages to obtain a value. 

In the traveling salesman problem, when the shortest value is obtained, there is only 

one combination of distances (distance is length between two points). 

Therefore, the search is difficult. 

In section 4, n points’ graph has m = n(n – 1)/2 bases. And then, in m bases, the 

shortest combination is selected. When N is 2m, in the Grover’s method, the 

complexity is N1/2log2 N, in the Shor’s Fourier transform, it is (several times)×log2 N. 

In n = 4, N1/2log2 N = 23log2 2
6 = 8×6 = 48, and (several times)×log2 N ≤ 10×6 = 60. 

In n = 5, N1/2log2 N = 25log2 2
10 = 32×10 = 320, and (several times)×log2 N ≤ 10×10 = 

100. 

In this range, the Shor’s Fourier transform is less than the complexity of the Grover’s 

method at n = 5 and m = 10. 

 

SUMMARY 

The quantum algorithm for the traveling salesman problem by the Shor’s Fourier 

transform with the RAM on the QCEngine, and its example are reported. 



150 Toru Fujimura 

The complexity of this method is (several times)×log2 N, where N is 2m [m = n(n – 

1)/2]. 

I will apply this method for other problems. 
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