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Abstract 

The acceptance of using mathematical software to solve problems in the 

physical, biological, and social sciences has increased dramatically because of 

technological advancements. Parallel programming is one of these 

advancements that has many benefits and that’s why an increased use has in the 

new versions of mathematical packages. On the other hand, there are difficulties 

in its use which make it difficult to apply it to all mathematical problems. In this 

paper, we will examine how parallelization is done in some famous Computer 

Algebra Systems (CAS) and what it offers us in general. 
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Computer Algebra Systems 

The programs that make use of Computational Algebra methods are called Computer 

Algebra Systems (CAS). A CAS aims to automate laborious and challenging algebraic 

manipulation tasks. These systems differ widely from one another in terms of their 

specific functions and applications. For example, some of them provide a programming 

language for the user to define their procedures.  CASs can be divided into two large 

categories according to their use: a) the General-purpose CAS or otherwise the systems 

that contain functions for most fields of Mathematics e.g., Maple, Mathematical, etc., 

and b) special-purpose CAS which specialize in specific areas of Mathematics e.g. 

PARI (Number Theory), DELiA (Differential Equations), etc. 

The first CASs were created in the LISP programming language. Later, new CASs, such 

as the MAPLE and MATHEMATICA were created in the C programming language, 

which could better manage the computer's operational resources like memory. These 

new CASs consumed less memory and therefore could be used on smaller computer 
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systems, which was the reason for their widespread. 

The Basic Components of a Cas 

In the beginning of CAS history - the computer, justifying its name, acted as a powerful 

programmable calculator, able to quickly and automatically (according to a given 

program) perform complex and cumbersome arithmetic and logical operations in 

numbers. Advances in computational Mathematics and the continuous improvement of 

numerical methods make it possible to solve any mathematical problem in this way. It 

is important to note that the result of calculations in this case is represented by a finite 

number in numerical form that is, using decimal places. Sometimes the result is 

represented by a set (array, matrix) of such numbers, but the essence of the 

representation does not change from this - the result is in the form of a finite decimal 

numerical number. However, such a result often did not satisfy professional 

mathematicians, and here is why. Most results of non-trivial mathematical calculations 

in classical Mathematics are traditionally written in symbolic form: using special 

known numbers: e.g. pi and irrational values - using a root. It is believed that otherwise 

there is a fundamental loss of accuracy. 

From the beginning mathematical science proceeded to introduce and use many 

symbols for processing and developing mathematical ideas, making their role decisive 

in its further development. With time only several sign symbols survived with the main 

cause, among others, the response to the laws of convenience, consistency, and 

functionality. The development of Mathematics is directly related to the development 

of different semiotic systems. According to Duval (1999), “Progress in Mathematics is 

linked to evolution (development) of different semiotic systems of the sensory systems: 

of language and image" [1]. The role of symbols in its mediation of expressing ideas 

and conceptualizing new ideas was a pervasive force in Mathematics and these symbols 

evolved as mathematical concepts that from empirical and concrete existence were 

transferred to general and abstract thought. Knowledge of symbols is the study of the 

structure of mathematical signs and symbols and the procedures involved in handling 

them objects into meaningful concepts, processes, and representations. More practically 

it intends to understand how symbols help us to know the way to do mathematical 

calculations. 

Within the environment of mathematical thought the evolution of symbols starts from 

the understanding that symbols are tools that help us in observation and are part of 

larger systems that may evolve with human knowledge or are cultural artifacts that 

support mathematical ideas. Mathematical symbolism is one of the strongest means of 

expression in Mathematics. The use of symbols to represent mathematical ideas 

contributed significantly to the impressive development of mathematical science, 

helping us with a flexible and economical tool.  

Of course, after the rapid improvement of computer systems, a person in computer 

calculations wanted more: why not make the computer perform transformations in the 

traditional ways for Mathematics (fractional-rational transformations, substitutions, 

simplifications, solving equations, differentiation-discrimination, and so on.). This led to 

the creation of computational systems of symbolic Mathematics, designed for a wide range 
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of users - non-mathematical professionals. Thus began the CAS era in the mid-1960s. 

The basic components of a CAS are: 

 A user interface that lets the user insert and manipulate mathematical 

problems. The CAS’s interfaces vary. There are many with a command line interface 

(CLI), others with a graphical user interface (GUI), and a few with only some libraries.  

 A programming language, a simplifier, and an interpreter. Also, a canonical 

function that rewrites a formula to its canonical form. 

 A library with many efficient algorithms implemented for "common" 

operations that let the user not “reinvent the wheel”. 

 An inner arithmetic (E.g. arbitrary precision) that can manipulate 

mathematical objects numerically, symbolically, and graphically.  

 A memory manager. 

 A graphing editor for the creation of two-dimensional and three-dimensional 

graphs of any complexity, visual diagrams, and not only for simple construction but 

also for connecting a graph with a formula, in which a change in a parameter is 

immediately reflected in the graph curve.  

 The development of web documents and networking capabilities for sharing, 

receiving updates, and support. 

Another important part of a symbolic computer algebra system is if it uses the same 

language for data storage, manipulation, and implementation. There are CASs that the 

previous three are the same (E.g. Reduce, Axiom, and Sympy) and others that the core 

uses a different implementation language (E.g. Maple, and Mathematica). Finally, there 

are CASs with a clear distinction between these three (E.g. Cadabra) [2]. 

Parallel Computing 

Parallel computing is using multiple processors concurrently to solve a computational 

problem. The objective is to use as much as we can computer resources to solve a 

problem faster than using serial computation. Solving mathematical algorithms in a 

parallel way creates many problems that have to do with how to transform a serial 

problem into a parallel one, the design of an appropriate hardware architecture to 

support the parallel processing of the algorithms, round-off analysis, etc. Some metrics 

show us the degree of speed improvement and efficiency from parallelism [3]. 

Solving linear systems is one of the most important problems in scientific computing, 

as many well-known real-world applications and problems are modeled through them. 

Very often, the size of these systems is very large and therefore their solution is 

particularly time-consuming. Fatefully, the efficient parallelization of their solution 

becomes fundamental to be able to derive meaningful results in a satisfactory time. 

The methods for solving linear systems are usually divided into systematic ones (which 

are slower to execute, are mainly suitable for dense coefficient matrices, and provide 

the solutions of the linear system, always, with straight mathematical calculations) and 
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iterative/approximate ones. The latter are usually much faster in their execution (this is 

one of the main reasons why they were developed and applied in practice), they are 

suitable for sparse arrays, but their convergence is not certain, so they are not always 

applicable.  

Parallelization usually reduces the overall completion time. However, the computation 

load is not equally distributed among the processors and many of them remain inactive 

for a significant period. For example, the division of the rows of an A table can be done 

in two ways: 

A) With sectional allocation which is the simplest way of allocating table rows to 

processors. Here a subset of contiguous rows of the system coefficient table is assigned 

to each processor. Therefore each Pi processor takes n/p contiguous lines and more 

specifically lines of order i(n/p) to (i+1)(n/p)-1. For example, if the number of 

processors is P=4 and the number of system equations is n=16 then the distribution of 

the lines will be as shown in the following Picture 1. 

 

Figure 1. Sectional distribution of table rows 

 

B) With a circular distribution where the lines of the table that each processor takes 

over are not contiguous. Each processor takes over lines spaced p apart. For example, 

the processor Pi takes over the lines of order i,i+p,i+2p, etc. The assignment of the lines 

is done cyclically (each line of order I is allocated to the processor I mod p). For 

example, if the number of processors is P=4 and the number of system equations is 

n=16 then the distribution of the lines will be as shown in the following Picture 2. 
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Figure 2. Circular distribution of table rows 

Sectional distribution is easier to implement than circular distribution. On the other 

hand, however, the circular distribution leads to a fairer distribution of the rows of the 

table among the processors, based on the calculation load it entails. This can also be 

seen in the Pictures 1 and 2. As we can see with the partitioning the processors go down 

one by one earlier. In contrast to circular distribution, they remain active and participate 

in calculations for more steps. 

One of the biggest challenges to achieving the best parallel program performance is 

usually synchronization and communication among the various subtasks. But there is 

another factor that exists when we deal with big data in parallel energy consumption. In 

new versions of CASs, there are tools to assess power efficiency. So, you can easily 

evaluate and report power and energy consumption. 

Launching and managing numerous Wolfram Language kernel processes from within a 

single master Wolfram Language is the foundation of Wolfram Language parallel 

computing. Numerous methods are available in the Wolfram Language for running 

parallel workers, including locally on the same machine or remotely across a network. 

Furthermore, the network may consist of a heterogeneous grid or a homogeneous grid 

managed by a specific management application [4]. 

With the Parallel Computing Toolbox of MATLAB, you can use computer clusters, 

GPUs (using gpuArray), and multicore processors to solve computationally and data-

intensive problems. Also, you can run applications on workers (locally running 

MATLAB computational engines) and take full advantage of the processing power of 

multicore desktops [5]. 

Parallelism is made possible in Maple by the Task Programming Model, which runs 

several tasks inside of a single process, and with the Grid package which launches 

several processes (with its independent memory) to enable parallelism [6]. 

Advantages/disadvantages of Parallel Computing 

When a CAS is programmed in parallel, it can process and solve problems more 

efficiently by utilizing its resources. Complex problems can be broken down into 

smaller tasks by parallel programs, which can process each task independently at the 

same time. On the other hand, parallelization is not a magic bullet that works for every 

mathematical problem. It also brings up certain issues that must be resolved, like 

compatibility, complexity, and communication. The following Τable 1 summarizes the 

advantages and disadvantages of parallelism. 
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Table 1. Advantages/disadvantages of Parallel Computing 

Advantages Disadvantages 

Enhanced Output 

The capacity of parallel computing to greatly 

enhance performance is one of its main 

benefits. Parallel computing handles complex 

calculations and data-intensive operations far 

faster than sequential computing because it 

divides tasks across multiple processing units. 

This in Mathematics is very helpful, especially 

for jobs like data analysis, scientific 

simulations, and producing high-quality 

graphics. 

Intricacy 

Parallel computing implementation can be 

difficult and complex. Carefully planning and 

taking into account task dependencies are 

necessary when creating algorithms and programs 

that can be parallelized efficiently. Furthermore, 

testing and debugging concurrent programs can be 

more difficult than sequential ones. 

Quick process 
Parallelism can handle the demands of real-

time processing. 

Cost 
Specialized hardware, such as multi-core CPUs, 

GPUs, or clusters of linked computers, is 

frequently needed for parallel computing. Such 

infrastructure can be expensive to acquire and 

maintain. 

The ability to scale 
Excellent scalability is a feature of parallel 

computing, allowing it to effectively manage 

increasing workloads as the number of 

processing units rises. Parallel computing can 

fully utilize these resources as technology 

develops and more potent processors become 

accessible, allowing for faster and more 

effective data and task processing. 

The Amdahl Law 
This law tells us that the sequential part of the 

algorithm determines how much faster a 

computation can be made overall by parallelizing 

it. Put differently, the benefits of parallel 

computing may not materialize as expected if a 

sizable portion of the computation needs to be 

performed sequentially. This limits the amount of 

speedup that can be achieved through parallel 

computing. 

Maxim use of resources 

By using several processing units at once, 

parallel computing maximizes resource usage. 

It maximizes the effectiveness of hardware 

resources by ensuring that no processing power 

is wasted. 

The communication cost 

Tasks in parallel computing frequently require 

synchronization and communication with one 

another. Performance as a whole may be impacted 

by the complexity and possible bottlenecks this 

communication overhead may introduce. To 

lessen these problems, load balancing and 

effective synchronization techniques are crucial. 

 

CONCLUSIONS 

There is a trend toward the development of mathematical software tools utilized in 

science, research, and engineering. The aforementioned areas offer a variety of 

subdivisions for mathematical software applications; however, the selection of software 

necessary for mathematical analyses depends on the purpose of the research or the 

problem being studied. Due to the limitations of these software programs, updated 

versions frequently complement or enhance the features found in one type, thereby 

improving the program's multitasking capabilities. 
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When a CAS is programmed in parallel, it can process and solve problems more 

efficiently by utilizing its resources. Complex problems can be broken down into 

smaller tasks by parallel programs, which can process each task independently at the 

same time. Modern CASs can operate more quickly thanks to parallel processing, which 

divides more complex computational problems into smaller ones and processes them 

simultaneously. 

On the other hand, parallelization is not a magic bullet that works for every 

mathematical problem. It also brings up certain issues that must be resolved, like 

compatibility, complexity, and communication. Data and messages are exchanged 

between processors or cores working on different subproblems during communication, 

which can impact performance and accuracy and add overhead and latency. Sometimes, 

the complexity of an algorithm makes its development, testing, and debugging 

challenging and time-consuming.  
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