Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 20, Number 1 (2024), pp. 183-188
1© Research India Publications
http://www.ripublication.com

Enhancing the Performance of Computer Algebra
Systems

Kostas Zotos

South-west University “Neofit Rilski” Faculty of Science and Mathematics
Department of Informatics
66 Ivan Michailov st. 2700 Blagoevgrad, Bulgaria
zwtos@yahoo.com

Abstract

In recent years, Computer Algebra Systems (CASs) have evolved into a crucial
computational tool due to their ability to address various mathematical issues.
Applications for CAS are abundant in domains where manual calculations are
laborious, challenging, and prone to errors. Various programs that attempted to
show that in the scientific domain, it is possible to move beyond the purely
numerical area and use them to carry out a symbolic calculation first appeared
in the late 1950s and early 1960s. Today's freeware symbolic tools are strong
enough to serve as a workable, trustworthy substitute for pricey commercial
symbolic packages. Desktop CASs are the preferred option for high-
performance computational programs from businesses and professionals, even
though the online versions operate with good speed and performance. In this
paper, we are going to examine all these factors and see some techniques that
significantly improve CAS’s performance.

Keywords: Computer Algebra Systems; CAS; CAS performance; MATLAB;
Maple; Mathematica

INTRODUCTION

Computer Algebra's two main objectives are: Firstly, to give the algorithms to perform
operations on algebraic structures such as fields, vector spaces, rings, ideals, and
modules. Secondly, employ the algorithms and how they are applied to resolve
theoretical and practical mathematical issues.

Symbolic Algebra System (SAS), also known as Computer Algebra System (CAS), is
a package that consists of a language for implementing algebraic objects, an

184 Kostas Zotos

environment to use the language in, and mathematical algorithms and special functions
for performing symbolic manipulations [1]. There are many different types of Computer
Algebra Systems available today. Maple, Mathematics, and MATLAB are the most
widely used and well-liked commercial systems.

In many ways, symbolic and hybrid symbolic-numeric approaches can be far better than
strictly numerical ones. The benefits of the symbolic approach are:

(i) Offering an analytical solution that characterizes every potential solution for a
particular control problem,
(i) Enhancing parametric design and analysis.

It is a natural desire to use a computer to symbolically carry out a mathematical
computation whenever a laborious and drawn-out series of manipulations is needed.
When performing complex calculations, mathematicians, engineers, and computer
scientists frequently turn to CASs. Their preference for one over the other stems from
the system's ability to solve the problem classes that these users find interesting. There
are examples where CAS does not give us the correct result in a mathematical operation.
This happens even in the most famous algebraic systems [2]. Therefore, we must bear
in mind that the performance of these systems has some limits and is not always
accurate.

In this study, we will focus on the most famous MATLAB, Mathematica, and Maple.
The documentation sheets of these CASs are the source of data that we used to compare
them and examine their characteristics. In the rest of the paper, we are going to see ways
to improve CAS performance.

TIPS FOR ENHANCING THE CAS PERFORMANCE

In this section, we will see some tips to handle CASs in a way that maximizes
performance. Most of this material is general and applies to all CASs, but some tips
apply only to specific CASs. Thus, if you want to perform better, pay attention to these
guidelines:

If the type of data changes, create new variables. Steer clear of code that creates
variables. Steer clear of global variables. Local functions are preferable to nested
functions. Rather than using scripts, use functions. It’s a good practice to avoid loop-
based code.

According to Toint (2021), bound-constrained mixed-integer derivative-free
optimization algorithms have software implementations. Some of these
implementations are also capable of handling constraints. They can handle both
continuous and Integer variables. The most well-known are DAKOTA solvers (open-
source and written in C++), DFL solvers, and Brute Force Optimizer (BFO), an open-
source. MATLAB implementation for nonlinear bound-constrained derivative-free
optimization and equilibrium calculations with continuous and discrete variables [3].

Benchmarking, or comparing, mathematical algorithms is a challenging process that
requires careful consideration of numerous subtle factors to produce an objective and

Enhancing the Performance of Computer Algebra... 185

fair assessment. The first step in creating a suitable experimental design is to define the
questions that need to be addressed. This entails choosing appropriate performance
metrics and a test set following the study's goals. Transparency, justice, and
thoroughness are required in the analysis and processing of the data [4].

With AIl, CASs can comprehend Mathematics effectively. Recent studies have
demonstrated that by employing sample problems, machine learning techniques like
support vector machines can enhance the performance of CASs [5]. Furthermore, new
understandings of symbolic computation gained from explainable Al techniques can
lead to innovative applications of CAS.

Use sparse arrays when appropriate (they can reduce computation time and require less
memory). A sparse array is one in which the default value is null, or zero, and most of
the elements have the same value so, in a sparse array, we only need to store the non-
zero/null elements.

It is relatively simple to parallelize even complex algebraic algorithms using a CAS, as
demonstrated by implementing various parallel programming paradigms. Multivariate
nonlinear equation systems solving algorithms are implemented on different parallel
architectures. For instance, Siegel (1993) successfully parallelized a simple solution to
the intricate and significant problem of real root isolation, achieving a five-fold increase
in speed over the original sequential Maple source [6].

According to Mantsika Matooane's (2002) thesis, memory space is an essential resource
for parallel CAS. It is commonly known that memory overload is the primary cause of
Computer Algebra System failures [7]. For example, some of the best algorithms
currently in use for several Computer Algebra problems suffer from intermediate
expression swelling, where the final result is of a reasonable size, but the intermediate
calculation faces severe memory limitations.

The time complexity of the mathematical algorithms can be reduced with hashing,
memoization, or memoisation (an optimization technique that avoids redundant
computations), sorting, dynamic programming, and greedy algorithms.

Numerous smaller CASs have been created by lone investigators or small groups of
researchers at academic institutions. Several certain mathematical computations are far
more effective than large systems (for example, at large polynomials and matrices).
Such systems are Fermat, MuPAD, Singular, CoCoA, GeoGebra, WolframAlpha,
SageMath, Maxima, Scilab, Octave, R, FreeMat, Demetra+, and Pari-Gp [8]. Also,
some simplifiers of small CASs have better execution times rather than famous Algebra
systems (for example Nemo). Short mathematical expressions take very little time to
parse, but their simplification—finding polynomial GCDs, for example—requires large
computational resources because of the high powers of subexpressions. Not every
simplifier completes the same mathematical expression in a fair amount of time.
Symbolica (lib) and Maple simplifiers have the best times with the Mathematica
simplifier being approximately 15 times slower [9].

Scott Frame and John W. Coffey (2014) compared functional and imperative
programming techniques for mathematical software the results show that although the

186 Kostas Zotos

functional approach offers highly expressive features that could make software
development easier, functional programming languages are probably unsuitable for
most mathematically intensive applications due to their performance issues [10].
Python and Julia are two very flexible programming languages that let you do both
symbolic and numerical calculations and are much used for this purpose by students
[11]. Both have strengths and weaknesses and are strong. Julia's speed is one of its main
advantages; large datasets and complex calculations can become time-consuming in
parallel computing and therefore the speed matters a lot. Code written in Python is more
productive but slower, although its runtime is lighter. Additionally, Python's library
selection makes it a better choice for data analysis and machine learning. On the other
hand, when performing computationally demanding tasks like statistical computing
Julia might be a better option for a developer [12],[13].

RESULTS

Large-scale numerical computations may result in excessive demands on the memory
and processing capacity of computers. Several configurations can be made to enhance
desktop CAS performance, including determining whether background processes use
system resources, raising RAM, avoiding loop-based code, positioning independent
operations outside of loops, and avoiding overloading functions (particularly built-in
functions). The time complexity of the mathematical algorithms can be reduced with
hashing, memoization, or memoisation, sorting, dynamic programming, and greedy
algorithms.

Today's freeware symbolic tools are strong enough to serve as a workable, trustworthy
substitute for pricey commercial symbolic packages. Python and Julia are two very
flexible programming languages that let you do both symbolic and numerical
calculations and are much used for this purpose by mathematicians.

In this paper, we have seen some techniques that significantly improve the performance
of CASs. The measurements demonstrate a remarkable performance improvement
when some of the earlier techniques are used [14]. Using effective built-in data
structures (such as packed arrays or sparse arrays, which have far wider uses than one
might assume based on their stated primary function) gives us better execution time,
and the use of Mathematica built-in functions can sometimes make the code run four
times faster [15],[16].

CONCLUSIONS

Mathematicians should be aware of the most recent developments in the Sciences, and
scientists should have access to the most advanced mathematical software. The
connections between Mathematics and the Sciences are especially crucial. A
fundamental element of Science, Mathematics is a part of its structure, its universal
language, and its invaluable repository of knowledge. In turn, Science stimulates and
inspires Mathematics by raising fresh issues and generating novel ideas.

Enhancing the Performance of Computer Algebra... 187

Computer Algebra Systems are being extensively used. However, there is still room for
improvement. The CAS development is continuously receiving new tools and
technologies. Over the coming years, Artificial Intelligence (AI) will become more and
more significant. We hope that shortly the new versions of CASs will be even faster
and more efficient. Future developments in CAS are anticipated to be influenced by
emerging technologies such as artificial neural networks. There's only one thing that is
certain in the uncertain future of CAS: the trend toward web-based applications will not
stop.

REFERENCES

[1] S. Rachev, M. Racheva, A. Andreev and D. Ganchev (2021). Mathematical
software tools applicable to remote learning and scientific research in case of
isolation. INTERNATIONAL SCIENTIFIC JOURNAL "MATHEMATICAL
MODELING" YEAR V, ISSUE 1, P.P. 8-12 (2021).

[2] Antonio J. Duran, M. Perez and Juan L. Varona (2014). The misfortunes of
a trio of mathematicians using Computer Algebra Systems. Can we trust in
them? Notices Amer. Math. Soc. 61 (2014), 1249-1252.

[3] Toint, P.L., Porcelli, M.: BFO—brute-force optimizer (current as of 15 March
2021). https://sites.google.com/site/bfocode/home

[4] V. Beiranvand, W. Hare, and Y. Lucet (2017). Best Practices for Comparing
Optimization Algorithms. Optim Eng (2017) 18:815-848, DOI
10.1007/s11081-017-9366

[5] L.A. Toro-Carvajal, F. N. Jiménez-Garcia, H. H. Ortiz-Alvarez, J. de
Jesus Agudelo-Calle (2012). Los sistemas cognitivos artifi ciales en la
ensefianza de la Matematica. Educ.Educ. Vol. 15. No. 2 | Mayo-agosto de
2012 | pp. 167-183.

[6] Kurt Siegl (1993). Parallelizing Algorithms for Symbolic Computation using
Maple. 4th ACM 0.89791-589.5/93/0005/0179

[7] Mantsika Matooane (2002). Parallel systems in symbolic and algebraic
computation. UCAM-CL-TR-537 ISSN 1476-2986

[8] Robert H. Lewis (1999). Comparison of polynomial-oriented computer
algebra systems. ACM SIGSAM Bulletin 34(1):24-24.

[9] K. Mokrov, A. Smirnov and M. Zeng (2023), “Rational Function
Simplification for Integration-by-Parts Reduction and Beyond,”
doi:10.26089/NumMet.v24r425 [arXiv: 2304. 13418 [hep-ph]].

[10] Scott Frame and John W. Coffey (2014). 4 Comparison of Functional and
Imperative Programming Techniques for Mathematical Software Development.
Systemics, Cybernetics and Informatics Volume 12 - Number 2 - Year 2014.

[11] V. G. Martinez, L. H. Encinas, A. M. Muiioz and A. Q. Dios (2021). Using
Free Mathematical Software in Engineering Classes. Axioms 2021, 10, 253.
https://doi.org/10.3390/axioms10040253

[12] https://hyperskill.org/blog/post/julia-vs-python-a-comparison-of-two-popular-
programming-languages

[13] https://datascientest.com/en/python-vs-julia-which-is-the-best-language-for-

188 Kostas Zotos

data-science

[14] https://www.mathworks.com/products/matlab/performance.html

[15] https://sudonull.com/post/96601-10-Tips-for-Writing-Quick-Code-in-
Mathematica

[16] S. Boragan Aruoba, Jesus Fernandez-Villaverde (2015). A Comparison of
Programming Languages in Economics. Journal of Economic Dynamics and
Control Volume 58, September 2015, Pages 265-273.

