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Abstract

The study of matrices and determinants has a long history. The subject has seen
great progress with the advent of computers. In the present era of building models
of machine learning the use of matrices of large sizes has become imminent.
Solving a system of equations using matrices has been a paradigm shift in the
theory of equations and fits perfectly well for solving them with computers. One
of the challenges that still persist is when the matrix is ill-conditioned (either very
large or small numbers as matrix elements). As a result, one might encounter
instabilities in inversion, either in the form of elemental inaccuracy or the final
inverse itself. This challenge paved the way for inventing novel algorithms and
numerical approaches to handle the calculation of these ill-conditioned matrices.
In this article we propose a unique method for Vandermonde matrices. Here
we convert a class of analytically solvable system of equations to a problem
that in principle can be numerically friendly and accurate. We show that the
method of conversion avoids division completely and is well behaved to handle
ill-conditioned matrices. We also provide simple programs that can be used as
a model to use on large dimensional matrices and show how the errors can be
minimized with the proposed approach.

Keywords: Vandermonde, nilpotent, multinomial expansion, ill-conditioned, LU
decomposition, division free.
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1. INTRODUCTION

Inverse of a matrix is a fundamental concept in linear algebra. For a square matrix A,
if there exists another matrix B such that their product results in the identity matrix
(AB = BA =), then B is said to be the inverse of A, denoted as A~!. Finding the
inverse of a matrix is a crucial operation in linear algebra and has various applications
in mathematics, sciences and engineering [1], [2], [3], [4]. The inverse of a matrix
allows us to solve linear systems of equations, compute determinants, and solve certain
optimization problems. There are many methods to finding inverses some of which are
Gaussian Elimination with back substitution, Matrix adjoint method, elementary row
operations, matrix decomposition methods - LU, QR, Singular value decomposition
(SVD), matrix inversion lemma, and pseudo-inverses. Most often, the latter method of
pseudo-inverses are used in case of non-square and ill-conditioned matrices [5].

An ill-conditioned matrix is one that is very sensitive to small changes in its elements,
resulting in significant changes the elements of its inverse. This sensitivity makes it
difficult to compute the inverse accurately using a numerical procedure. Similarly,
rounding errors and truncation leads to significant loss of precision. As a result, the
computed inverse might not accurately represent the true inverse. When finding inverses
of matrices numerically for ill-conditioned ones, it is essential to use techniques that
avoid or minimize division by small or large numbers. Often times, direct computation
of the inverse of an ill-conditioned matrix is avoided and alternate methods such as
Scaling, Regularization, Matrix decomposition and method of Pseudoinverses.

The choice of method depends on the properties of a given matrix and often for
a specific application. For small matrices or when precision is a concern, direct
methods like Gaussian elimination or LU decomposition are popular methods. For large
and sparse matrices, iterative methods pivoting techniques or decomposition-based
approaches might be more efficient. In some cases, a matrix may not be invertible. In
such a case a pseudo-inverse (also known as the Moore-Penrose inverse) can be used.
It is commonly used in applications like least squares regression. However, we should
note that this inverse is not a unique solution.

In the next section, we elaborate the specific topic of interest on matrix inversion
for Vandermonde type of matrices. The approach presented utilizes in constructing
a Vandermonde matrix using algebraic polynomial of distinct roots.
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2. PROBLEM FORMULATION

Let a4, a9, as, ... a, be any ordered sequence of n distinct natural numbers. Define,
functional values by the expression such that f,,(1) as (a1 + as + az + ... + a,), fn(2)
be (ayas + asas + azay + ... + a,_1a,), sum of products of numbers taken two at a
time without repetitions, f,(3) being sum of product of combinations of three numbers
(a1asa3 + asaszay + ...), without repetitions, and finally, f,(n) be products of all n
elements ay, as, a3 and a,,. We use the notation f,, (k) for sum of product of & terms of n
elements taken. In one simple example, the a;s can be first n natural numbers. It is easy
to show in this case that f,,(1) = n(n + 1)/2 and f,,(n) = n!. Yet, even in this simple
case of the choice of a;’s, the calculation of f,, (k) is non-trivial for 1 < k£ < n. Using
this as the basis of the problem, we explore in detail to provide computation friendly
method to evaluate f,, (k) which involves matrix method and inverse computation.

Mathematical interpolation is a method for estimating a function’s value at locations
when the function is specified at certain points in the domain of the function. In this
context too - the estimation of the coefficients of the polynomial expression, these same
fn(k) occur naturally in this interpolation problem and lead to Vandermonde matrices

[6].
Consider a polynomial of n'* order, P,(x) of the form given by equation (1):
P, (z) = (x4 a1)(x + az)...(x + a,) (1)

with ay, as, ..., a, being distinct positive integers. Equation (1) can be expanded and
written as (2):

Py(x) = 2" + fu(1)z" '+ fu(2)2" 2+ ... + fu(n) 2)
where f,(k)s for (1 < k < n) are the terms we are interested in computing. Clearly,

T = —ay, are the zeroes of P, (z). In other words, for each k, we get n equations of the
form:

(=) = (=k)" + Fu (1) (=k)" 4 ful2)(—R)" o ful(n) = 0 LS VR < (3)

These n equations, on re-arrangement, can be written in the following form for each k:

FaW)/k = [a(2)/K* + fu(3) /K + .. = fuln) /K" =1 4)
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and can be compactly written as

1 —1 (—1)n_1 fn(l) 1
1{2 _1:/2 (-1) | /2 fn:@) _ 1 (5)
1/n —1/n%2 ... (=1)"1/n" fa(n) !

The above matrix contains symmetries in rows and columns, the row terms are in
geometric series and the column elements are simply terms of a harmonic p-series,
1/nP. The matrix is by definition, a Vandermonde matrix, general form of which is
shown below.

1 -1 ... (=1t £u(1) 1

vr —ys - (DT | ] fal2) 1 )

ys  —y3 ... (=1)"lyp L@ =1 =V - fi=1. ®
Yn —Yh .. (=1)"yn fu(n) 1

Here, V, fn and in are the ‘n x n/ matrix, column vector f, (k) and unit column vector
respectively. The determinant of 1/ is non singular and its value, up to a constant
multiplication factor, can be seen by using the factorization method and is given by

1 -1 ... (—1t
Yo =y oo (1) y 0
det(Vy=1| vs i . (D" = [ clwi—v)A—w)y
. 1=2,7=2i#j
Yy —y2 ... (1) Thyn

Thus, the column vector of f,, (k) can be found analytically by inversion of matrix V.

fn(1) 1 -1 ... (=1 -1

fn:(2) 1{2 —1/2 (—1)".* /on 1 -

fn(n) /n —1/n* ... (=)™ !/n" 1
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3. METHODS AND DISCUSSIONS

This section focuses on a general method of reduction to obtain inverse of these
Vandermonde matrices with an emphasis on large values of n. Brute force approach
becomes impractical for numbers n > 100, as the matrices become ill-conditioned.
A direct computation for n = 50 and n = 100 was envisaged using SageMath/ Octave
on a computer with 16GB RAM and 256GB hard disk drive. Though the expected
solutions are all integers for large n values, the elements of inverse matrix had fractional
solutions or complex numbers. This computational challenge is attributable to floating
point limitations of ordinary computers. We provide a method to find an inverse of the
Vandermonde matrix as shown below. First, we reduce the Vandermonde matrix, V' to
an upper triangular matrix using row-Echelon reduction method. The resulting matrix
equation (8) is shown below:

1 -1 ... (—1)n-t f(1) 1

0 -1 ax+1 (R2 — Ry) terms f(2) —1/ay

0 0 1 (R3 — R1) — (R2 — Ry) terms f3) | = 1/(agas)

0 0 (—1)n1 f(n) (—1)"1/(aza3..an)

(®)

We note that the equation (8) can be written as a sum of two matrices: a diagonal

matrix with the principal diagonal elements as £1, which is a Unitary diagonal matrix

E(n) with determinant £1 and another matrix that is an upper triangle nilpotent matrix
of rank (n — 1). This can be compactly represented as

(E+N)-(F)=C ©)

where F is the unitary matrix, /V being strictly upper triangular matrix, F' is the column
vector of interest, and C' is the last column of the echelon matrix shown in (8). We
also notice that det(FE) can either be 1, depending on choice of even or odd values of
n. To remove the ambiguity, we convert to a equivalent class of systems which have
just the identity matrix /(n). Left multiplying equation (9) with F and using E? = I,
N' =F-N,C"=FE-C, we obtain

E-(E+N)- (F)=E-C = (I+N')-(F)=C" (10)
F=I+N)'"C' =F={I+(=N)+(=N)?- . —+(=D)" L (N H).C" (11)
The series is terminate at n — 1 order of IV as (N')" is a zero matrix.

The solution for each f, (k) of column matrix F in question is obtained by assigning
ar, values 1/k, 1 < Vk < nin N’ and its summation terms multiplied with C’ column
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vector. We illustrate with an example in the next section to show that the matrix entries
of (11) are free of large denominators.

In the above illustration, [ is a product of an upper triangular square matrix and a
column vector C’, is constrained by the way F' and C’ are related through (7) . It is not
difficult to generalize from this to solve for the Vandermonde matrix that is independent
constraints.

In order to do that, we consider the L - U decomposition form and assign (I + K) to be
an lower diagonal matrix, say, L of the L-U form and another equivalent form for upper
diagonalas U = D-(I+Y). We need a diagonal normalizer D to factorize into (I +Y")
to be usable for nilpotent expansions during inversion, see [7] for an equivalence with
lower triangular matrix. Here, K and Y are strictly lower and upper triangular matrices.

V=L-U=(I+K)-D-(I+Y) (12)

L'=I+K) "=+ (—K)+ (=K)*>...+ (=)' (K)") (13)

Ult=(D-(I+Y) ' ={I+Y) "D = (I+(-Y)+(-Y)2 .+ (=) ()" 1.D !

(14)
We now have two representations for L~! and U~! that is sufficient to use for any
generic Vandermonde inverse.

Vi=(@-u)'=v"tLt'=1+Y)"- D' (I+K)! (15)

This form provides all the requirements to produce a division free inversion of the
Vandermonde matrix. One can independently compute basic elements K, Y and D
using terms of V. We refer to work of Sheng-Liang Yang, [11] for exemplary illustration
of L and U forms which can be generalized to obtain components of nilpotent terms
for both strictly upper and lower matrices. To improve computational efficiency, it is
required to have numerical elements of nilpotent matrices, subsequent powers of it are
faster than symbolic version of computation.

4. ILLUSTRATIONS

Consider an example for a small (n = 5) algebraic polynomial of (6). We illustrate a
method based on multinomial expansion to obtain the elements of the N’ matrix.
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V5(5 x b), with a; = 1. The equation (6) reduces to
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(16)

The corresponding expressions for the Unitary matrix, E5 and the nilpotent matrix Ns

are therefore,

0 —1 1

0 0 ay+1
Ny = 0 0 0

0 0 0

0 0 0

o O O O =

—1
—(a3 +ay+1)
—(&3 + (05} + 1)

0
0

o O = O O

0 O
0 O
0 01;
-1 0
0 1

1
(a3 + a3 +az + 1)

(a3 + a3 + azas + az + as + 1)

(ag +asz+as+1)
0

and the transformed nilpotent matrix N. and the column vector Cf after left

multiplication with F5 are:

0 -1 1

0 0 —(az+1)
No= 10 o 0

0 0 0

0 O 0

Ci =

—1 1
(a3 4 as + 1) —(a3+a3+ax+1)
—(az +ax+1) (a3 + a3+ azas+az+as+ 1)
0 —(ag+az+ax+1)
0 0
1
1/asy
1/(asas)
1/(asaqas)

1/(&2&3&4&5)
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From this example it is clear that all our entries of nilpotent expansion terms are free of
large denominators (here it is trivially equal to 1). Now, to compute f5(7), simply solve
by expanding (I + N’)~! . C’ given in (11) by substituting for N} and term by term
matrix addition of non vanishing powers of V/, followed by a trivial column matrix
multiplication of C{.

S. COMPUTATIONAL ‘TRICK’ FOR OBTAINING ELEMENTS OF N’

We observe that elements of the matrix N’ have a certain symmetry in the powers of the
various a;s that enables the terms of N/ to be culled out of a expansion of multinomial
expression but without the corresponding coefficients. The corresponding generating
function, for the elements of the N’ matrix with a; = 1, is the multinomial expansion
of the expression: (1 + as + .. + ax)”. On expansion, we get all the terms of the
matrix elements of N’. A simple computer program is devised to replace multinomial
coefficients with 1 in each term and complete computation of the inverse. We further
emphasize on the trick here is to have an analytical form for elements of the nilpotent
matrix. Explicitly, it is a symbolic generalization that could have arbitrary a;s of
Vandermonde matrix, and the routine deduces all elements of N without having to deal
with large valued divisors

Fore.g., let us consider a 10 dimensional matrix N7, and compute the multinomial terms
for a particular element of the matrix, say Ny, (7*" row, 10" column term). Based on
previous discussion, the first non-vanishing term of 7" row will be the term, N/ ¢, which
is first order, the number of variables will be from a5 through az; the N§79 will be a sum
of first and second degree terms of a;; and the degree of 10" column would be 3. Thus,
a multinomial series expansion of (1 + ay + a3 + a4 + as + ag + a7)* would be contain
all possible combinations of a;, except for multinomial numerical coefficients. If we
can set these coefficients to 1, in the expansion, all the terms of matrix element Né,w
can be obtained. There are no analytical expression for doing such a thing, thus needs
a computation trick. For example, the polynomial, or generating function for N7 , is
given in (17).

(Né,lo)generator - (CLl +ao 4+ a3z + aqg + a5 + ag + CL7)3 (17)

3 7
= (kl,kg,...,k7) Q“k

k1+ko+-+k7=3
k1,k2,....k7>0

with a; = 1 (representation to match with convention of multinomial expansion). The
multinomial coefficients are then replaced by 1 to get matrix term, Né’w. (see next

section for details).
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Single term computation: an example-for V/,’s version of equation (6):

For computational trick, we use the MATLAB/Octave built in routines to identify
numerical coefficients in the multinomial expansion and store them as coefficients in
an array, i.e., the expansion in MATLAB/Octave is stored as [M!] - [C], where MT
is transposed array of multinomial coefficients and [C] is a column of multiplicands.
We then simply add all the terms of [C] column matrix. Using this built in feature, the
matrix elements are computed term by term and the N’ matrix is stored. A typical result
from computation for a 10 x 10 nilpotent matrix’ N{0<7,1o> term is shown below. Here,
1o is a nilpotent matrix of 10 x 10 with '°Cyy non-vanishing upper triangle elements.

/ _ 3 2 2 2 2 2 2 2
10610y = —(ay + asa3 + aza4 + azas + asa6 + azar + a3 + axa; + azasay

+ aqsasas + asasag + asasay + asas + agai + asa4as5 + aga406 + Aga407 + A204 + agag
+ asasag + asasar + asas + aga% + asapar + azae + a2a$ + asar + as + a§ + a§a4

+ a§a5 + a§a6 + a§a7 + a§ + agai + a3a405 + Q30406 + Q30407 + A304 + a3a§

+ azasag + azasar + asas + azag + azagar + azag + asaz + asar; + as + a; + ajas

+ ajag + ajay + ai + asai + asasag + asasar + asas + aza; + asagar + asag

+ a4a$ + aqa7 + a4 + ag’ + agaﬁ + a§a7 + ag + a5a§ + asagar + asae + a5a$

+ asay + as + aj + agay + ai + agar + agar + ag + as + ar + a; + 1)

Likewise, the remaining non-vanishing terms can be computed and stored as matrix
elements for a given N'. Tt is sufficient to use N’ and expand the powers, which are all
multiplicative and additive by construction (Refer Program 2 for details).

A couple of final notes on the matrix term. The sign factor (£1) for a given term
is simply deduced by evaluating (—1)**7/, where 7 and j are row and column index
respectively. Second important note being, the elements of distinct sized matrices,
N,, and Nj, where o > [3, then all 4,j terms of Nj are contained in N;. This
might be particularly useful in re-using the terms needed to build the matrix element
library. Sign factors do not apply if the V' is purely using L - U decomposition, in other
words, elements of /i obtained through (17) can use absolute value. Lastly, a different
generating function/methods are needed to obtain elements of K and Y matrices.

Computational considerations

In case of Vandermonde matrix, inversion operation gets greatly simplified to compute
as the terms are in a geometric progression along a row or column. For a smaller
dimensions, any method would work well, but here we are explicitly interested in



198 Anand Aruna Kumar et al.

large factorials and their inverses, yet get integral solutions to the problem in question
(say 1000! or 1/1000!), the numbers are large or small depending on how it appears
in evaluation. The alternate methods for matrix inversion target towards complete
solutions of Gauss-Jordan methods with an identity matrix or diagonalized form, also
known as reduced row echelon form (RREF). We have avoided this method, as RREF
for large matrix size have the same issue of large denominators and inaccuracies in the
matrix elements, since general matrix inverse routines use some or other form of RREF
in their subroutines.

In the case of nilpotent matrix N (or N’), the algebraic expression for matrix
element of N (or N’) in the binomial expansion of equation (11) is shown. In
any nilpotent n X n matrix of rank (n — 1), there are "C, matrix elements.
The number of terms in the expansion of equation (11) would have a total of
10y 472 Cy 4+ ...+ 1=mn-(n? —1)/6. Note that this is proportional to the total
number of operations which are multiplication, addition or subtraction avoiding any or
all division.

The big challenge in computation here is of the length of terms for each matrix element
of the nilpotent matrix. Typically, the largest number of terms in any n-dimensional
matrix would be "C,, /5 for even n, or "C(,+1)/2 for odd n. This is also the term
that takes the largest time for computation. Once the entries of nilpotent matrix
N' are independently computed and constructed, the rest of process of power series
expansion are simply multiplicative and additive. A suitable architecture can support
such computations and we refer to an excellent treatise on computation methods here
[8] for optimal choice of method for specific applications. Hence, we can thus construct
a divisor free matrix inversion for a certain class of matrices like Vandermonde type.

6. CONCLUSION

The subject of computation of inverse of a matrix has been studied intensely and
received great deal of attention due to modern use of matrix methods in Machine
learning, Neural networks and other subjects. Solving a large systems of equations
using computers is a regular feature in the present times. Yet, calculation of
inverse of a matrix is difficult due to challenges related to singularity, computational
complexity, numerical precision, ill-conditioning, storage requirements, dimensionality,
and potential computational errors.

In this article we proposed a numerical-friendly method for the calculation of inverse for
Vandermonde type of matrices. This method consists of separating a given matrix into
upper and lower Nilpotent matrices through L - U decomposition. The inverse of which
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has been shown to be completely division free by large/ small numbers. Therefore, this
method or approach, makes it potentially easy and suitable for extending to a wide set
of ill-conditioned matrices too. Finally, we have provided simple example programs for
ideas, that can be developed to make inversion of Vandermonde matrices division free.

7. SUPPLEMENTARY MATERIAL: NUMERICAL IMPLEMENTATION,
PROGRAMS

A limited set of very simple programs/routines are provided for the user to test them
out and improvise on specific algorithms for larger matrices, all of the programs can be
compiled using open source packages.

Program 1: General Matrix inversion using Sagemath: https://www.sagemath.
org

# Program 1
# Change variables size_row size_col to test change the dim of the matrix

# Compute capability on ordinary PC upto 150x150 dimension.

# Example using 50x50 matrix

var (' size_row size_col’)

size_row =50

size_col = 50

A = matrix(size_row, size_col, lambda x,y:(-1)" (y)*(1/(x+1) " (y+1)))
AInv = A.inverse()

ColOfls = matrix(QQ,size_row, 1, lambda x,y:1);

FinalFs = AinvxColOfls;FinalFs

Program 2: Compute a specific matrix element of nilpotent matrix, N using modified
multinomial expansion using Octave: https://www.octave.org.

# Program 2:
# Expression for Matrix element of $N_1i7js.
# A simple program to generate symmetric polynomial of multiple variables

# This example uses N_{7,10} shown in the article.

clear ()
pkg load symbolic # Load symbolic package.

syms a2 a3 a4 ab5 a6 a7 # Load 6 variables a2..a7 as symbols---declaration
P= (14 a2 + a3 + a4 + a5 + a6 + a7)"3; # Multinomial

[c,t] = coeffs(P); # Declaration for co-effecients and terms of polynomial
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size(c) ; # Check the dimension of coeffient matrix.

R

sum(t (1, :)); # Sum of all terms of combinations of a_i polynomial.

L = latex(sym(R)); # This converts the symbolic result to a character

Reference polynomial terms

= =

= latex (expand (P)); # Latex formatted polynomial

# Data and file management

fileID1l = fopen(’<Filepath/filename.txt>’,’wt’); # File open to text.
fprintf (fileID1, ’'%s \n’ ,L);

fclose (fileID1)

fileID2 = fopen (’'<Filepath/filenamepoly.txt>’,’ wt’);
fprintf (fileID2, ’'%s \n’,M);

fclose (fileID2)

toc # Computational time

# Use (-1) " {i+j} as a multiplier to get the sign of N’'’s {ij} term.
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