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Abstract

Chebyshev’s second function, the Möbius function, and Mersenne primes are
used to derive a function that estimates the number of primes less than a given
amount. A relationship between this function and Riemann zeta function zeros is
investigated. Dynamical zeta functions are derived using this function.
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1. INTRODUCTION
Chebyshev’s second function is the summatory Mangoldt function, that is,

ψ(x) =
∑
n≤x

Λ(n), x > 0. (1)

Λ(n) equals log(p) if n = pm for some prime p and some m ≥ 1 or 0 otherwise.
The prime number theorem is equivalent to the asymptotic formula∑

n≤x

Λ(n) ∼ x, x→ ∞ (2)

This asymptotic formula states that

lim
x→∞

ψ(x)

x
= 1. (3)

Let vn, n = 1, 2, 3, . . . , 10000, denote
∑

i|n(ψi+1 − ψi)µ(i) where µ(i) denotes the
Möbius function. The Möbius function is defined as follows. µ(1) is set to 1. For
n > 1, write n = pa11 · · · pakk . Then µ(n) = (−1)k if a1 = a2 = . . . = ak = 1 or
0 otherwise. ψ1 is set to 0. For prime n other than Mersenne primes (3, 7, 31, 127,
8191,...), vn then equals log(2). If n is a Mersenne prime, then vn = 0 since n + 1
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is a prime power and the ψ values increase by log(2) at this point (cancelling out the
difference between ψ2 and ψ1). In general, if n is odd, vn equals an integer multiple of
log(2) (including a multiple of 0). Note that the Möbius function zeros out any ψi+1−ψi

value in the sum where i is not square-free. A plot of the vn values versus the n values
is

Figure 1

The respective counts of the number of elements in each line are 1, 3000, 1739, 235,
23, and 2 (some points are visually indistinguishable from other points).

The sum of the counts times the respective multiples of log(2) is used to estimate the
number of primes. Let v′n denote vn/ log(vn) and π(n) denote the number of primes
less than or equal to n. A plot of v′n for n = 512, 514, 516,...,710 is

Figure 2
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The n values up to 512 are not considered because the vn values are negative. Note that
there are some equal v′n values. A plot of the corresponding π(n) values is

Figure 3

A plot of v′n versus π(n) is

Figure 4

Other than the v′n values that are equal, the v′n values are equally distributed along the
y-axis for each π(n) value.

A plot of π(n) for n=49802, 49804, 49806,. . .,50000 is
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Figure 5

A plot of v′n versus π(n) for n=49802, 49804, 49806,. . .,50000 is

Figure 6

In the following table, the first column is the π(n) values. The second column is the
number of points these values are mapped to. The third column is the numbers of v′n
values that are equal. The sum of the values in parentheses for a particular row is
the π(n) value and the number of values in parentheses is the number of points in the
mapping. For example, in the third row, there are three v′n values that are not equal.
3 → 1 (3)

2 → 1 (2)
6 → 3 (1,1,4)
4 → 3 (1,2,1)



The Prime Number Theorem, Riemann Zeta Function... 19

6 → 4 (2,1,2,1)
5 → 3 (1,2,2)
9 → 5 (1,2,3,1,2)
3 → 2 (1,2)
7 → 3 (3,1,3)
14 → 8 (2,1,2,2,1,3,2,1)
1 → 1 (1)
3 → 2 (2,1)
5 → 3 (3,1,1)
1 → 1 (1)
2 → 2 (1,1)
7 → 4 (3,1,2,1)
17 → 10 (2,1,1,1,1,3,2,1,2,3)
1 → 1 (1)
3 → 3 (1,1,1)
1 → 1 (1)

A plot of v′n versus π(n) for n up to 20000 is

Figure 7

For a linear least-squares fit of the curve, p1 = 0.2011 with a 95% confidence interval
of (0.201, 0.2011), p2 = 2.729 with a 95% confidence interval of (2.7, 2.757),
SSE=1.722 · 104, R-squared=1, and RMSE=0.9339. For n <= 80000, p1 = 0.2007

with a 95% confidence inerval of (0.2007, 0.2007), p2 = 3.283 with a 95% confidence
interval of (3.253, 3.312), SSE=7.62 · 104, R-squared=1, and RMSE=1.385.
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2. RIEMANN ZETA FUNCTION ZEROS

The Riemann zeta function ζ(s) for 0 < Re(s) < 1 can be computed from the η
function;

η(s) =
∞∑
n=1

(−1)n+1

ns
= (1− 21−s)ζ(s) (4)

A plot of the real components of ζ(s) for the first non-trivial zeta functon zero
(s = (0.5, 14.1347251417)) and n ≤ 200 is

Figure 8

A plot of the values from n = 147 to 184 where successive values are connected is

Figure 9
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A plot of the n values of the inflection points (where the curve crosses the x-axis from
above) for n ≤ 200 is

Figure 10

The n values of the inflection points for n ≤ 95 are 7, 11, 14, 17, 19, 22, 24, 27, 29, 32,
34, 36, 38, 41, 43, 45, 47, 50, 52, 54, 56, 58, 61, 63, 65, 67, 69, 71, 73, 76, 78, 80, 82,
84, 86, 88, 90, 92, and 95. The n values that are at least three greater than the previous
n values are 11, 14, 17, 22, 27, 32, 41, 50, 61, 76, and 95. Except for 11, the n values
are three greater than the previous n value. The number of n values between 76 and 95
for example is 95−76−3

2
. A plot of the logarithms of the n values that are at least three

greater than the previous n values for n ≤ 100000 is

Figure 11
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For a linear least-squares fit of the curve, p1 = 0.2205 with a 95% confidence interval
of (0.22, 0.2211), p2 = 2.15 with a 95% confidence interval of (2.136, 2.163),
SSE=0.01785, R-squared=0.9999, and RMSE=0.02113.

Let ζ ′(s) denote the function where v′n values are substituted for the imaginary part of
the zeta function zeros in the above formula. A plot of ζ ′(s) for n ≤ 512 ≤ 20000 is

Figure 12

A plot of these ζ ′(s) values where the first 50 points are omitted is

Figure 13

This converging logarithmic spiral is centered on about (0.619, −0.72) (instead of (0,
0) for zeta function zeros). The curve is translated to the x-axis by subtracting 0.619
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from the real part. The n values of the inflection points that are at least three greater
than the previous n value can then be determined (for 512 ≤ n ≤ 70000). A plot of
the logarithms of the n values of the current inflection points and the logarithms of the
differences between the n values of the current and previous inflection points is

Figure 14

For a linear least-squares fit of the logarithms of the n values of the current inflection
points (neglecting the first six points), p1 = 0.1483 with a 95% confidence interval
of (0.1481, 0.1486), p2 = 2.408 with a 95% confidence interval of (2.399, 2.416),
SSE=0.006285, R-squared=1, and RMSE=0.01169.

3. A DYNAMICAL ZETA FUNCTION

Dynamical zeta functions are generating functions for the lengths of closed orbits of a
map f that sends a set M to itself. An example is the map x → 1− µx2 of the interval
[−1, 1] to itself. For a special value of µ ≈ 1.40155... (the Feiningenbaum value), this
map has one periodic order of 2n for every integer n ≥ 0. This ζ then satisfies the
functional equation ζ(z2) = (1− z)ζ(z). See Kargin [1] for more details on dynamical
zeta functions.

4. EXPONENTIALLY WEIGHTED DIRICHLET SERIES

A Dirichlet series with exponential terms is

D(s) =
∞∑
k=1

e−ks (5)
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where s = (a, b). For ℜ(s) > 0, the series converges to e−s/(1 − e−s). The real
part can be expressed as

∑∞
k=1 e

−ka cos(kb) and the imaginary part can be expressed as∑∞
k=1 e

−ka sin(kb). A partial sum of this function will be denoted byD(n, a, b). See the
Methods section for the C code for generating a variant dynamical zeta function from
the v′n values using this transformation.

A plot of the imaginary parts of D(n, a, b) versus the real parts for a = 1
2

and b the first
thousand v′n values is

Figure 15

5. VARIANT DYNAMICAL ZETA FUNCTIONS

The variant dynamical zeta functions corresponding to ℜs = 1
2
, 1
3
, 1
4
, . . . satisfy

functional relationships similar to ζ(z2) = (1 − z)ζ(z). The real parts of the z values
are set to the reciprocals of ℜs = 1

2
, 1
3
, 1
4
, . . . and the imaginary parts are set to the

imaginary parts of the corresponding D(n, a, b) values.

For the linear least-squares fits of the real parts of ζ(z2) versus the real parts of
(1 − z)ζ(z), the slopes are 1. The y-intercepts are ℜz · (ℜz ∗ 2 − 1). For the
linear least-squares fits of the imaginary parts of ζ(z2) versus the imaginary parts of
(1 − z)ζ(z), the slopes are 2 · ℜz. The imaginary parts are almost 0. For a quadratic
least-squares fit of the real parts of ζ(z2) versus the imaginary parts, the curve is an
upside-down parabola with parameters of −1, 0 (almost), and −ℜz · (ℜz − 1). For a
quadratic least-squares fit of the real parts of (1− z) · ζ(z) versus the imaginary parts,
the curve is an upside-down parabola with parameters of −( 1

2·ℜz
)2, 0 (almost), and ℜz2.
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These values have normal probability distributions. The means and standard deviations
of the normal probability fits determine the above relationships. For example, for
ℜ(s) = 1

2
and the first thousand v′n values, the mean of the normal probability fit of

the real parts of (1 − z)ζ(z) is −2.2885 with a 95% confidence interval of (−2.3072,
−2.2697) and a standard deviation of 0.3019 with a 95% confidence interval of (0.2892,
0.3158). For a normal probablity fit of the real parts of ζ(z2), the mean is 3.7155 with
a 95% confidence interval of (3.6928, 3.7303) and a standard deviation of 0.3019 with
a 95% confidence interval of (0.2892, 0.3158). The slope of 1 in the above is due to
the standard deviations being equal. The y-intercept (6) equals the difference in means
(3.7115+2.2885).

For a normal probability fit of the imaginary parts of (1−z)ζ(s), the mean is −0.01225

with a 95% confidence interval of (−0.0455, 0.0211) and a standard deviation of 0.5372
with a 95% confidence interval of (0.5147, 0.5619). For a normal probability fit of
the imaginary parts of ζ(z2), the mean is −0.0488 with a 95% confidence interval
of (−0.1882, 0.0845) and a standard deviation of 2.1489 with a 95% confidence
interval of (2.05863, 2.2472). The slope of 4 is due to the ratio of standard deviations
(2.1489/0.5372) being almost 4.

6. ANALOGUE OF EULER’S PRODUCT FORMULA FOR THE RIEMANN
ZETA FUNCTION

If f is a flow on M , that is, a map MxR+ → M , then the zeta function of this flow is
defined as

ζ(s) =
∏
ω

(1− e−sl(ω))−1 (6)

where ω denotes a periodic orbit of f and l(ω) is its length. If it is assumed
that prime numbers correspond to periodic orbits of a flow and the lengths of
the orbit indexed by p is given by log p, then the zeta function of the flow will
be similar to Riemann’s zeta function. See the Methods section for C code that
computes the above equation with the v′n values as input. A plot of the real and
imaginary parts of the resulting values versus the imaginary parts of D(n, a, b) for
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the first 1000 v′n values where a = 1/2 is

Figure 16

The curves have good quartic least-squares fits. These are small portions of sinusoidal
curves.

A plot of the real and imaginary parts of the resulting values versus the imaginary parts
of D(n, a, b) for the first 1000 v′n values where a = 1/10 is

Figure 17

The curves are now good approximations of the sine and cosine functions.
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The Euler product formula for the Riemann zeta function is

ζ(s) =
∏
p

1

1− p−s
, (ℜs > 1) (7)

7. THE RIEMANN HYPOTHESIS AND LOGARITHMICALLY WEIGHTED
DIRICHLET SERIES

In this section, the real part of (1 − z)ζ(z) is input to the imaginary part of a
logarithmically-weighted Dirichlet series and the real part of ζ(z2) is input into the
imaginary part of a logarithmically-weighted Dirichlet series (see the C code in the
Methods section). The real parts of the Dirichlet series are set to R(z). This gives
another dynamical zeta function denoted by ζ1. A plot of the real part of ζ1(z2) versus
the real part of (1 − z)ζ1(z), the imaginary part of ζ1(z2) versus the imaginary part of
(1− z)ζ1(z), the real part of (1− z)ζ1(z) versus the imaginary part, and the real part of
ζ1(z

2) versus the imaginary part where ℜ(z) = 1.5 and n ≤ 2000 is

Figure 18

The real and imaginary parts of ζ1(z2) are normally distributed and the real and
imaginary parts of (1− z)ζ1(z) are normally distributed. In this plot, ℜ((1− z)ζ1(z)),
ℑ((1− z)ζ1(z)), ℜ(ζ1(z2)), and ℑ(ζ1(z2)) are denoted by a, b, c, and d respectively.
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A plot of these values where ℜ(z) = 1.999 and n ≤ 2000 is

Figure 19

A plot of these values where ℜ(z) = 2.0 and n =≤ 2000 is

Figure 20

Taking into account the precision of the floating point arithmetic and truncation of
infinite sums, the linear least-squares fits of the real part of ζ1(z2) versus the real part of
(1− z)ζ1(z) and the imaginary part of ζ1(z2) versus the imaginary part of (1− z)ζ1(z)

are apparently perfect and the slopes are 1. In this case, ζ1(z2) = (1 − z)ζ1(z). Also,
the curve of the real part of ζ1(z2) versus the imaginary part and the curve of the real
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part of (1− z)ζ1(z) versus the imaginary part overlap.

A plot of these values where ℜ(z) = 2.5 and n ≤ 2000 is

Figure 21

8. METHODS

variant dynamical zeta function
#include <math.h>
#include <stdio.h>
#include ”v2.h” // v’(n) values
double a=1.5; // a>1 if out=1
unsigned int size=10000;
unsigned int max=50001;
unsigned int part=1;
unsigned int select=1;
unsigned int out=1;
void main() {
unsigned int x,i;
double esumr,esumi,tempr,ap,b,y,p,q,c,d,sum,out1,out2,out3,out4,bp;
FILE *Outfp;
Outfp = fopen(”weight1a.dat”,”w”);
ap=1.0/a;
y=1.0-ap;
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for (i=1; <=size; i++) {
b=zero[i-1];
esumr=0.0;
esumi=0.0;
for (x=1; x<=(max-1); x++) {

tempr=1.0/exp((double)x*a);
esumr=esumr+tempr*cos((double)x*b);
esumi=esumi+tempr*sin((double)x*b);
}

if (part==1)
sum=esumi;

else
sum=esumr;

c=ap*y-sum*sum;
d=ap*sum+sum*y;
p=ap*ap-sum*sum;
q=2*ap*sum;
if (out==0) {

fprintf(Outfp,” %.16llf, %.16llf, %.16llf, %.16llf \n”,c,d,p,q);
printf(” %d %.10llf, %.10llf, %.10llf, %.10llf \n”,i,c,d,p,q);
continue;
}

if (select==1)
bp=c;

else
bp=d;

esumr=0.0;
esumi=0.0;
for (x=1; x<=(max-1); x++) {

tempr=1.0/log((double)x*a);
esumr=esumr+tempr*cos((double)x*bp);
esumi=esumi+tempr*sin((double)x*bp);
}

out1=esumr;
out2=esumi;
if (select==1)

bp=p;
else
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bp=q;
esumr=0.0;
esumi=0.0;
for (x=1; x<=(max-1); x++) {

tempr=1.0/log((double)x*a);
esumr=esumr+tempr*cos((double)x*bp);
esumi=esumi+tempr*sin((double)x*bp);
}

out3=esumr;
out4=esumi;
fprintf(Outfp,” %.16llf, %.16llf, %.16llf, %.16llf, \n”,out1,out2,out3,out4);
if (i==(i/100)*100)

printf(” %d, %.10llf, %.10llf, %.10llf, %.10llf \n”,i,out1,out2,out3,out4);
}

fclose(Outfp);
return;
}

analogue of Euler’s product formula
#include <math.h>
#include <stdio.h>
#include ”table5.h”
#include ”v2.h”
double a=1.0/2.0;
unsigned int size=10000;
unsigned int part=1;
unsigned int max=50001;
void main() {
unsigned int x,i,p;
double esumr,esumi,tempr,b,prodr,prodi,ap;
FILE *Outfp;
Outfp = fopen(”weight2.dat”,”w”);
ap=1.0/a;
for (i=1; i<=size; i++) {

b=zero[i-1];
esumr=0.0;
esumi=0.0;



32 Darrell Cox

for (x=1; x<=(max-1); x++) {
tempr=1.0/exp((double)x*a);
esumr=esumr+tempr*cos((double)x*b);
esumi=esumi+tempr*sin((double)x*b);
}

if (part==1)
b=esumi;

else
b=esumr;

prodr=1.0;
prodi=1.0;
for (x=1; x<=2000; x++) {

p=table[x-1];
tempr=1.0/(1.0-exp(ap*log((double)p)));
prodr=prodr*(1.0-tempr*cos(log((double)p)*b));
prodi=prodi*(1.0-tempr*sin(log((double)p)*b));
}

fprintf(Outfp,” %.16llf, %.16llf, %.16llf, \n”,b,prodr,prodi);
printf(” %d %.10llf, %.10llf, %.10llf, \n”,i,b,prodr,prodi);
}

fclose(Outfp);
return;
}

second dynamical zeta function
#include <math.h>
#include <stdio.h>
#include ”v2.h”
double a=2.0; // a>1
unsigned int size=2000;
unsigned int max=50001;
unsigned int part=1; // usually set to 1
unsigned int select=1; // usually set to 1
unsigned int out=1;
void main() {
unsigned int x,i;
double esumr,esumi,tempr,ap,b,y,p,q,c,d,sum,out1,out2,out3,out4,bp;
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FILE *Outfp;
Outfp = fopen(”weight1a.dat”,”w”);
ap=1.0/a;
y=1.0-ap;
for (i=1; i<=size; i++) {

b=zero[i-1];
esumr=0.0;
esumi=0.0;
for (x=1; x<=(max-1); x++) {

tempr=1.0/exp((double)x*a);
esumr=esumr+tempr*cos((double)x*b);

esumi=esumi+tempr*sin((double)x*b);
}

if (part==1)
sum=esumi;

else
sum=esumr;

c=ap*y-sum*sum;
d=ap*sum+sum*y;
p=ap*ap-sum*sum;
q=2*ap*sum;
if (out==0) {

fprintf(Outfp,” %.16llf, %.16llf, %.16llf, %.16llf \n”,c,d,p,q);
if (i==(i/100)*100)

printf(” %d %.12llf, %.12llf, %.12llf, %.12llf\n”,i,c,d,p,q);
continue;
}

if (select==1)
bp=c;

else
bp=d;

esumr=0.0;
esumi=0.0;
for (x=1; x<=(max-1); x++) {

tempr=1.0/log((double)x*a);
esumr=esumr+tempr*cos((double)x*bp);
esumi=esumi+tempr*sin((double)x*bp);
}
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out1=esumr;
out2=esumi;
if (select==1)

bp=p;
else

bp=q;
esumr=0.0;
esumi=0.0;
for (x=1; x<=(max-1); x++) {

tempr=1.0/log((double)x*a);
esumr=esumr+tempr*cos((double)x*bp);
esumi=esumi+tempr*sin((double)x*bp);
}

out3=esumr;
out4=esumi;
fprintf(Outfp,” %.16llf, %.16llf, %.16llf, %.16llf, \n”,out1,out2,out3,out4);
if (i==(i/100)*100)

printf(” %d, %.14llf, %.14llf, %.14llf, %.14llf \n”,i,out1,out2,out3,out4);
}

fclose(Outfp);
return;
}
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