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Abstract

Let G be a (p, q) graph. Let V be an inner product space with basis S. We denote
the inner product of the vectors ω1 and ω2 by < ω1, ω2 >. Let χ : V (G) → S be
a function. For edge uv assign the label < χ(u), χ(v) >. Then χ is called a vec-
tor basis S-cordial labeling of G (VB S-cordial labeling) if |χω1 − χω2 | ≤ 1 and
|δi − δj | ≤ 1 where χωi denotes the number of vertices labeled with the vector ωi

and δi denotes the number of edges labeled with the scalar i. A graph which admits
a vector basis S-cordial labeling is called a vector basis S-cordial graph. In this pa-
per, we investigate the vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial
labeling of certain graphs such as the generalized friendship graph, tadpole graph,
gear graph, Cm,n, alternate triangular snake and alternate quadrilateral snake.
Keywords. friendship graph, tadpole graph, gear graph, alternate triangular snake
and alternate quadrilateral snake.
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1. INTRODUCTION

We consider only finite, simple and undirected graphs. In 1967, Rosa introduced the
graph labeling of a graph. For all standard terminologies and notations, we refer to
Harary [6] and Herstein [7]. We provide brief summary and basic definitions that are
relevant to the current investigations
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Definition 1.1. [13] The generalized friendship graph Fn,m is a graph of m cycles (all
of order n) meeting at a common vertex.

Definition 1.2. [15] The tadpole graph Tm,n is a graph in which the path Pn is attached
to any one vertex of the cycle Cm.

Definition 1.3. [4] The gear graph Gn is obtained from the wheel Wn by adding a
vertex between every pair of adjacent vertices of the rim of the wheel graph Wn.

Definition 1.4. [3] Let Cm and Cn be two even cycles where m and n are even integers.
Then the graph Cm,n is a graph obtained by sharing a common edge of Cm and Cn.

Definition 1.5. [11] The triangular snake Tn is obtained from a path Pn : u1u2 . . . un

by joining ui and ui+1 to a new vertex vi for 1 ≤ i ≤ n−1. That is every edge of a path
is replaced by a triangle.

Definition 1.6. [11] An alternate triangular snake ATn is obtained from a path Pn :

u1u2 . . . un by joining ui and ui+1 alternatively (i = 1, 3, 5, . . . ) to a new vertex vi. That
is every alternate edge of a path is replaced by a triangle.

Definition 1.7. [12] The quadrilateral snake Qn is obtained from a path Pn : u1u2 . . . un

by joining ui and ui+1 to two new vertex vi and wi for 1 ≤ i ≤ n − 1 respectively and
then joining vi and wi. That is every edge of a path is replaced by C4.

Definition 1.8. [12] The alternate quadrilateral snake AQn is obtained from a path
Pn : u1u2 . . . un by joining ui and ui+1 alternatively (i = 1, 3, 5, . . . ) to two new vertex
vi and wi for 1 ≤ i ≤ n − 1 respectively and then joining vi and wi. That is every
alternate edge of a path is replaced by C4.

The notion of cordial labeling of a graph was introduced in [2]. Ansari Saima [1]
has investigated the mean cordial labeling patterns in shadow graphs of paths. Pair
mean cordial labeling of some snake related graphs was discussed in [10]. Group mean
cordial labeling of some triangular snake and quadrilateral snake related graphs have
investigated by Rajalekshmi and Kala [11, 12].
Sugumaran and Mohan have investigated the difference cordial labeling of some special
graphs and related to fan graphs in [14]. The 3-product edge cordial labeling of tadpole,
book and flower graphs was examined in [15]. HMC labeling of some triangular snake
graphs was discussed by Gowri and Jayapriya [5].
Tribonacci cordial labeling of graphs was introduced by Sarbari Mitra and Soumya
Bhoumik in [13]. Jeba Jesintha et al. [8] have proved that the tadpole graph attached
to k-polygonal snakes, double polygonal snakes and alternate k-polygonal snakes by an
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edge are cordial. Product cordial labeling of graphs related to helm, closed helm and
gear graph were explored in [4]. For a dynamic survey of various graphs labeling along
with bibliographic references we refer to Gallian [3].
Ponraj and Jeya have been introduced the new graph labeling method called vector basis
S-cordial labeling and investigated the vector basis {(1,1,1,1), (1,1,1,0), (1,1,0,0),(1,0,0,0)}
-cordial labeling of certain thorn graphs in [9]. In this paper, we examines the vector
basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial labeling of certain graphs such as
the generalized friendship graph, tadpole graph, gear graph, Cm,n, alternate triangular
snake and alternate quadrilateral snake.

2. VECTOR BASIS S-CORDIAL LABELING

Let G be a (p, q) graph. Let V be an inner product space with basis S. We denote the
inner product of the vectors ω1 and ω2 by < ω1, ω2 >. Let χ : V (G) → S be a function.
For edge uv assign the label < χ(u), χ(v) >. Then χ is called a vector basis S-cordial
labeling of G (VB S-cordial labeling) if |χω1 − χω2| ≤ 1 and |δi − δj| ≤ 1 where χωi

denotes the number of vertices labeled with the vector ωi and δi denotes the number of
edges labeled with the scalar i. A graph which admits a vector basis S-cordial labeling
is called a vector basis S-cordial graph. The figure (1) shows a simple example of a
vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial graph.

(1,1,1,1)

(1,1,1,1)

(1,1,0,0) (1,0,0,0)

(1,1,1,0)

Figure 1. An example of vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial
graph

3. MAIN RESULTS

In this paper, we investigate the vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-
cordial labeling of some special graphs like the generalized friendship graph, tadpole
graph, gear graph, Cm,n, alternate triangular snake and alternate quadrilateral snake.

Theorem 3.1. The generalized friendship graph Fn,m is a vector basis
{(1,1,1,1), (1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial for all n and m ≡ 0 (mod 4).
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Proof. Let V (Fn,m) = {u, u(i, j) | 1 ≤ i ≤ m and 1 ≤ j ≤ n − 1} and E(Fn,m) =

uui,1, uui,n−1, ui,jui,j+1 | 1 ≤ i ≤ m and 1 ≤ i ≤ n− 2 respectively be the vertex and
edge sets of Fn,m.Then |V (Fn,m)| = p = m(n − 1) + 1 and |E(Fn,m)| = q = mn.
Assign the vectors to the vertices u, u1,1, u1,2, . . . , u1,n−1, u2,1, u2,2, . . . , u2,n−1,

. . . , um,1, um,2, . . . , um,n−1 in some order. Let m ≡ 0 (mod 4). Then m = 4t. Assign
the vector (1,1,1,1) to the vertex u. Assign the vector (1,1,1,1) to the vertices of the first
t cycles. Also assign the vector (1,1,1,0) to the vertices of the next t cycles. Then assign
the vector (1,1,0,0) to the vertices of the next t cycles. Finally assign the vector (1,0,0,0)
to the vertices of remaining t cycles. Clearly the above labeling pattern provides a
vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial labeling for the generalized
friendship graph Fn,m if m ≡ 0 (mod 4).

Example 3.1. The figure (2) shows a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0, 0),(1,0,0,0)}-
cordial labeling of the generalized friendship graph F5,4.

(1,1,1,1) (1,1,1,1)(1,1,1,1)
(1,1,1,1)

(1,1,1,0)

(1,1,0,0)

(1,1,1,0)

(1,1,1,0)

(1,1,1,0)

(1,0,0,0)

(1,1,0,0)
(1,1,0,0)

(1,1,0,0)

(1,0,0,0)

(1,0,0,0)

(1,0,0,0)

(1,1,1,1)

Figure 2. A vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial labeling of
F5,4.

Theorem 3.2. The generalized friendship graph Fn,m is a vector basis
{(1,1,1,1), (1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial for all m ≡ 1 (mod 4) and n ≡ 1, 2, 3(mod4).

Proof. Let us assign labels to the following vertices u, u1,1, u1,2, . . . , u1,n−1, u2,1,

u2,2, . . . , u2,n−1, . . . , um,1, um,2, . . . , um,n−1 in that order. Let m ≡ 1 (mod 4). Then
m = 4t + 1. Assign the label as in Theorem 3.1. for first 4t cycles. Next assign the
label to the last cycle. There are three cases arises.
Case (i):n ≡ 1 (mod 4)
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Then n = 4k + 1. Assign vector (1,1,1,1) to the k vertices (except u). So assign the
vector (1,1,1,0) to the next k vertices. Then assign the vector (1,1,0,0) to the next k
vertices. Further assign the vector (1,0,0,0) to the next k vertices.
Case (ii):n ≡ 2 (mod 4)

Take n = 4k + 2. Assign vector (1,1,1,1) to the first k vertices (except u) and assign
the vector (1,1,1,0) to the next k + 1 vertices. More over assign the vector (1,1,0,0) to
the next k vertices and assign the vector (1,0,0,0) to the next k vertices.
Case (iii):n ≡ 3 (mod 4)

Let n = 4k + 3. Assign vector (1,1,1,1) to the first k vertices (except u) and assign the
vector (1,1,1,0) to the next k + 1 vertices. More over assign the vector (1,1,0,0) to the
next k+1 vertices and assign the vector (1,0,0,0) to the next k vertices. Hence the above
labeling pattern provides a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial
labeling for the generalized friendship graph Fn,m if m ≡ 1 (mod 4) and n ≡ 1, 2, 3

(mod 4).

Theorem 3.3. The generalized friendship graph Fn,m is a vector basis
{(1,1,1,1), (1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial for all m ≡ 2 (mod 4) and n is odd.

Proof. Now assign the vector to the following vertices u, u1,1, u1,2, . . . , u1,n−1,

u2,1, u2,2, . . . , u2,n−1, . . . , um,1, um,2, . . . , um,n−1 in that order. Let m ≡ 2 (mod 4).
Then m = 4t+2. Assign the label as in case (i) of Theorem 3.1 for first 4t cycles. Next
assign the label to the remaining two cycles. Let n is odd. There are two cases arises.
Case (i):n ≡ 1 (mod 4)

Then n = 4k + 1. Note that p = 8k and q = 8k + 2. Let us assign the vector
(1,1,1,1) to the first 2k vertices (except u) and assign the vector (1,1,1,0) to the next
2k vertices. Thereafter assign the vector (1,1,0,0) to the next 2k vertices and assign the
vector (1,0,0,0) to the next 2k vertices.
Case (ii):n ≡ 3 (mod 4)

Let n = 4k + 3. Note that p = 8k + 4 and q = 8k + 6. Assign vector (1,1,1,1) to the
first 2k+1 vertices (except u) and assign the vector (1,1,1,0) to the next 2k+1 vertices.
More over assign the vector (1,1,0,0) to the next 2k + 1 vertices and assign the vector
(1,0,0,0) to the next 2k + 1 vertices.
Hence the above labeling pattern provides a vector basis {(1,1,1,1),(1,1,1,0),(1,1, 0,0),
(1,0,0,0)}-cordial labeling for the generalized friendship graph Fn,m if m ≡ 2 (mod 4)

and n is odd.

Theorem 3.4. The generalized friendship graph Fn,m is a vector basis
{(1,1,1,1), (1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial for all m ≡ 3 (mod 4) and n ≡ 1

(mod 4).
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Proof. Let us now assign the vector to the following vertices u, u1,1, u1,2, . . . , u1,n−1,

u2,1, u2,2, . . . , u2,n−1, . . . , um,1, um,2, . . . , um,n−1 in that order. Let m ≡ 3 (mod 4).
Then m = 4t+3. Assign the label as in case (i) of Theorem 3.1 for first 4t cycles. Next
assign the label to the remaining three cycles. Take n ≡ 1 (mod 4). Then n = 4k + 1.
Note that p = 12k and q = 12k + 3. Let us assign the vector (1,1,1,1) to the first 3k
vertices (excluding u) and assign the vector (1,1,1,0) to the next 3k vertices. Thereafter
assign the vector (1,1,0,0) to the next 3k vertices and assign the vector (1,0,0,0) to the
next 3k vertices.
Thus the above labeling pattern provides a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0 ,0),
(1,0,0,0)}-cordial labeling for the generalized friendship graph Fn,m if m ≡ 3 (mod 4)

and n ≡ 1 (mod 4).

Theorem 3.5. The tadpole graph Tm,n, m > 3 is a vector basis {(1,1,1,1),(1,1,1,
0),(1,1,0,0),(1,0,0,0)}-cordial if m ≡ 0 (mod 4) and n ≡ 0, 2, 3 (mod 4).

Proof. Let V (Tm,n) = {u, ui, vj | 1 ≤ i ≤ m and 2 ≤ j ≤ n} and E(Tm,n) = {uiu(i+

1), u1um, u1v2, vjv(j + 1) | 1 ≤ i ≤ m and 2 ≤ j ≤ n} respectively be the vertex and
edge sets of the tadpole graph Tm,n. Then |V (Tm,n)| = p = m+n−1 and |E(Tm,n)| =
q = m+n− 1. Assign the vectors in the following order u1, u2, . . . , um, v2, v3, . . . , vn.
Let m ≡ 0 (mod 4). Then m = 4t1. For the vertices in the cycles m = 4t1. There are
m vertices in the cycle. Assign the vector (1,1,1,1) to the first t1 vertices and assign the
vector (1,1,1,0) to the next t1 vertices. Thereafter assign the vector (1,1,0,0) to the next
t1 vertices and assign the vector (1,0,0,0) to the next t1 vertices.
Case (i): n ≡ 0 (mod 4)

For the vertices in the path n = 4t2. There are n − 1 vertices in the path. Assign
the vector (1,1,1,1) to the first t2 vertices and assign the vector (1,1,1,0) to the next t2
vertices. Thereafter assign the vector (1,1,0,0) to the next t2 vertices and assign the
vector (1,0,0,0) to the next t2 − 1 vertices.
Case (ii):n ≡ 2 (mod 4)

Then n = 4t2+2. Let us assign the vector (1,1,1,1) to the first t2+1 vertices and assign
the vector (1,1,1,0) to the next t2 vertices. Further assign the vector (1,1,0,0) to the next
t2 vertices and assign the vector (1,0,0,0) to the next t2 vertices.
Case (iii):n ≡ 3 (mod 4)

Then n = 4t2 +3. Now assign the vector (1,1,1,1) to the first t2 +1 vertices and assign
the vector (1,1,1,0) to the next t2 + 1 vertices. More over assign the vector (1,1,0,0) to
the next t2 vertices and assign the vector (1,0,0,0) to the next t2 vertices.
Thus the above labeling pattern provides a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0 ,0),
(1,0,0,0)}-cordial labeling for the tadpole graph Tm,n if m ≡ 0 (mod 4) and n ≡ 0, 2, 3

(mod 4).
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Theorem 3.6. The tadpole graph Tm,n, m > 3 is a vector basis {(1,1,1,1),(1,1,1,
0),(1,1, 0,0),(1,0,0,0)}-cordial if m ≡ 1 (mod 4) and n ≡ 1, 2, 3 (mod 4).

Proof. Let us assign the vectors in the following order u1, u2, . . . , um, v2, v3, . . . , vn.
Let m ≡ 1 (mod 4). Then m = 4t1 + 1. Assign the vector (1,1,1,1) to the first
t1 + 1 vertices and assign the vector (1,1,1,0) to the next t1 vertices. Thereafter assign
the vector (1,1,0,0) to the next t1 vertices and assign the vector (1,0,0,0) to the next t1
vertices.
Case (i): n ≡ 1 (mod 4)

Then n = 4t2 + 1. Assign the vector (1,1,1,1) to the first t2 vertices and assign the
vector (1,1,1,0) to the next t2 vertices. Also assign the vector (1,1,0,0) to the next t2
vertices and assign the vector (1,0,0,0) to the next t2 vertices.
Case (ii):n ≡ 2 (mod 4)

Then n = 4t2 + 2. Now assign the vector (1,1,1,1) to the first t2 vertices and assign the
vector (1,1,1,0) to the next t2+1 vertices. Further assign the vector (1,1,0,0) to the next
t2 vertices and assign the vector (1,0,0,0) to the next t2 vertices.
Case (iii):n ≡ 3 (mod 4)

Then n = 4t2 + 3. So assign the vector (1,1,1,1) to the first t2 vertices and assign the
vector (1,1,1,0) to the next t2 + 1 vertices. More over assign the vector (1,1,0,0) to the
next t2 + 1 vertices and assign the vector (1,0,0,0) to the next t2 vertices.
Hence the above labeling method provides a vector basis {(1,1,1,1),(1,1,1,0), (1,1,0,0),
(1,0,0,0)}-cordial labeling for the tadpole graph Tm,n if m ≡ 1 (mod 4) and n ≡ 1, 2, 3

(mod 4).

Theorem 3.7. The tadpole graph Tm,n, m > 3 is a vector basis {(1,1,1,1),(1,1,1,
0),(1,1,0,0),(1,0,0,0)}-cordial if m ≡ 2 (mod 4) and n ≡ 0, 1, 2 (mod 4).

Proof. Assign the vectors in the following order u1, u2, . . . , um, v2, v3, . . . , vn. Let m ≡
2 (mod 4). Then m = 4t1 + 2. Assign the vector (1,1,1,1) to the first t1 + 1 vertices
and assign the vector (1,1,1,0) to the next t1 + 1 vertices. Thereafter assign the vector
(1,1,0,0) to the next t1 vertices and assign the vector (1,0,0,0) to the next t1 vertices.
Case (i): n ≡ 0 (mod 4)

Then n = 4t2. Assign the vector (1,1,1,1) to the first t2 vertices and assign the vector
(1,1,1,0) to the next t2−1 vertices. Also assign the vector (1,1,0,0) to the next t2 vertices
and assign the vector (1,0,0,0) to the next t2 vertices.
Case (ii):n ≡ 1 (mod 4)

Then n = 4t2 + 1. Also assign the vector (1,1,1,1) to the first t2 vertices and assign the
vector (1,1,1,0) to the next t2 vertices. Further assign the vector (1,1,0,0) to the next t2
vertices and assign the vector (1,0,0,0) to the next t2 vertices.
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Case (iii):n ≡ 2 (mod 4)

Then n = 4t2 + 2. So assign the vector (1,1,1,1) to the first t2 vertices and assign the
vector (1,1,1,0) to the next t2 vertices. More over assign the vector (1,1,0,0) to the next
t2 + 1 vertices and assign the vector (1,0,0,0) to the next t2 vertices.
Clearly the above labeling method provides a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0
,0),(1,0,0,0)}-cordial labeling for the tadpole graph Tm,n if m ≡ 2 (mod 4) and n ≡
0, 1, 2 (mod 4).

Theorem 3.8. The tadpole graph Tm,n, m > 3 is a vector basis {(1,1,1,1),(1,1,1,0),
(1,1, 0,0),(1,0,0,0)}-cordial if m ≡ 3 (mod 4) and n ≡ 0, 1, 3 (mod 4).

Proof. Assign the vectors in the following order u1, u2, . . . , um, v2, v3, . . . , vn. Let m ≡
3 (mod 4). Then m = 4t1 + 3. Assign the vector (1,1,1,1) to the first t1 + 1 vertices
and assign the vector (1,1,1,0) to the next t1 + 1 vertices. Thereafter assign the vector
(1,1,0,0) to the next t1+1 vertices and assign the vector (1,0,0,0) to the next t1 vertices.
Case (i): n ≡ 0 (mod 4)

Then n = 4t2. Assign the vector (1,1,1,1) to the first t2 vertices and assign the vector
(1,1,1,0) to the next t2 vertices. Also assign the vector (1,1,0,0) to the next t2−1 vertices
and assign the vector (1,0,0,0) to the next t2 vertices.
Case (ii):n ≡ 1 (mod 4)

Then n = 4t2 + 1. So assign the vector (1,1,1,1) to the first t2 vertices and assign the
vector (1,1,1,0) to the next t2 vertices. Further assign the vector (1,1,0,0) to the next t2
vertices and assign the vector (1,0,0,0) to the next t2 vertices.
Case (iii):n ≡ 2 (mod 4)

Then n = 4t2 + 2. So assign the vector (1,1,1,1) to the first t2 + 1 vertices and assign
the vector (1,1,1,0) to the next t2 vertices. More over assign the vector (1,1,0,0) to the
next t2 vertices and assign the vector (1,0,0,0) to the next t2 + 1 vertices.
Clearly the above labeling method provides a vector basis {(1,1,1,1),(1,1,1,0),(1, 1,0,0),
(1,0,0,0)}-cordial labeling for the tadpole graph Tm,n if m ≡ 3 (mod 4) and n ≡ 0, 1, 3

(mod 4).
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Example 3.2. The figure (3) shows a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0), (1,0,0,0)}-
cordial labeling of the tadpole graph T9,9.

(1,1,1,1)
(1,1,1,1)

(1,1,1,1)

(1,1,1,1)
(1,1,1,1)

(1,1,1,0)

(1,1,0,0)

(1,1,0,0)

(1,1,1,0)
(1,1,1,0)

(1,1,0,0)

(1,1,0,0) (1,0,0,0)
(1,0,0,0)

(1,0,0,0)

(1,0,0,0)

(1,1,1,0)

Figure 3. A vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0), (1,0,0,0)}-cordial labeling of
T9,9.

Theorem 3.9. The gear graph Gn is a vector basis {(1,1,1,1),(1,1,1, 0),(1,1,0,0), (1,0,0,0)}-
cordial if and only if n ≡ 2 (mod 4).

Proof. Let V (Gn) = {u, ui, vi | 1 ≤ i ≤ n} and E(Gn) = {uui, uivi | 1 ≤ i ≤
n}∪{viui+1, vnu1 | 1 ≤ i ≤ n− 1} respectively be the vertex and edge sets of the gear
graph Gn. Then |V (Gn)| = p = 2n + 1 and |E(Gn)| = q = 3n. Assign the vectors to
the vertices in the following order u, u1, v1, u2, v2, . . . , un, vn.
Case (i):n ≡ 0 (mod 4)

Let n = 4t. Then p = 8t + 1 and q = 12t. From 2t + 1 vertices with vertex label
(1,1,1,1), we get only 2t+ 1 edges with edge label 4, this is a contradiction.
Case (ii):n ≡ 1 (mod 4)

Let n=4t+1. Then p=8t+3 and q=12t+3. From 2t+1 vertices with vertex label (1,1,1,1),
we get only 2t+1 edges with edge label 4, this is a contradiction.
Case (ii):n ≡ 2 (mod 4)

Let n=4t+2. Then p=8t+5 and q=12t+6. Assign the vector (1,1,1,1) to the vertex u.
Then assign the vector (1,1,1,1) to the first 2t+1 vertices and assign the vector (1,1,1,0)
to the next 2t+1 vertices. Finally assign the vector (1,1,0,0) to the next 2t+1 vertices
and assign the vector (1,0,0,0) to the next 2t+1 vertices.
Case (iv): n ≡ 3 (mod 4)

Let n = 4t + 3. Then p = 8t + 7 and q = 12t + 9. From 2t + 2 vertices with vertex
label (1,1,1,1), we get only 3t+ 1 edges with edge label 4, we get a contradiction.
Hence the above labeling method provides a vector basis {(1,1,1,1),(1,1,1,0),(1,1, 0,0),
(1,0,0,0)}-cordial labeling for the gear graph Gn if n ≡ 2 (mod 4).
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Example 3.3. The figure (4) shows a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0), (1,0,0,0)}-
cordial labeling of the gear graph G6.

(1,1,1,1)

(1,1,1,1)

(1,1,1,1)

(1,1,1,1)

(1,1,1,0)

(1,1,1,0)

(1,1,1,0)
(1,1,0,0)(1,1,0,0)

(1,1,0,0)

(1,0,0,0)

(1,0,0,0)

(1,0,0,0)

Figure 4. A vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial labeling of G6.

Theorem 3.10. The graph Cm,n is a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0, 0),(1,0,0,0)}-
cordial if (1) m ≡ 0 (mod 4) and n ≡ 0 (mod 4), (2)m ≡ 2 (mod 4) and n ≡ 2

(mod 4).

Proof. Let V (Cm,n) = {ui, vj | 1 ≤ i ≤ n and 2 ≤ j ≤ n − 1} and E(Cm,n) =

{uiui+1, umu1, vjvj+1, u1v2, vn−1um | 1 ≤ i ≤ m − 1 and 2 ≤ j ≤ n − 2} re-
spectively be the vertex and edge sets of the graph Cm,n . Then |V (Cm,n))| = p =

m+ n− 2 and |E(Cm,n)| = q = m+ n− 1. Assign the vectors in the following order
u1, u2, . . . , um, v2, v3, . . . , vn−1.
(1) m ≡ 0 (mod 4) and n ≡ 0 (mod 4)

Case (i): when m = n

Let m = n = 4t. Then p = 8t − 2. Assign the vector (1,1,1,1) to the vertex um.
Then assign the vector (1,1,1,1) to the first 2t vertices and assign the vector (1,1,1,0) to
the next 2t vertices (except um). Finally assign the vector (1,1,0,0) to the next 2t − 2

vertices and assign the vector (1,0,0,0) to the next 2t− 1 vertices.
Case (ii): when m < n

Let m = 4t1 and n = 4t2. Then p = 4(t1 + t2) − 2 and q = 4(t1 + t2) − 1. Assign
the vector (1,1,1,1) to the first t1 + t2 vertices and assign the vector (1,1,1,0) to the next
t1 + t2 vertices . Finally assign the vector (1,1,0,0) to the next t1 + t2 − 1 vertices and
assign the vector (1,0,0,0) to the next t1 + t2 − 1 vertices.
(2) m ≡ 0 (mod 4) and n ≡ 0 (mod 4)

Case (i): when m = n

Let m = n = 4t + 2. Then p = 8t + 2. Assign the vector (1,1,1,1) to the vertex um.
Then assign the vector (1,1,1,1) to the first 2t+1 vertices and assign the vector (1,1,1,0)
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to the next 2t + 1 vertices (except um). Finally assign the vector (1,1,0,0) to the next
2t− 1 vertices and assign the vector (1,0,0,0) to the next 2t vertices.
Case (ii):when m < n

Let m = 4t1 + 2 and n = 4t2 + 2. Then p = 4(t1 + t2) + 2 and q = 4(t1 + t2) + 3.
Assign the vector (1,1,1,1) to the first t1+ t2+1 vertices and assign the vector (1,1,1,0)
to the next t1 + t2 + 1 vertices . Finally assign the vector (1,1,0,0) to the next t1 + t2
vertices and assign the vector (1,0,0,0) to the next t1 + t2 vertices.
Hence the above labeling method provides a vector basis {(1,1,1,1),(1,1,1,0),(1,1, 0,0),(1,0,0,0)}-
cordial labeling for the graph Cm,n if (1) m ≡ 0 (mod 4) and n ≡ 0 (mod 4), (2)
m ≡ 2 (mod 4) and n ≡ 2 (mod 4).

Theorem 3.11. The alternate triangular snake ATn is a vector basis {(1,1,1,1), (1,1,1,0),(1,1,0,0),(1,0,0,0)}-
cordial for all even values of n.

Proof. Denoting by V (ATn) = {ui, vj | 1 ≤ i ≤ n and 1 ≤ j ≤ n
2
} and E(ATn) =

{uiui+1, u2j−1vj, vju2j | 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n
2
} respectively the vertex set

and edge set of the alternate triangular snake ATn. Note that p = |V (ATn)| = 3n
2

and q = |E(ATn)| = 2n − 1. Assign the vector to the vertices in the following order
u1, v1, u2, u3, v2,

u4, u5, v3, u6, . . . , un−1, vn
2
, un. Let m = n

2
. Then p = 3m

Case (i): m ≡ 0 (mod 4)

Let m = 4t. Then p = 12t and q = 16t − 1. Assign the vector (1,1,1,1) to the first
3t vertices and assign the vector (1,1,1,0) to the next 3t vertices. Moreover assign the
vector (1,1,0,0) to the next 3t vertices and assign the vector (1,0,0,0) to the next 3t
vertices.
Case (ii): m ≡ 1 (mod 4)

Let m = 4t + 1. Then p = 12t + 3 and q = 16t + 3. Assign the vector (1,1,1,1) to
the first 3t + 1 vertices and assign the vector (1,1,1,0) to the next 3t + 1 vertices. Also
assign the vector (1,1,0,0) to the next 3t + 1 vertices and assign the vector (1,0,0,0) to
the next 3t vertices. Finally interchange the labels of vertices u6t+1 and v3t+1.
Case (iii): m ≡ 2 (mod 4)

Let m = 4t + 2. Then p = 12t + 6 and q = 16t + 7. Assign the vector (1,1,1,1) to
the first 3t + 2 vertices and assign the vector (1,1,1,0) to the next 3t + 1 vertices. Also
assign the vector (1,1,0,0) to the next 3t + 2 vertices and assign the vector (1,0,0,0) to
the next 3t+ 1 vertices.
Case (iv): m ≡ 3 (mod 4)

Let m = 4t + 3. Then p = 12t + 9 and q = 16t + 11. Assign the vector (1,1,1,1) to
the first 3t + 3 vertices and assign the vector (1,1,1,0) to the next 3t + 2 vertices. Also
assign the vector (1,1,0,0) to the next 3t + 2 vertices and assign the vector (1,0,0,0) to
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the next 3t+ 2 vertices.
Clearly this labeling pattern is a vector basis {(1,1,1,1),(1,1,1,0),(1,1, 0,0), (1, 0,0,0)}-
cordial labeling of the alternate triangular snake ATn for all n.

Theorem 3.12. The alternate quadrilateral snake AQn is a vector basis {(1,1, 1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-
cordial if and only if n

2
≡ 0 (mod 4).

Proof. Denoting by V (AQn) = {ui, vj, wj | 1 ≤ i ≤ n and 1 ≤ j ≤ n
2
} and E(ATn) =

{uiui+1, u2j−1vj, vjwj, wju2j | 1 ≤ i ≤ n−1 and 1 ≤ j ≤ n
2
} respectively the vertex set

and edge set of the alternate quadrilateral snake AQn. Note that p = |V (AQn)| = 2n

and q = |E(AQn)| = 5n−2
2

. Assign the vector to the vertices in the following order
u1, v1, w1, u2, v2, w2, . . . , un−1, vn

2
, wn

2
, un. Let m = n

2
. Then p = 4m and q = 5m− 1

Case (i): m ≡ 0 (mod 4)

Let m = 4t. Then p = 16t and q = 20t − 1. Assign the vector (1,1,1,1) to the first
4t vertices and assign the vector (1,1,1,0) to the next 4t vertices. Moreover assign the
vector (1,1,0,0) to the next 4t vertices and assign the vector (1,0,0,0) to the next 4t
vertices.
Case (ii): m ≡ 1 (mod 4)

Let m = 4t + 1. Then p = 16t + 4 and q = 20t + 4. From 4t + 1 vertices, we cannot
get 5t+ 1 edges with edge label 4. This is a contradiction.
Case (iii): m ≡ 2 (mod 4)

Let m = 4t + 2. Then p = 16t + 8 and q = 20t + 9. From 4t + 2 vertices, we cannot
get 5t+ 2 edges with edge label 4. We get a contradiction.
Case (iv): m ≡ 3 (mod 4)

Let m = 4t+3. Then p = 16t+12 and q = 20t+14. From 4t+3 vertices, we cannot
get 5t+ 3 edges with edge label 4. This is a contradiction.
Clearly this labeling pattern is a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0), (1,0,0,0)}-
cordial labeling of the alternate quadrilateral snake AQn if n

2
≡ 0 (mod 4).

Example 3.4. The figure (5) shows a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0), (1,0,0,0)}-
cordial labeling of the alternate quadrilateral snake AQ8.

(1,1,1,1)

(1,1,1,1) (1,1,1,1)

(1,1,1,1)

(1,1,1,0) (1,1,0,0)(1,1,0,0)(1,1,1,0)

(1,1,1,0)(1,1,1,0) (1,1,0,0) (1,1,0,0)

(1,0,0,0) (1,0,0,0)

(1,0,0,0) (1,0,0,0)

Figure 5. A vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial labeling of
AQ8.
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4. CONCLUSION

In this paper, we have investigated the vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0), (1,0,0,0)}-
cordial labeling of certain graphs such as the generalized friendship graph, tadpole
graph, gear graph, Cm,n, alternate triangular snake and alternate quadrilateral snake.
The vector basis {(1,1,1,1),(1,1,1,0),(1, 1,0,0),(1,0,0,0)}-cordial labeling of some stan-
dard graphs such as step ladder graph, generalized Petersen graph, generalized Jahangir
graph, generalized prism graph, generalized web graph and king graph are the open
problems for the future research work.
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