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Abstract

Chebyshev’s second function, the Möbius function, and Mersenne primes are
used to derive a function that estimates the number of primes less than a given
amount. This function is compared to the log integral function and Riemann’s
R(x) function.
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1. INTRODUCTION

Chebyshev’s second function is the summatory Mangoldt function, that is,

ψ(x) =
∑
n≤x

Λ(n), x > 0. (1)

Λ(n) equals log(p) if n = pm for some prime p and some m ≥ 1 or 0 otherwise.
The prime number theorem is equivalent to the asymptotic formula∑

n≤x

Λ(n) ∼ x, x→ ∞ (2)

This asymptotic formula states that

lim
x→∞

ψ(x)

x
= 1. (3)

The log integral function is

li(x) = lim
δ→+0

(

∫ 1−δ

0

+

∫ x

1+δ

)
dt

log t
, (x > 1). (4)
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Let π(x) denote the number of primes less than or equal to x and π0(x) denote π(x)− 1
2

if x is a prime or π(x) otherwise. In 1859 Riemann [1] published and in 1895 von
Mangoldt [2] proved, the following formula:

π0(x) =
∞∑
n=1

µ(n)f(x1/n)/n, (5)

where µ(n) is the Möbius function, and

f(x) =
∞∑
n=1

π0(x
1/n)/n = li(x)−

∑
ρ

li(xρ) +

∫ ∞

x

dt

(t2 − 1)t log t
− log 2, (6)

where the sum means limT→∞
∑

|ρ|≤T li(x
ρ), and the ρ’s are the non-trivial zeros of the

Riemann zeta function:

ζ(s) =
∞∑
n=1

n−s =
∏
p

(1− p−s)−1. (7)

In the sum over the ρ’s, each ρ-term appears a number of times equal to the multiplicity
of the zero ρ. Since f(x) = 0 for 1 < x < 2, the sum in (5) is actually finite and equals

π0(x) =
N∑

n=1

µ(n)f(x1/n)/n (8)

for all x < 2N+1, because then x1/n < 2 for all n ≥ N + 1 and so f(x1/n) = 0.

Taking only the first term li(x) of (6) and introducing it into the ”inversion formula”
(5), Riemann got his approximation to π0(x):

π0(x) ≈ R(x) =
∞∑
n=1

µ(n)li(x1/n)/n (9)

The right-hand side of (9) can be transformed into Gram’s series (see Lehmer’s [3]
article)

R(x) = 1 +
∞∑
n=1

(log x)n

n!nζ(n+ 1)
. (10)

Since
dkR(et)

dtk
=

∞∑
n=k

tn−k

(n− k)!nζ(n+ 1)
> 0 (11)

for t > 0 it is obvious that R(x) cannot describe the more detailed behavior of π0(x),
which is certainly not a function with all derivatives > 0. R(x) smoothes the values of
π0(x) and gives a kind of mean-value correct smooth approximation to π0(x).
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Equation (13) in Riesel and Göhl’s [4] article is:

−{li(xρ) + li(xρ̄)} = −2ℜli(xρ) ∼ −2ℜ
√
xeiα log x

(1
2
+ iα) log x

(12)

=
−2

√
x

|ρ| log x
cos(α log x− arg ρ) (13)

where ρ = 1
2
+ iα (a root on the critical line). Thus for large x, the contribution to

π0(x) from two complex conjugate zeros 1
2
± iα of ζ(s) is an oscillating function with

an amplitude varying with x as 2
√
x/(|ρ| log x) and with consecutive zeros xk+1 and

xk connected by the relationship xk+1 = xk · eπ/α. The larger |ρ| becomes, the smaller
is the amplitude and the faster are the oscillations. See their article for graphs of this
function for the first five non-trivial zeta function zeros. A plot of the function for the
first non-trivial zeta function zero ((0.5, 14.134725)) is

Figure 1

Most of the other material above was also taken from this article.

2. A FUNCTION FOR ESTIMATING π(n)

Let vj denote
∑

i|j(ψi+1 − ψi)µ(i) where µ(i) denotes the Möbius function and j is
odd. The Möbius function is defined as follows. µ(1) is set to 1. For n > 1, write
n = pa11 · · · pakk . Then µ(n) = (−1)k if a1 = a2 = . . . = ak = 1 or 0 otherwise. ψ1

is set to 0. For prime j other than Mersenne primes (3, 7, 31, 127, 8191,...), vj then
equals log(2). If j is a Mersenne prime, then vj = 0 since j + 1 is a prime power and
the ψ values increase by log(2) at this point (cancelling out the difference between ψ2

and ψ1). In general, vj equals an integer multiple of log(2) (including a multiple of
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0). For j < 200000, there are 30 vj values equal to 2 log 2, 60146 vj values equal to
log 2, 34639 vj values equal to 0, 4949 vj values equal to − log 2, 221 vj values equal
to −2 log 2, and 15 vj values equal to −3 log 2.

Case 1: vj = log 2

vj = log(2) for any j value that is a product of non-Mersenne primes. Note that the
Möbius function zeros out any ψi+1 − ψi value in the sum where i is not square-free.
vj = log(2) for any j value that is a product of powers of non-Mersenne primes. This
does not account for all vj values that equal log(2) though. Note that 24 − 1 = 3 · 5
and 29 − 1 = 7 · 73, products of a Mersenne prime and a non-Mersenne prime. These
products behave like non-Mersenne primes. vj = log(2) for any j value that is a power
of 3 or 5 times 15. Similarly, vj = log(2) for any j value that is a power of 7 or 73
times 511. There are likely to be other such products of Mersenne and non-Mersenne
primes. The first 100 j values are 1, 5, 11, 13, 15, 17, 19, 23, 25, 29, 37, 41, 43, 45, 47,
53, 55, 59, 61, 65, 67, 71, 73, 75, 79, 83, 85, 89, 95, and 97. A plot of the six hundred
and two j values less than 1000 is

Figure 2

For a linear least-squares fit of the curve, p1 = 3.325 with a 95% confidence interval
of (3.324, 3.326), p2 = −1.771 with a 95% confidence interval of (−2.179, −1.362),
SSE=3893, R-squared=1, and RMSE=2.547. A formulation of the Riemann hypothesis
(that the real part of the non-trivial zeta function zeros equals 1

2
) is that ψ(x) is

essentially square root close to the function f(x) = x. The above linear curve may
be relevant to this. See Mazur and Stein [5] for other formulations of the Riemann
hypothesis.
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Case 2: vj = 0

The j values less than 200 where vj = 0 are 3, 7, 9, 27, 31, 33, 35, 39, 49, 51, 57, 69,
77, 81, 87, 91, 99, 105, 111, 117, 119, 123, 127, 129, 133, 141, 153, 155, 159, 161, 171,
175, 177, and 183. In general, these values can be factored into powers of Mersenne
primes or products of powers of Mersenne primes and powers of non-Mersenne primes.
There is at most one distinct Mersenne prime factor in each j value. Again, 3*5 and
7*73 behave like non-Mersenne primes. The j value of 155 factors into (3 ·5) ·7 so that
there is only one distinct ”Mersenne prime” factor. For j values that are not a power of
a Mersenne prime, there is at least one non-Mersenne prime factor. A plot of the one
thousand, seven hundred, and thirty one j values less than 5000 is

Figure 3

For a linear least-squares fit of the curve, p1 = 5.781 with a 95% confidence interval
of (5.78, 5.782), p2 == 10.91 with a 95% confidence interval of (−11.88, −9.941),
SSE=1.833 · 108, R-squared=1, and RMSE=10.3.

Case 3: vj = − log 2

The j values less than 1000 where vj = − log 2 are 21, 63, 93, a47, 189, 217, 231 273,
279, 357, 381, 399, 441, 483 567, 609, 693, 777, 819, 837, 861, 889, 903, and 987. In
general, these values can be factored into powers of two Mersenne primes or powers of
two Merseene primes and powers of non-Mersenne primes. There are most two distinct
”Mersenne prime” factors of each j value. A plot of the seven hundred and forty j

values less than 15000 is



100 Darrell Cox

Figure 4

For a linear least-squares fit of the curve, p1 = 40.37 with a 95% confidence interval
of (40.35, 40.39), p2 = −17.8 with a 95% confidence interval of (−27.35, −8.251),
SSE=3.224 · 106, R-squared=0.9999, and RMSE=66.09.

Similar factorizations occur in the other cases.

Let wn denote
∑n

i=1 v2i−1

log
∑n

i=1 v2i−1
. C code for computing wn is given in the Methods section.

Let π1(n) denote π(2n) (this avoids duplicate π(n) values for consecutive n values).
A plot of wn versus π1(n) for n = 1000 is

Figure 5

For a linear least-squares fit of the curve, p1 = 0.2063 with a 95% confidence interval
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of (0.2061, 0.2065), p2 = 1.354 with a 95% confidence interval of (1.313, 1.394),
SSE=88.36, R-squared=0.9997, and RMSE=0.2975. (SSE denotes the sum of squared
errors and RMSE denotes square root of mean squared errors.)

A plot of the slopes of the linear least-squares fits of the curves for n equal to
1000,2000,3000,. . .,200000 is

Figure 6

A plot of the y-intercepts of the linear least-squares fits is

Figure 7
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A plot of the SSE values of the linear least-squares fits is

Figure 8

A plot of the RMSE values of the linear least-squares fits is

Figure 9

Presumably, the oscillations in the curve are due to the zeta function zeros.

3. wn VERSUS LOG INTEGRAL FUNCTION

A C program for computing li(x) is given in the Methods section. A plot of wn for
n = 1000 versus li(n) for n = 1, 2, 3, . . . 1000 is
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Figure 10

For a linear least-squares fit of the curve, p1 = 0.2016 with a 95% confidence interval
of (0.2014, 0.2017), p2 = 0.3853 with a 95% confidence interval of (0.3537, 0.4169),
SSE=51.39, R-squared=0.9998, and RMSE=0.2269.

A plot of the slopes of the linear least-squares fits for maximum n values of 1000, 2000,
3000. . ., 200000 is

Figure 11
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A plot of the y-intercepts of the linear least-squares fits is

Figure 12

A plot of the SSE values of the linear least-squares fits is

Figure 13

For a cubic least-squares fit of the curve, p1 = 0.06231 with a 95% confidence interval
of (0.06144, 0.06319), p2 = 11.63 with a 95% confidence interval of (11.36, 11.89),
p3 = −342.4 with a 95% confidence interval of (−365.5, −319.3), p4 = 2689

with a 95% confidence interval of (2152, 3227), SSE=1.753 · 108, R-squared=1, and
RMSE=945.8.
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A plot of the SSE values versus the y-intercepts is

Figure 14

For a cubic least-squares fit of the curve, p1 = 1552 with a 95% confidence interval
of (1541, 1563), p2 = −3307 with a 95% confidence interval of (−3464, −3150),
p3 = 5999 with a 95% confidence interval of (5347, 6650), p4 = −3516 with a 95%
confidence interval of (−4267, −2766), SSE=1.856·108, R-squared=1, and RMSE=973.

A plot of the RMSE values of the linear least-squares fits is

Figure 15



106 Darrell Cox

In 1899, de la Vallée [6] proved that

π(x) = Li(x) +O(xe−a
√
log x) (14)

as x → ∞ where Li(x) = li(x)− li(2) and a is some constant. In 1901, von Koch [7]
proved that if the Riemann hypothesis is true, the above error term can be improved to

π(x) = Li(x) +O(
√
x log x) (15)

In 1976, Schoenfeld [8] showed, by assuming the Riemann hypothesis, that

|π(x)− li(x)| <
√
x log x

8π
(16)

for x ≥ 2657.
A plot of li(n)− wn versus

√
n log(n)
8π

for n = 1, 2, 3, . . . , 1000000 is

Figure 16

For a cubic least-squares fit of the curve, p1 = −0.0001077 with a 95% confidence
interval of (−0.0001078, −0.0001077), p2 = 0.3525 with a 95% confidence interval
of (0.3525, 0.3525), p3 = 57.6 with a 95% confidence interval of (57.59, 57.62),
p4 = −895.1 with a 95% confidence interval of (−896, −894.1), SSE=4.139 · 109,
R-squared=1, and RMSE=64.33. For a cubic least-squares fit of the curve for n =

1, 2, 3, . . . , 500000, p1 = −0.0001886 with a 95% confidence interval of (−0.0001887,
−0.0001885), p2 = 0.4044 with a 95% confidence interval of (0.4043, 0.4045),
p3 = 48.17 with a 95% confidence interval of (48.16, 48.19), p4 = −468.5 with
a 95% confidence interval of (−469.2, −467.8), SSE=5.995 · 108, R-squared=1, and
RMSE=34.63.
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A plot of π1(n)− wn versus
√
n log(n)
8π

for n = 1, 2, 3, . . . , 1000000 is

Figure 17

For a cubic least-squares fit of the curve, p1 = −0.0001081 with a 95% confidence
interval of (−0.0001081, −0.0001081), p2 = 0.3529 with a 95% confidence interval
of (0.3528, 0.3529), p3 = 57.27 with a 95% confidence interval of (57.26, 57.29),
p4 = −908.3 with a 95% confidence interval of (−909.3, −907.2), SSE=4.446 · 109,
R-squared=1, and RMSE=66.68. For a cubic least-squares fit of the curve for n =

1, 2, 3, . . . , 500000, p1 = −0.0001889 with a 95% confidence interval of (−0.000189,
−0.0001887), p2 = 0.4049 with a 95% confidence interval of (0.4048, 0.4049),
p3 = 47.81 with a 95% confidence interval of (47.8, 47.83), p4 = −479.6 with a
95% confidence interval of (−480.4, −478.3), SSE=6.645 · 108, R-squared=1, and
RMSE=36.45.

A plot of R(n)− wn versus
√
n log(n)
8π

for n = 1, 2, 3, . . . , 1000000 is
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Figure 18

For a cubic least-squares fit of the curve, p1 = −0.000108 with a 95% confidence
interval of (−0.000108, −0.0001079), p2 = 0.3528 with a 95% confidence interval
of (0.3528, 0.3529), p3 = 57.28 with a 95% confidence interval of (57.26, 57.29),
p4 = −908 with a 95% confidence interval of (−909, −907), SSE=4.182 · 109,
R-squared=1, and RMSE=64.67. For a cubic least-squares fit of the curve for n =

1, 2, 3, . . . , 500000, p1 = −0.0001893 with a 95% confidence interval of (−0.0001894,
−0001891), p2 = 0.405 with a 95% confidence interval of (0.4049, 0.405), p3 = 47.8

with a 95% confidence interval of (47.78, 46.81), p4 = −479.4 with a 95% confidence
interval of (−480.1, −478.6), SSE=6.092 · 108, R-squared=1, and RMSE=34.91.
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Other than the first and third parameters, the parameters appear to decrease as n
increases. Plots of the parameters of the cubic least squares fits of li(n) − wn versus√

n log(n)
8π

for n upper bounds of 25000, 50000, 75000,. . .,2000000 are as follows. A plot
of the p1 parameters is

Figure 19

The curve resembles the logarithm function. A plot of the p2 parameters is

Figure 20
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A plot of the p3 parameters is

Figure 21

A plot of the p4 parameters is

Figure 22
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The curve is quadratic. A plot of the SSE values is

Figure 23

The curve is cubic. A plot of the RMSE values is

Figure 24

The curve is cubic.
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A plot of the p2 parameters versus the p3 parameters is

Figure 25

The curve is quartic.

Similar cubic curves are obtained for π1(n) − wn. A plot of the p1 parameters for n
upper bounds of 25000, 50000, 75000,. . .,2000000 is

Figure 26
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A plot of the p2 parameters is

Figure 27

A plot of the p3 parameters is

Figure 28
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A plot of the p4 parameters is

Figure 29

The curve is quadratic except for the oscillations. A plot of the SSE values is

Figure 30
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The curve is cubic except for the oscillations. A plot of the RMSE values is

Figure 31

The curve is cubic except for the oscillations.

A plot of the p1 parameters for π1(n)− wn versus the p1 parameters for li(n)− wn is

Figure 32

The slope is about 1.042 and the y-intercept is about 0.
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A plot of the p2 parameters for π1(n)− wn versus the p2 parameters for li(n)− wn is

Figure 33

The slope is about 1.015 and the y-intercept is about −0.005.

A plot of the p3 parameters for π1(n)− wn versus the p3 parameters for li(n)− wn is

Figure 34

The slope is about 1.007 and the y-intercept is about −0.7429.

A plot of the p4 parameters for π1(n)− wn versus the p4 parameters for li(n)− wn is
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Figure 35

The slope is about 1.006 and the y-intercept is about −7.788.

A plot of the SSE values for π1(n)− wn versus the SSE values for li(n)− wn is

Figure 36

The slope is about 1.046.
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A plot of the RMSE values for π1(n)− wn versus the RMSE values for li(n)− wn is

Figure 37

The slope is about 1.005 and the y-intercept is about 1.851.

Other than the oscillations of the parameters for π1(n) − wn, the parameters are about
the same. This has implications for the difference between li(n) and π1(n). In 1914,
Littlewood [9] proved that π(x)− li(x) changes sign infinitely often.

4. RIEMANN’S R(x) FUNCTION

A C program for computing R(x) is given in the Methods section. A plot of R(n)
versus π1(n) for n = 1, 2, 3, . . . , 1000 is

Figure 38
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For a linear least-squares fit of the curve, p1 = 0.9986 with a 95% confidence interval
of (0.9978, 0.9994), p2 = 0.162 with a 95% confidence interval of (0.01725, 0.3068),
SSE=1128, R-squared=0.9998, and RMSE=1.063. For larger n values, the slope is
usually 1.
A plot of the y-intercepts of the linear least-squares fits for maximum n values of 1000,
2000, 3000,. . .,200000 is

Figure 39

For large positive y-intercepts, the slope may be as low as 0.9996. For negative
y-intercepts, the slope is 1.

A plot of the SSE values of the linear least-squares fits is

Figure 40
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A plot of the RMSE values of the linear least-squares fits is

Figure 41

These values are similar to those for wn but are over twice as large.

A plot of the SSE values of the linear least-squares fits and 6 times the SSE values of
the linear least squares fits of the wn values is

Figure 42

The curves have similar properties. In this sense, wn is much more accurate than R(n).
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5. METHODS

compute w(n)
#include <math.h>
#include <stdio.h>
#include ”cheby3hk.h” // 300001 maximum
#include ”table5.h”
int mobius(unsigned int a, unsigned int *table, unsigned int tsize);
void main () {
unsigned int h,i,N,count,index;
int r;
unsigned int tsize=114155;
double sum,sum1,temp;
FILE *Outfp;
Outfp = fopen(”sortu.dat”,”w”);
if (Outfp==NULL)

return;
index=1;
count=0;
sum1=0.0;
N=1;
for (h=1; h<=200000; h++) {

sum=0.0;
for (i=1; i<=N; i++) {

if (N==(N/i)*i)
sum=sum+(zero[i]-zero[i-1])*mobius(i,table,tsize);

}
r=(int)(sum/(log(2)-0.01));
temp=(double)r*log(2);
sum1=sum1+(double)r*log(2);
if (h==(h/1000)*1000)

printf(” %d %.16llf %d \n”,h,sum1/log(sum1),count);
N=N+2;
for (i=index; i<=tsize; i++) {

if (table[i-1]<2*h)
count=count+1;

else {
index=i;
break;
}
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}
fprintf(Outfp,” %.16llf, %d \n”,sum1/log(sum1),count);
}

fclose(Outfp);
return;
}

compute li(x)
#include <math.h>
#include <stdio.h>
void main () {
unsigned int h,MAXN;
int j;
double temp,x,f;
FILE *Outfp;
Outfp = fopen(”sortz.dat”,”w”);
if (Outfp==NULL)

return;
fprintf(Outfp,” %d, %.16llf, \n”,2,1.045164);
for (h=2; h<=75000; h++) {

MAXN=h*2;
f=-1e+99;
x=log(MAXN);
temp=x-10;
if (temp<0.0)

temp=-temp;
if (temp>=12.0)

goto L2;
if (x==0.0)

goto L4;
temp=x;
if (temp<0.0)

temp=-temp;
j=(int)(10.0+2.0*temp);
f=1.0/(double)((j+1)*(j+1));
L1: f=(f*(double)j*x+1.0)/(double)(j*j);
j=j-1;
if (j!=0.0)

goto L1;
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temp=x;
if (temp<0.0)

temp=-temp;
f=f*x+log(1.781072418*temp);
goto L4;
L2: temp=x;
if (temp<0.0)

temp=-temp;
j=(int)(5.0+20.0/temp);
f=x;
L3: f=1.0/(1.0/f-1.0/(double)j)+x;
j=j-1;
if (j!=0)

goto L3;
f=exp(x)/f;
L4: printf(” %d %.16llf \n”,MAXN,f);
fprintf(Outfp,” %d, %.16llf, \n”,MAXN,f);
}

fclose(Outfp);
return;
}

compute R(x)
#include <math.h>
#include <stdio.h>
#include ”table5.h”
double li(double z);
int mobius(unsigned int a, unsigned int *table, unsigned int tsize);
unsigned int tsize=114155;
void main () {
unsigned int h,N,MAXN;
double sum,x,c;
FILE *Outfp;
Outfp = fopen(”rx.dat”,”w”);
if (Outfp==NULL)

return;
for (h=1; h<=200000; h++) {

x=(double)(h*2);
c=2.0;
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N=1;
while (x>c) {

c=c*2.0;
N=N+1;
}

MAXN=N;
sum=0.0;
for (N=1; N<=MAXN; N++)

sum=sum+mobius(N,table,tsize)*li(pow(x,1.0/(double)N))/(double)N;
printf(” %d %d %d %.16llf \n”,2*h,(unsigned int)c,MAXN,sum);
fprintf(Outfp,” %.16llf, \n”,sum);
}

fclose(Outfp);
return;
}
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