Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 21, Number 1 (2025), pp. 181-186 ©Research India Publications http://www.ripublication.com/gjpam.htm

$\begin{array}{c} \textbf{CRITICAL} ve-\textbf{weight} m-\textbf{DOMINATION ON } S-\textbf{VALUED} \\ \textbf{GRAPHS} \end{array}$

Dr. S. Kiruthiga Deepa *

¹AAA College of Engineering and Technology, Amathur, Tamilnadu-626005, India.

Abstract

A mixed domination in a S-valued graph is vertex dominating the edges with weight and vice versa. The mixed domination number is the minimum cardinality of any mixed dominating set. The notion of critical ve-weight m-domination on S-valued graphs was discussed here.

AMS Classification: 05C25, 16Y60.

Keywords: S-valued graphs, critical ve-weight m-dominating set.

1. INTRODUCTION

The theory of domination in graphs was initiated by Berge[1]. In 2015, Chandramouleeswaran et.all[7] introduced the notion of Semiring-valued graphs(simply called S-valued graphs). A mixed domination in a S-valued graph is vertex dominating edges with weight and vice versa. The mixed domination number is the minimum cardinality of any mixed dominating set. A graph is critical ve-weightm-dominating if the removal of any vertex decreases its domination number. This paper gives examples and properties of critical ve-weightm-dominating graphs and gives a method of constructing them and poses some open problems.

2. PRELIMINARIES

In this section, we recall some basic definitions that are needed for our work.

Definition 2.1 [2] A semiring $(S, +, \cdot)$ is an algebraic system with a non-empty set

^{*}drkiruthigadeepa@gmail.com

S together with two binary operations + and \cdot such that

- 1. (S, +, 0) is a monoid.
- 2. (S, \cdot) is a semigroup.
- 3. For all $a, b, c \in S$, $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$.
- 4. $0 \cdot x = x \cdot 0 = 0 \ \forall \ x \in S$.

Definition 2.2 [2] Let $(S, +, \cdot)$ be a semiring. A Canonical Pre-order \leq in S defined as follows: for $a, b \in S$, $a \leq b$ if and only if, there exists an element $c \in S$ such that a + c = b.

Definition 2.3 [7] Let $G = (V, E \subset V \times V)$ be a given graph with $V, E \neq \phi$. For any semiring $(S, +, \cdot)$, a semiring-valued graph (or a S-valued graph), G^S , is defined to be the graph $G^S = (V, E, \sigma, \psi)$ where $\sigma : V \to S$ and $\psi : E \to S$ is defined to be

$$\psi(x,y) = \begin{cases} \min \left\{ \sigma(x), \sigma(y) \right\} & \text{if } \sigma(x) \leq \sigma(y) \text{ or } \sigma(y) \leq \sigma(x) \\ 0 & \text{otherwise} \end{cases}$$

for every unordered pair (x,y) of $E \subset V \times V$. We call σ , a S-vertex set and ψ , a S-edge set of G^S .

Definition 2.4 [6] A S- valued graph $G^S=(V, E, \sigma, \psi)$ is said to be a S- Star(S-Wheel) if its underlying graph G is a Star(Wheel) along with S- values.

Definition 2.5 [3] Consider the S-valued graph $G^S = (V, E \subset V \times V, \sigma, \psi)$. The open neighbourhood of v_i in G^S is defined as the set $N_S(v_i) = \{(v_i, \sigma(v_i)), where(v_i, v_i) \in E, \psi(v_i, v_i) \in S.\}$

Definition 2.6 [3] The closed neighbourhood of v_i in $G^S = (V, E, \sigma, \psi)$ is defined to be the set $N_S[v_i] = N_S(v_i) \cup \{(v_i, \sigma(v_i))\}$

Definition 2.7 [4] Consider the S-valued graph $G^S = (V, E, \sigma, \psi)$, and a vertex $v \in V$. The vertex v is said to be a ve-weight m-dominating vertex of an edge e, if $e \in \langle N_S[v] \rangle$ such that $\psi(e) \preceq \sigma(v)$.

Definition 2.8 [4] Consider the S-valued graph $G^S = (V, E, \sigma, \psi)$.Let $D \subseteq V$. If every edge of G^S is weight m-dominated by any vertex in D, then D is said to be a ve-weight m-dominating set.

Definition 2.9 [5] Consider the S-valued graph $G^S = (V, E, \sigma, \psi)$. The vertex-edge mixed domination number of G^S denoted by $\gamma_{VE}^S(G^S)$ is defined by $\gamma_{VE}^S(G^S) = (|D|_S, |D|)$, where D is the minimal ve-weight m-dominating set.

3. CRITICALve-weightm-DOMINATION ON S-VALUED GRAPHS

In this section, we introduce the notion of critical vertex - edge mixed domination on S-valued graphs, analogous to the notion in crisp graph theory, and prove some simple results.

Definition 3.1 A vertex $v \in V$ in the S-valued graph $G^S = (V, E, \sigma, \psi)$, is said to be critical ve-weight m-dominating vertex, if removal of the vertex v from G^S decreases its domination number $\gamma_{VE}^S(G^S)$.

Example 3.2 Let $(S = \{0, a, b, c\}, +, \cdot)$ be a semiring with the following Cayley Tables:

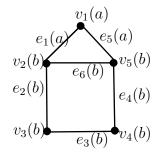
+	0	a	b	c
0	0	a	b	c
a	a	a	b	c
b	b	b	b	b
c	c	c	b	c

	0	a	b	c
0	0	0	0	0
a	0	0	a	0
b	0	a	b	c
c	0	0	c	c

Let \leq be a canonical pre-order in S, given by

$$0 \leq 0, \ 0 \leq a, \ 0 \leq b, \ 0 \leq c, \ a \leq a, \ a \leq b, \ a \leq c, \ b \leq b, \ c \leq b, \ c \leq c$$

Consider the S- valued graph $G^S:$



Define $\sigma: V \to S$ by

$$\sigma(v_1) = a, \sigma(v_2) = \sigma(v_3) = \sigma(v_4) = \sigma(v_5) = b$$

and $\psi: E \to S$ by

$$\psi(e_1) = \psi(e_5) = a, \psi(e_2) = \psi(e_3) = \psi(e_4) = \psi(e_6) = b$$

Consider a set $D_1 = \{v_2, v_4\}$

Here
$$N_S[v_2] = \{(v_1, a), (v_2, b), (v_3, b), (v_5, b)\}$$
.

And the edges $e_1, e_2, e_5 and e_6 \in \langle N_S[v_2] \rangle$,

also
$$\psi(e_1) = a \leq b = \sigma(v_2)$$

$$\psi(e_2) = b \le b = \sigma(v_2)$$

$$\psi(e_5) = a \leq b = \sigma(v_2)$$

$$\psi(e_6) = b \leq b = \sigma(v_2)$$

The vertex v_2 is a ve-weight m-dominating vertex of the edges e_1, e_2, e_5 and e_6 .

Here
$$N_S[v_4] = \{(v_3, b), (v_4, b), (v_5, b)\}$$
.

And the edges $e_3, e_4 \in \langle N_S[v_4] \rangle$,

also
$$\psi(e_3) = b \leq b = \sigma(v_4)$$

$$\psi(e_4) = b \leq b = \sigma(v_4)$$

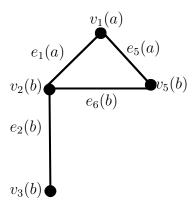
... The vertex v_4 is a ve-weight m-dominating vertex of the edges e_3 and e_4 .

Hence all the edges of G^S are m-dominated by a vertex in D_1 ={ v_2, v_4 }, and therefore D_1 is ave-weight m-dominating set.

$$\begin{split} & \text{Similarly} \quad D_2 = \left\{ v_3, v_5 \right\}, \quad D_3 \quad = \left\{ v_2, v_3, v_4 \right\}, \\ & D_6 = \left\{ v_3, v_4, v_5 \right\}, \quad D_7 = \left\{ v_2, v_3, v_4, v_5 \right\}, \text{ are all } ve\text{-weight } m\text{-dominating sets.} \end{split}$$

Also $D_1 = \{v_2, v_4\}$, $D_2 \{v_3, v_5\}$ are the minimal ve- weight m- dominating sets.

... The vertex-edge mixed domination number of G^S is $\gamma_{VE}^S(G^S) = (|D_1|_S, |D_1|) = (|D_2|_S, |D_2|) = (b, 2)$.



Here the removal of the vertex v_4 , (given in the above figure) decreases the vertex-edge mixed domination number to $\gamma_{VE}^S(G^S) = (b,1)$, and therefore the vertex v_4 is a critical ve-weight m-dominating vertices.

Similarly the vertices v_2, v_3, v_5 are critical ve—weight m—dominating vertices, since the removal of any of these vertices will reduce the vertex-edge mixed domination number to $\gamma_{VE}^S(G^S) = (b, 1)$.

Definition 3.3 The S-valued graph $G^S = (V, E, \sigma, \psi)$ is said to be critical ve-weight m-dominating graph, if every vertex of G^S is a critical ve-weight m-dominating vertex.

Example 3.4

- 1. For example, every S-regular Complete $\text{graph}K_n^S$ is a critical ve-weight m-dominating graph.
- 2. Any S-regular Star graph S_n^S , cannot be a critical ve-weight m-dominating graph. Since removal of any vertex, except the pole will not decrease its domination number and suppose if the pole is removed then the graph does not exist.
- 3. Similar to the above case, a S-regular Wheel graph W_n^S , cannot be a critical ve-weight m-dominating graph.
- 4. Any S-regular Complete Bipartite graph $K_{m,n}^S$ is not a critical ve-weight m-dominating graph. Since the removal of any vertex will not decrease its domination number.

Theorem 3.5 If G^S is a critical ve-weight m-dominating graph with e^S edges, then $p^S \leq (2e^S + 3\gamma^S - \Delta^S)/3$.

Proof : Let us assume G^S has no isolated vertices. Then every vertex will have atleast two adjacent vertices. Let v be a vertex of maximum degree Δ^S and $D=D_v\cup\{v\}$ be a minimum dominating set of G^S . Then each vertex of $N^S(v)$ has atleast two edges incident to the vertices in D(i.e. one incident to v and one to some vertex in D_v .) Each of the remaining vertices in V-D has atleast one more edge incident to vertices in D_v for the total of $p^S-\gamma^S-\Delta^S$ more edges. Since the minimum degree is atleast two, this latter set of vertices contributes atleast $(p^S-\gamma^S-\Delta^S)/2$ more edges. Therefore, $e^S \geq 2\Delta^S + (p^S-\gamma^S-\Delta^S) + (p^S-\gamma^S-\Delta^S)/2$, from which the result follows. Now suppose G^S has t^S isolated vertices, then $p^S-t^S \leq [2e^S+3(\gamma^S-t^S)-\Delta^S]/3=(2e^S+3\gamma^S-\Delta^S)/3-t^S$.

Lemma : The S-valued graph H^S . G^S is a critical ve-weight m-dominating graph if and only if both H^S and G^S are critical ve-weight m-dominating graphs.

Theorem 3.6 If G^S is a critical ve-weight m-dominating graph if and only if each block of G^S is a critical ve-weight m-dominating graph. Also, if G^S is a critical ve-weight m-dominating graph with blocks $G_1^S, G_2^S...G_n^S$ then

Proof: We apply induction hypothesis on the number of blocks n. The statement being trivial if n=1. Let us assume the statement is true for n blocks.

Then let us consider a S-valued graph G^S with blocks $G_1^S, G_2^S...G_n^S, G_{n+1}^S$ such that G_{n+1}^S contains only one cut vertex of G^S .

Then $G^S = H^S.G_{n+1}^S$, where H^S is the subgraph composed of blocks $G_1^S,G_2^S...G_n^S$. Hence the result follows from above Lemma and the induction hypothesis.

Critical ve-weight m-Domination in Networks:

Critical ve—weight m—dominating graphs can be used to model multiprocessor networks in which a subset of processors (represented by a ve—weight m—dominating set) can transmit messages to all remaining processors in a single time unit, i.e. the time for a message to cross a communication line. Such networks have the pleasant characteristics that any processor can be in a minimum set of these "dominating" processors and the failure of any processor leaves a network which requires one fewer dominating prosessors.

REFERENCES

- [1] **Berge** C *Theory of Graphs and its Applications*, Methuen, London, (1962).
- [2] **Jonathan Golan** *Semirings and Their Applications*, Kluwer Academic Publishers, London.
- [3] **Jeyalakshmi.S and Chandramouleeswaran.M**: *Vertex domination on S-Valued graphs*,IOSR Journal of mathematics IOSR Journal of Mathematics. e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 5 Ver. IV, PP 08-12
- [4] **Kiruthiga Deepa.S and Chandramouleeswaran.M**: *Vertex Edge Mixed Domination on S— Valued Graphs*, International Journal of Pure and Applied Mathematics (2017), Vol No.112, pp 139-147 ISSN: 1314-3395, doi: 10.12732/ijpam.v112i5.16
- [5] **Kiruthiga Deepa.S and Chandramouleeswaran.M**: *Mixed Domination Numbers on S— Valued Graphs*, Mathematical Sciences International Research Journal, (2017), Vol No.6, Spl Issue(2017) pp 248-252, ISSN: 2278-8697
- [6] **Jeyalakshmi.S, Rajkumar.M, and Chandramouleeswaran.M**: *Regularity on S—Graphs*, Global Journal of Pure and Applied Mathematics. ISSn 0973-1768 Volume 11, Number 5 (2015), pp. 2971-2978
- [7] Rajkumar.M., Jeyalakshmi.S and Chandramouleeswaran.M: Semiring-valued Graphs, International Journal of Math. Sci. and Engg. Appls., Vol. 9 (III), 2015, 141 152.