
Global Journal of Pure and Applied Mathematics.
ISSN 0973-1768 Volume 21, Number 3 (2025), pp. 545-559
©Research India Publications
http://www.ripublication.com/gjpam.htm

Lagarias’ Inequality Pertaining to the Riemann
Hypothesis and the Sum of Reciprocals of the Primes

Darrell Cox 1

1Department of Mathematics,
Grayson County College,

United States.

Abstract

An inequality analogous to Lagarias’ inequality is introduced. An alternate form
of Lagarias’ inequality is derived using Dirichlet inverses. A relationship between
the Dirichlet inverse of the sum of divisors function and highly abundant numbers
is investigated. A function having some properties similar to those of the sum of
divisors function is introduced.
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1. INTRODUCTION

Lagarias’ [1] Theorem 1.1 is

Theorem 1. The inequality
∑

d|n d ≤ Hn + exp(Hn) log(Hn) (with equality only for
n = 1) is equivalent to the Riemann hypothesis.

The function σ(n) =
∑

d|n d is the sum of divisors function and Hn =
∑n

j=1
1
j

is called
the n-th harmonic number.
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Let α(n) denote Hn + exp(Hn) log(Hn). A plot α(n) and σ(n) for n ≤ 1000 is

Let Rn denote the sum of the reciprocals of the primes up to the nth prime. Let β(n)
denote Rn + exp(Rn) log(Rn). A plot of β(n)/ log(β(n)) versus α(n) for n ≤ 1000 is

For a linear least-squares fit of the curve, p1 = 0.3269 with a 95% confidence interval
of (0.3269, 0.3269), p2 = −0.206 with a 95% confidence of (−0.284, −0.1281),
SSE=422.1, R-squared=1, and RMSE=0.6503.

For a linear least-squares fit of the curve where n ≤ 1000000, p1 = 0.3099 with a
95% confidence interval of (0.3099, 0.3099), p2 = 3503 with a 95% confidence interval
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of (3499, 3507), SSE=1.035 · 1012, R-squared=1, and RMSE=1018. Solving for α(n)
gives about β(n)−3503

.3099
.

2. THE DIRICHLET INVERSES OF σ(n) AND α(n)AND GENERALIZED
MÖBIUS INVERSION

Theorem 2.8 of Apostol’s book is

Theorem 2. If f is an arithmetical function with f(1) ̸= 0 there is a unique arithmetical
function f−1, called the Dirichlet inverse of f , such that f ∗ f−1 = f−1 ∗ f = I .
Moreover, f−1 is given by the recursion formulas f−1(1) = 1/f(1), f−1(n) =
−1
f(1)

∑
d|n,d<n f(

n
d
)f−1(d) for n > 1.

Theorem 2.22 (generalized inversion formula) in Apostol’s book is

Theorem 3. If α has a Dirichlet inverse α−1, then the equation (10) G(x) =∑
n≤x α(n)F (x

n
) implies (11) F (x) =

∑
n≤x α

−1G(x
n
). Conversely, (11) implies (10).

Let σ′(n) denote the Dirichlet inverse of σ(n). A plot of σ′(n) for n ≤ 1000 is

Let α′(n) denote the Dirichlet inverse of α(n). A plot of σ′(n) and α′(n) for n ≤ 1000

is
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The absolute value of σ′(n) is less than the absolute value of α′(n). This is the alternate
form of Lagarias’ inequality.

For a highly abundant number, σ(n) > σ(m) for all m < n. For a superabundant
number, σ(n)/n > σ(m)/m for all m < n. Colossally abundant numbers are those
numbers for which there is a positive constant ϵ such that σ(n)

n1+ϵ ≥ σ(k)
k1+ϵ for all k > 1. A

plot of the |σ′(n)| values that are highly abundant versus the corresponding n values for
n ≤ 10000 is

There are 1154 values. Some |σ′(n)| value equals every highly abundant number less
than 10000. A plot of the corresponding n values is
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For a quadratic least-squares fit of the curve, p1 = 0.00548 with a 95% confidence
interval of (0.005454, 0.005505), p2 = 2.207 with a 95% confidence interval of (2.176,
2.238), p3 = 9.383 with a 95% confidence interval of (1.725, 17.04), SSE=2.241 · 106,
R-squared=0.9998, and RMSE=44.12.

A plot of the rounded |α′(n)| values that are highly abundant versus the corresponding
n values for n ≤ 10000 is

There are 37 values. A plot of the corresponding n values is



550 Darrell Cox

For a quadratic least-squares fit of the curve, p1 = 8.621 with a 95% confidence interval
of (7.84, 9.402), p2 = −53.03 with a 95% confidence interval of (−83.63, −22.43),
p3 = 194.4 with a 95% confidence interval of (−57.78, 446.6), SSE=1.938 · 106,
R-squared=0.9945, and RMSE=238.1.

The highly abundant numbers less than or equal to 250000 are 2, 4, 6, 8, 10, 12, 16, 18,
20, 24, 30, 36, 42, 48, 60, 72, 84, 90, 96, 108, 120, 144, 168, 180, 210, 216, 240, 288,
300, 336, 360, 420, 480, 504, 540, 600, 630, 660, 672, 720, 840, 960, 1008, 1080, 1200,
1260, 1440, 1560, 1620, 1680, 1800, 1920, 1980, 2016, 2100, 2160, 2340, 2400, 2520,
2880, 3024, 3120, 3240, 3360, 3600, 3780, 3960, 4200, 4320, 4620, 4680, 5040, 5760,
5880, 6120, 6240, 6300, 6720, 7200, 7560, 7920, 8400, 8820, 9240, 10080, 10920,
11340, 11760, 11880, 12240, 12600, 13440, 13860, 15120, 16380, 16800, 17640,
18480, 19800, 20160, 21840, 22680, 23760, 25200, 27720, 30240, 32760, 35280,
36960, 37800, 39600, 40320, 41580, 42840, 43680, 45360, 47520, 47880, 49140,
50400, 52920, 54600, 55440, 60480, 64680, 65520, 69300, 70560, 73080, 73920,
75600, 80640, 83160, 85680, 90720, 92400, 95760, 98280, 100800, 105840, 109200,
110880, 120120, 120960, 126000, 128520, 131040, 138600, 146160, 147840, 151200,
161280, 163800, 166320, 180180, 181440, 184800, 191520, 194040, 196560, 207900,
211680, 214200, 218400, 221760, 239400, 240240, and 249480. For n ≤ 100000,
the largest |σ′(n)| value equal to a highly abundant number is 221760. Except for
n = 180180, 207900, 214200, and 218400, there are |σ′(n)| values equal to every
highly abundant number less than 221760.

For n ≤ 2000000, there are 242 highly abundant numbers, the largest being 1995840.
For n ≤ 750000, there are |σ′(n)| values equal to every highly abundant number
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less than 1995840 except 1580040, 1607760, 1627920, 1638000, 1769040, 1801800,
1884960, 1940400, and 1965600. A plot of the corresponding n values is

There are 14311 values. For a quadratic least-squares fit of the curve, p1 = 0.002984

with a 95% confidence interval of (0.002983, 0.002986), p2 = 10.06 with a 95%
confidence interval of (10.03, 10.09), p3 = −4421 with a 95% confidence interval
of (−4508, −4335), SSE=4.428 · 1010, R-squared=0.9999, and RMSE=1759.

The average order of σ(n) is π2

6
n. More precisely,

n∑
j=1

σ(j) =
π2

12
n2 +O(n · log(n)) (1)

as n → ∞. See Hardy and Wright’s [3] Theorem 324. The maximal order of σ(n) is

lim sup
n→∞

σ(n)

n log log n
= eγ (2)

where γ is Euler’s constant. This was proved by Gronwall. See Hardy and Wright’s
Theorem 323, Sect.18.3 and 22.9. An asymptotic upper bound of σ(n) derived by
Robin [4] is

σ(n) < eγn log log n+ .6482
n

log log n
. (3)

Robin’s criterion states that the Riemann hypothesis is true if and only if σ(n) <

eγn log log n for all n ≥ 5041. Ramanujan [5] derived upper and lower bounds for
the order of generalized highly composite numbers, assuming the Riemann hypothesis.
His bounds imply that Robin’s criterion holds for all sufficiently large n. The results
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of Alaoglu and Erdös [6] in their paper are unconditional and mainly concern the
exponents in highly composite and superabundant numbers. Robin showed that if the
Riemann hypothesis is false, there will necessarily exist a counterexample to the above
criterion which is a colossally abundant number.

The above quadratic curves of the n values of |σ′(n)| values equal to highly abundant
numbers are relevant to this. A plot of the n values of |σ′(n)| values equal to
superabundant numbers for n ≤ 2000000 is

There are 2239 values. For a quartic least-squares fit of the curve, p1 = −0.0003018

with a 95% confidence interval of (−0.0003173, −0.0002864), p2 = 0.5845 with a 95%
confidence interval of (0.5615, 0.6075), p3 = −147.3 with a 95% confidence interval of
(−159.9, −134.7), p4 = 1.089·104 with a 95% confidence interval of (8860, 1.292·104),
SSE=2.115 · 1011, R-squared=0.9997, and RMSE=9.751.
The first few colossally abundant numbers are 2, 6, 12, 60, 120, 360, 2520, 5040, 55440,
720720, 1441440, 4324320,.... Colossally abundant numbers are best described using
the Dirichlet inverse of the ρ(n) function to be defined in the next section.

Some empirical results are
(1) σ′(n) = −σ(n) at prime n.
(2) σ′(n) = n at prime-squared n.
(3) σ′(n) = 0 at prime-cubed n.
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Let p and q denote distinct primes. A plot of σ′(n) at n = pq versus n for n ≤ 1000 is

3. A FUNCTION RELATED TO σ(n)

Let ρ(n) denote
∑

d|n(exp(R(d)))2. A plot of ρ(n) versus σ(n) for n ≤ 1000 is
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The values consist of logarithmic curves. A plot of ρ(n) versus log(σ(n)) is

The values consist of quadratic curves.

A plot of ρ(n) versus log(n) for prime n less than 100000 is

For a quadratic least-squares fit of the curve, p1 = 1.903 with a 95% confidence
interval of (1.901, 1.904), p2 = 7.917 with a 95% confidence interval of (7.897,
7.938), p3 = −6.113 with a 95% confidence interval of (−6.207, −6.019), SSE=206.6,
R-squared=1, and RMSE=0.1468.
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A plot of ρ(n) versus log(σ(n)) for prime n less than 100000 is

For a quadratic least-squares fit of the curve, p1 = 1.882 with a 95% confidence
interval of (1.882, 1.883), p2 = 8.311 with a 95% confidence interval of (8.297,
8.324), p3 = −8.013 with a 95% confidence interval of (−8.075, −7.95), SSE=86.79,
R-squared=1, and RMSE=0.09514.

A plot of ρ(n) versus log(n) for prime-squared n less than 100000 is

For a quadratic least-squares fit of the curve, p1 = 10.2 with a 95% confidence
interval of (10.12, 10.29), p2 = 17.36 with a 95% confidence interval of (16.7,
18.01), p3 = −1.038 with a 95% confidence interval of (−2.211, 0.135), SSE=22.2,
R-squared=1, and RMSE=0.5983.
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A plot of ρ(n) versus log(σ(n)) for prime-squared n less than 100000 is

For a quadratic least-squares fit of the curve, p1 = 2.422 with a 95% confidence
interval of (2.407, 2.436), p2 = 11.28 with a 95% confidence interval of (11.06,
11.5), p3 = −14.37 with a 95% confidence interval of (−15.18, −13.56), SSE=8.158,
R-squared=1, and RMSE=0.3627.

Similar results are obtained for other prime-power n. For n that are the product of two
distinct primes, a group of quadratic curves is obtained.

Let ρ′(n) denote the Dirichlet inverse of ρ(n). A plot of ρ′(n) versus log(n) at prime n

less than 100000 is

For a cubic least-squares fit of the curve, p1 = 0.002401 with a 95% confidence interval
of (0.002387, 0.002416), p2 = −0.316 with a 95% confidence interval of (−0.3163,
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−0.3156), p3 = −0.6249 with a 95% confidence interval of (−0.6277, −0.6221),
p4 = −0.2069 with a 95% confidence interval of (−0.214, −0.1997), SSE=0.3098,
R-squared=1, and RMSE=0.005685.

A plot of ρ′(n) versus log(n) at prime-squared n less than 100000 is

For a cubic least-squares fit of the curve, p1 = 4.287 with a 95% confidence interval of
(4.227, 4.348), p2 = −14.57 with a 95% confidence of (−15.21, −13.93), p3 = 23.38

with a 95% confidence interval of (21.35, 25.41), p4 = −11.61 with a 95% confidence
interval of (−13.51, −9.713), SSE=17.88, R-squared=1, and RMSE=0.5414.

A plot of the n values of rounded |ρ′(n)| values equal to colossally abundant numbers
for n ≤ 3000000 is
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There are 7369 values. For a linear least-squares fit of the curve from n = 167 to 7210,
p1 = 13.54 with a 95% confidence interval of (13.54, 13.54), p2 = 7.101 · 105 with a
95% confidence interval of (7.101 · 105, 7.101 · 105), SSE=1.049 · 108, R-squared=1,
and RMSE=122.1. The corresponding rounded |ρ′(n)| value is 60. Except for 720720
and 1441440, the superabundant numbers equal some rounded |ρ′(n)| value.

A plot of the n values from 1 to 167 is

A plot of the n values from 7210 to 7369 is



Lagarias’ Inequality Pertaining to the Riemann Hypothesis... 559

A plot of the n values from 7306 to 7343 is

The corresponding |ρ′(n)| value is 2520. For a linear least-squares fit of the curve,
p1 = 113.5 with a 95% confidence interval of (110.7, 116.3), p2 = 9.568 · 105 with a
95% confidence interval of (9.365·105, 9.772·105), SSE=3.094·105, R-squared=0.9948,
and RMSE=92.71.
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