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1. INTRODUCTION

The study of free constructions of abstracts groups began in 1882 when Walter
Von Dyck pointed out in his paper Gruppentheoretische Studien the concept of free
groups. The algebraic study of this notion began in 1924 by Jakop Nielsen, who
gave the name of free group and established many of its fundamental properties,
see [14]. Since 1927, free products of groups with amalgamated subgroups, were
introduced by Schreier and generalized since 1948 by Hanna Neumann. In [9], free
constructions (free products, amalgamated free products, HNN-extensions and free
products with commuting subgroups) of abstracts groups were clearly defined. In [8],
Loginova pointed out a link between free products with amalgamation and free products
with commuting subgroups by establishing that every free product with commuting
subgroups can be written as amalgamated free product of two amalgamated free
products, what we call a double amalgamation of abstracts groups.
Profinite groups are known since 1965 when J.P. Serre introduced them in his book
titled Cohomologie galoisienne [21]. A profinite group G is the inverse limit of a
projective system of finite groups, i.e., G = lim←−

i∈I
Gi, where (Gi)i∈I is a projective system

of finite (abstract) groups and I is a directed set. A profinite group G is isomorphic to a
closed subgroup of a direct product of finite groups. A profinite group is a topological,
compact, Haussdorff and totally disconnected group. A concrete example of a profinite
group is the profinite completion of an abstract group. Given G an abstract group,
the profinite completion Ĝ of group G is the inverse limit of the projective system
(G/N)N∈N of the (finite) quotient groupsG/N , whereN is the collection of all normal
subgroups of finite index ofG, i.e., Ĝ = lim←−

N∈N
G/N . Many authors have studied profinite

groups in different directions [3, 15, 20, 17, 19, 6, 5]. Luis Ribes and Pavel Zalesskii
in [20] have introduced free constructions of profinite groups. They defined free
profinite products, amalgamated free profinite products and profinite HNN-extensions
of profinite groups. They studied the particular case of proper amalgamated free
profinite products and proper profinite HNN-extensions of profinite groups. They gave
examples of amalgamated free profinite product which are not proper and proved some
conditions for their properness [16, 15]. Similarly, G. Mantika and D. Tieudjo defined
free profinite product of profinite groups with commuting subgroups and they studied
their properness. See [10]. Let G1 and G2 be two profinite groups, let H be a closed
subgroup of G1, K a closed subgroup of G2 and A a closed common subgroup of G1

and G2. We denote by G1 ∗
A
G2, G1 ⨿

A
G2, G1 ∗

[H,K]
G2 and G1 ⨿

[H,K]
G2, the abstract

amalgamation, the profinite amalgamation, the abstract free product with commuting
subgroups and the free profinite product with commuting subgroups respectively.
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Today, profinite groups have been generalized to pro−C groups, where C is a class of
finite groups. A pro-C group G is the inverse limit of a projective system of groups of
C. When C is the class of all finite groups, all finite p-groups, all finite solvable groups
and all finite nilpotent groups, then we say profinite groups, pro-p groups, pro-solvable
groups and pro-nilpotent groups respectively. When G is an abstract group, its profinite
completion with respect to C is called the pro-C completion of group G and denoted by
ĜC . Also, ĜC is a concrete example of a pro-C group. Therefore, free pro-C products
of pro-C groups with amalgamation are defined. See [20]. The topology on an abstract
group G given by the fundamental system of neighborhoods of the identity consisting
of the collection of all its subgroups belonging in C, is called a pro-C topology on the
group G. With this topology, G becomes a topological group. A subset S of a group
G is closed in the pro-C topology of G if for any element g ∈ G \ S, there exists a
normal subgroup K of finite index in G with G/K ∈ C such that g /∈ SK. When
the trivial group is closed in the pro-C topology of a group G, then we say that the
group G is C-residual. Equivalently, G is C-residual if for any g ̸= 1G there exists a
normal subgroup K in G such that G/K ∈ C and g /∈ K. This means that, for every
g ̸= 1G, there exists a homomorphism φ fromG onto a group of C such that φ(g) ̸= 1G.
A subgroup H of a group G is C-separable if it is closed in the pro-C topology of G.
Equivalently, a subgroupH of a groupG is C-separable if for any a ∈ G\H , there exists
a homomorphism φ from G onto a group of C such that φ(a) /∈ φ(H). D. Tieudjo in
[22] recalled root-class residuality of free groups and free products of root-class residual
groups. He proved some sufficient conditions for root-class residuality of generalized
residual groups. Loginova in [8] proved necessary and sufficient condition such that a
free product with commuting subgroups of residually finite p-groups, is again residually
finite p-group. In this paper, we study the case where C is the class of all finite solvable
groups. We prove:

Theorem 1.1
Let C be the class of all finite solvable groups. Let G1 and G2 be two C-residual groups
and let H and K be nonidentity subgroups of G1 and G2 respectively. Assume that H
is central in G1, K is abelian and commute with G1. Then, G = G1 ∗

[H,K]
G2, the free

product of G1 and G2 with commuting subgroups H and K, is C-residual if and only if
the subgroups H and K are C-separable in G1 and G2 respectively.

Also, when studiying the residual finiteness of free products of abstract groups with
commuting subgroups, Loginova in [8] established that this construction can be written
as double amalgamation. That is, given G1 and G2 two abstract groups with respective
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subgroups H and K, the following situation holds:

G1 ∗
[H,K]

G2 = (G1 ∗
H
(H ×K)) ∗

H×K
((H ×K) ∗

K
G2).

For profinite groups or pro−C groups in general, this is not always true. Let C be
the class of all finite solvable groups. Then, C is subgroup closed and is also closed
under taking quotients, under forming finite direct products, under extensions, and
for any group G with normal subgroups H and K such that G/H,G/K ∈ C, then
G/H ∩ K ∈ C. See [20, 22]. C is an example of root-class. See [22]. In this paper,
under some conditions, we write the free pro-C product with commuting subgroups
of pro-C groups as a pro−C product with amalgamation of two pro−C products with
amalgamation. That is:

Theorem 1.2
Let C be the class of all finite solvable groups. Let G1 and G2 be two pro-C groups with
respective closed subgroups H and K. If H is central in G1, K is abelian and commute
with G1, and H and K are C-separable and satisfy ĤK

C
= HK, then we have:

G1 ⨿
[H,K]

G2 = (G1 ⨿
H
(H ×K)) ⨿

H×K
((H ×K)⨿

K
G2).

Some free constructions of groups (abstract or topological case) were also characterized
with cohomology tools [13, 17, 18]. Let C be the class of all finite solvable groups.
The pro-C completion of Z, the ring of integers, is the free pro-C group on a single
generator noted by ZĈ . It has an obvious structure of a compact, Haussdorff ring.
See [7]. Let R be a commutative ring and let G be a profinite group. The abstract
group algebra (or group ring) [RG] consists of all formal sums

∑
gi∈G aigi (ai ∈ R,

where ai is zero for all but a finite number of indices), with natural addition defined by
(
∑
aigi)+(

∑
bigi) =

∑
(ai+ bi)gi and multiplication defined by (

∑
aigi)(

∑
bjgj) =∑

ckgk where ck =
∑

gigj=gk
aibj . LetG be a pro-C group. The complete group algebra

of G is defined by [[ZĈG]] = lim←−
U

[ZĈG/U ], where U runs through the open normal

subgroups of G. [[ZĈG]] is a profinite ring. Throughout this paper, DMod([[ZĈG]])

denotes the category of discrete [[ZĈG]]-modules. Let now M be a closed subgroup of
G. For A ∈ DMod([[ZĈG]]), define

DerM(G,A) = {d : G −→ A| d(xy) = xd(y) + d(x), ∀x, y ∈ G, d|M = 0},

the group of all continuous derivations from G to A vanishing on M . L. Ribes and
P. Zalesskii characterized cohomologically free pro-C products of pro-C groups with
amalgamation, where C is an extension closed variety of finite solvable groups. See
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[20, Theorem 9.3.1]. In this paper, following L. Ribes and P. Zalesskii, we obtain
an analogous criterion in terms of derivations, when a pro-C group G is a free pro-C
product with commuting subgroups of its subgroups. We prove:

Theorem 1.3
Let C be the class of all finite solvable groups. Let G be a pro-C group. Let G1 and G2

be closed subgroups of G. If H and K are respective subgroups of G1 and G2 such that
H is central in G1, K is abelian and commute with G1, and H and K are C-separable
and satisfy ĤK

C
= HK, then the following conditions are equivalent:

1. G = G1 ⨿
[H,K]

G2 (free pro-C product with commuting subgroups);

2. The natural homomorphism
ψG : DerH×K(G,A) −→ DerH×K(G1 ⨿K,A)× DerH×K(G2 ⨿H,A),
(f 7−→ (f |G1⨿K , f |G2⨿H)

is an isomorphism for all [[ZĈG]]−modules A ∈ C.

2. PRELIMINARIES NOTIONS AND RESULTS

In this section, we recall definitions and properties of some notions we will use. One
can refer to [2, 4, 10, 20, 23] for more details.
In all what follows below, C is the class of all finite solvable groups.

2.1. Basic notions

Definition 2.1
Let G be an abstract group. A profinite topology on G is a group topology on G such
that the subgroups of finite index ofG is a basis of neighborhoods of the identity element
of G.
If this basis is consisting of subgroups N of finite index of G such that every quotient
G/N belongs to the class C, the above topology is the pro-C topology of G.

Definition 2.2
Let G be a pro-C group. A closed subgroup H of G is called the retract semidirect
factor of G if there exists a closed normal subgroup K of G satisfying: G = HK and
H ∩K = {1}. K is then said to be a normal complement of H .
Equivalently, a closed subgroup H is the retract semidirect factor of G if there exists a
continuous homomorphism ν : G→ H such that ν ◦ s = idH where s : H → G is the
canonical homomorphism.
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It is obvious that:

Remark 2.1
Let G be a pro-C group and let H be a closed subgroup of G with a normal complement
K. G can be written as a semidirect product K ⋊H .

2.2. Free abstract and pro-C products of abstract and pro-C groups with
amalgamations

Definition 2.3 (Pushout: Free abstract product of abstract groups with amalgamation)
Let G1, G2 and H be abstract groups and let σ : H → G1 and τ : H → G2 be
monomorphisms. A free product of G1 and G2 with amalgamated subgroup H is a
group G together with homomorphisms φ1 : G1 → G and φ2 : G2 → G such that
φ1σ = φ2τ , satisfying the following universal property: for any pair of homomorphisms
ψ1 : G1 → K and ψ2 : G2 → K into a group K with ψ1σ = ψ2τ , there exists a unique
homomorphism ψ : G→ K such that ψφ1 = ψ1 and ψφ2 = ψ2.
We denote byG1 ⋆

H
G2 the free product of groupsG1 andG2 with amalgamated subgroup

H .

Definition 2.4
Let G1 ⋆

H
G2 be the free product of groups G1 and G2 with amalgamated subgroup H .

1. LetR and S be normal subgroups of finite index in groupsG1 andG2 respectively.
The subgroups R and S are (H,H)-compatible if R ∩H = S ∩H .

2. A family (Ri)i∈I of subgroups of a group G is called a filtration if ∩
i∈I
Ri = {1}.

And the family (Ri)i∈I is called a H-filtration if it is a filtration, and in addition
we have ∩

i∈I
HRi = H .

Definition 2.5 (Free pro−C product of pro-C groups with amalgamation)
Let G1, G2 and H be pro−C groups and let f1 : H → G1 and f2 : H → G2 be
continuous monomorphisms. A free pro−C product of G1 and G2 with amalgamated
subgroup H is a pro−C group G together with continuous homomorphisms φ1 : G1 →
G and φ2 : G2 → G such that φ1f1 = φ2f2, satisfying the following universal property:
for any pair of continuous homomorphisms ψ1 : G1 → K and ψ2 : G2 → K into a
pro−C group K with ψ1f1 = ψ2f2, there exists a unique continuous homomorphism
ψ : G→ K such that ψφ1 = ψ1 and ψφ2 = ψ2.
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2.3. Free abstract and pro-C products of abstract and pro-C groups with
commuting subgroups

Definition 2.6 (Free abstract product of abstract groups with commuting subgroups)
Let G1, G2, H and K be abstract groups and let σ : H → G1 and τ : H → G2

be monomorphisms. A free product of G1 and G2 with commuting subgroups H and
K is a group G together with homomorphisms φ1 : G1 → G and φ2 : G2 → G

such that [φ1(σ(H));φ2(τ(K))] = 1, satisfying the following universal property: for
any pair of homomorphisms ψ1 : G1 → K and ψ2 : G2 → K into a group K with
[ψ1(σ(H));ψ2(τ(K))] = 1, there exists a unique homomorphism ψ : G→ K such that
ψφ1 = ψ1 and ψφ2 = ψ2. We denote this group by G = G1 ∗

[H,K]
G2.

We prove the following:

Proposition 2.1
Let G1 and G2 be two pro−C groups with respective closed subgroups H and K. Then,
the pro-C topology of G = G1 ∗

[H,K]
G2 induces on G1, G2, H and K their pro-C

topologies.

Proof. To prove that the pro-C topology of G induces on G2 (for example, and the
similar reason for G1, H and K) its pro-C topology, it suffices to prove that G2 is the
retract semidirect factor of G. Indeed, assume that G2 is a retract semidirect factor of G
and let prove that the pro-C topology of G induces on G2 its pro-C topology. So, let M2

be a normal subgroup of G2 of finite index such that G2/M2 ∈ C. Since G2 is a retract
semidirect factor of G, there exists A, a normal subgroup of G such that G = A⋊G2.
Clearly AM2 �f G since

G2/M2 = G2/(AM2) ∩G2 ≃ (AM2)G2/AM2 = G/AM2 where (AM2) ∩G2 =M2.

Therefore G/AM2 ∈ C, and it follows then that the pro-C topology of G induces on G2

its pro-C topology.
Let now prove that G2 is a retract semidirect factor of G. To do it, we will build a
homomorphism v : G → G2 with v ◦ s = idG2 , where s : G2 → G is the canonical
homomorphism.
Since G = G1 ∗

[H,K]
G2, so by the definition of free products, there is a (canonical)

map s : G2 → G, including G2 as a subgroup. By the universal property of free
products, there exists a unique homomorphism v : G → G2 defined by the identity
map id : G2 → G2 and the trivial map t : G1 → G2. Clearly, K commutes with the
identity element, which is the image of H . This situation is illustrated by the following
commutative diagram.
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H

σ

��

K

τ

��
G1

t

  

i1 // G

∃!v

��

G2

id

~~

soo

G2

Therefore G2 is a retract semidirect factor of G and the Proposition is proven.
□

Definition 2.7 (Free pro-C product of pro-C groups with commuting subgroups)
Let H be a closed subgroup of a pro-C group G1 and let K be a closed subgroup of a
pro-C group G2. Let σ : H → G1 and τ : K → G2 be the inclusion maps. The free
pro-C product of the pro-C groups G1 and G2 with commuting subgroups H and K is
the family (G;φ1;φ2) where G is a pro-C group and φ1 : G1 → G and φ2 : G2 → G

are continuous homomorphisms satisfying:

(1) [φ1(σ(H));φ2(τ(K))] = 1 and

(2) If G′ is a pro-C group with continuous homomorphims ψ1 : G1 → G′ and
ψ2 : G2 → G′ such that [ψ1(σ(H));ψ2(τ(K))] = 1, then there exists a unique
continuous homomorphism ψ : G→ G′ such that ψφ1 = ψ1 and ψφ2 = ψ2.

We denote by G1

∐
[H,K]

G2 the free pro-C product of pro-C groups G1 and G2 with

commuting subgroups H and K, where G1 and G2 are two pro-C groups, H is a closed
subgroup of the pro-C group G1 and K is a closed subgroup of the pro-C group G2. It is
proper if the continuous homomorphisms G1 → G1

∐
[H,K]

G2 and G2 → G1

∐
[H,K]

G2 are

one to one.

2.4. Complete group algebra and cohomology with coefficients in discrete
modules

Let R be a profinite ring, i.e., R is an inverse limit of an inverse system of finite rings.
A R-module is an abelian Hausdorff topological group M satisfying the analogous
properties of abstract module over abstract ring. IfM andN are twoR-modules, we use
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the notation HomR(M,N) for the abelian group of all continuous R−homomorphisms
from M to N as abelian profinite groups. We refer to a continuous R−homomorphism
of R−modules as a morphism of R-modules. We will be interested in R-modules that
are discrete. Discrete modules together with their morphisms form a category denotes
by DMod(R). It is a subcategory of the category of all R-modules.
Let R be a commutative ring and let G be a profinite group. The abstract group
algebra (or group ring) [RG] consists of all formal sums

∑
gi∈G aigi (ai ∈ R, where

ai is zero for all but a finite number of indices), with natural addition defined by
(
∑
aigi)+(

∑
bigi) =

∑
(ai+ bi)gi and multiplication defined by (

∑
aigi)(

∑
bjgj) =∑

ckgk where ck =
∑

gigj=gk
aibj .

Now, let G be a pro-C group. In the context of pro−C groups, the analogue of the group
ring is the concept of complete group algebra.

Definition 2.8
Let G be a pro-C group and R a profinite ring. The complete group algebra of G
denoted by [[RG]] is defined by

[[RG]] = lim←−
U

[RG/U ],

where U runs through the open normal subgroups of G.

Then, [[RG]] is a profinite ring since we can express it as an inverse limit of finite rings,
i.e.,

[[RG]] = lim←−[(R/I)(G/U)],

where I and U range over the open ideals of R and the open normal subgroups of G,
respectively. See[20].
Recall also that every [[RG]]-module is a G-module (see Proposition 5.3.6 in [20]).
DMod([[ZĈG]]) denotes the category of discrete [[ZĈG]]-modules.
LetG be a pro-C group and letA be a discreteG-module. LetCn(G,A) be the (abelian)
group of all continuous functions f : Gn −→ A. Define a cochain complex

0 −→ C0(G,A) −→ C1(G,A) −→ ... −→ Cn(G,A)
∂n+1

−→ Cn+1(G,A) −→ ...,

where ∂n+1 is defined as follow

(∂n+1f)(x1, ..., xn+1) = x1f(x2, ..., xn+1)

+
n∑

i=1

(−1)if(x1, ..., xixi+1, ..., xn+1)+(−1)i+1f(x1, ..., xn)

with x1, ..., xn+1 ∈ G.
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Definition 2.9
Let G be a pro-C group and let A be a discrete G-module. Then the n−th cohomology
group of G with coefficients in A is defined as the n−th cohomology group of the above
cochain complex, i.e.,

Hn(G,A) = ker(∂n+1)/Im(∂n).

According to above definition, H1(G,A) = ker(∂2)/Im(∂1). The elements of ker(∂2)
are called crossed homomorphisms or derivations from G to A. So, a derivation
d : G −→ A is a continuous function such that d(xy) = xd(y) + d(x), for all
x, y ∈ G. We denote byDer(G,A), the (abelian) group of derivations. The elements of
Im(∂1) are called principal crossed homomorphisms or inner derivations. Each
inner derivations da : G −→ A is determined by an element a ∈ A and is defined by
da(x) = xa− a (x ∈ G). See again [20].

3. PROOF OF THEOREM 1.1

The following property is the extension to C-groups of ([1], Theorem 2.).

Lemma 3.1
Let C be the class of all finite solvable groups. Let G = A ∗

H
B be the free product of A

and B, two groups of C, with amalgamated subgroup H . If H is central in A or in B,
then G is C-residual.

Proof. Let A and B be groups of C with a common subgroup H . Suppose that H is
central in A or in B. Let G = A ∗

H
B be the free product of A and B with amalgamated

subgroup H . Using simultaneously ([11], Corollary 15.2, p. 532) and ([12], Theorem
4., p. 11), there is a finite group G1 of C containing isomorphic copies A1 and B1 of A
and B, respectively, with isomorphisms

θ : A −→ A1; ϕ : B −→ B1.

G1 can be chosen such that the isomorphisms θ and ϕ coincide on H . See ([11], p.
532).
Since G is the free product of A and B with amalgamated subgroup H , it follows that
θ and ϕ can be simultaneously extended to a homomorphism µ of G onto G1. Consider
K the kernel of µ. Since G1 is finite, it follows that K is of finite index in G. Since µ is
one-to-one when restricted to either A or B, it follows that

K ∩ A = 1 = K ∩B.
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In accordance to ([1], Theorem 2.), K is free. Consequently, using the fact that C can
be seen as a root-class, K is C-residual by ([22], Theorem 2.1). Finally, G is clearly
C-residual as a finite extension of a C-residual group, and the Lemma is demonstrated.

□

Proof of Theorem 1.1 Let C be the class of all finite solvable groups. Let G1 and
G2 be two C-residual groups and let H and K be nonidentity subgroups of G1 and
G2 respectively such that H is central in G1 and K is abelian and commute with G1.
Following Loginova in [8], we write G as a double amalgamation. That is,

G = (G1 ∗
H
(H ×K)) ∗

H×K
(G2 ∗

K
(H ×K)).

1. Assume that the subgroups H and K are not C-separable. Let prove that G is
not C-residual. Since K is not C-separable, let a ∈ G2 \ K and let η be an
arbitrary homomorphism of G2 onto a finite group in C such that η(a) ∈ η(K).
Let h be a nonidentity element of H . Then the element w = [a, h] of the group
G2 ∗

K
(H ×K) differs from 1, since w = a−1h−1ah is reduced in the free product

with amalgamation G2 ∗
K
(H × K). Clearly, the image of this element under

any homomorphism of G2 ∗
K
(H × K) onto a finite group in C equals 1. Thus,

G2 ∗
K
(H × K) is not C-residual and likewise G. The same result is obtained

similarly when considering the subgroup H not C-separable.

2. Conversely, let now subgroups H and K be C-separable in G1 and G2

respectively. And let prove that the groupG = G1 ∗
[H,K]

G2 is C-residual. Consider

(Ri)i∈I , the family of all normal subgroups of finite index in G1 ∗
H
(H ×K) with

G1 ∗
H
(H ×K)/Ri ∈ C for all i ∈ I and let (Sj)j∈J be the family of all normal

subgroups of finite index in G2 ∗
K
(H ×K) with G2 ∗

K
(H ×K)/Rj ∈ C for all

j ∈ J . Denote by Λ the subset of I×J that consists of the various pairs (i, j) such
that the subgroups Ri and Rj are (H ×K,H ×K)-compatible and put Rλ = Ri

and Sλ = Sj for an arbitrary element λ = (i, j) ∈ Λ.
Let X and Y be arbitrary normal subgroups of finite index in G1 and G2

respectively with G1/X ∈ C and G2/Y ∈ C. Since the groups G1 and G2 are
C-residual and their subgroupsH andK are C-separable, then, using ([8], Lemma
1.), it follows that for every nonidentity element g of G1 ∗

H
(H ×K), there exists

an element λg ∈ Λ such that

G1 ∩Rλg = X and (H ×K) ∩Rλg = (X ∩H).(Y ∩K) with g /∈ Rλg .

Moreover, if g does not belong to H×K, the subgroup Rλg can be chosen so that
g /∈ (H × K)Rλg . Consequently, ∩

λ∈Λ
Rλ = 1 and ∩

λ∈Λ
(H × K)Rλ = H × K.
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Therefore, the family (Rλ)λ∈Λ is a H×K-filtration. Similarly, we obtain that the
family (Sλ)λ∈Λ is a H ×K-filtration.
Thus, for every λ ∈ Λ, the map

(H ×K)Rλ/Rλ −→ (H ×K)Sλ/Sλ

from the subgroup (H×K)Rλ/Rλ of the quotient group G1 ∗
H
(H×K)/Rλ onto

the subgroup (H×K)Sλ/Sλ of the quotient groupG2 ∗
K
(H×K)/Sλ, determined

by the rule
φRλ,Sλ(xRλ) = xSλ (x ∈ H × K), is well defined and clearly an isomorphism
since Rλ and Sλ are (H × K,H × K)-compatible. Therefore, we constuct the
group
GRλ,Sλ = G1 ∗

H
(H ×K)/Rλ ∗

(H×K)Rλ/Rλ=(H×K)Sλ/Sλ
G2 ∗

K
(H ×K)/Sλ.

The natural mappings from the group G1 ∗
H
(H × K) onto the quotient group

G1 ∗
H

(H × K)/Rλ and from the group G2 ∗
K

(H × K) onto the quotient

group G2 ∗
K
(H × K)/Sλ extend to a homomorphism ρRλ,Sλ from the group

G = (G1 ∗
H
(H ×K)) ∗

H×K
(G2 ∗

K
(H ×K)) onto the group Gλ = GRλ,Sλ .

Note that the families (Rλ)λ∈Λ and (Sλ)λ∈Λ are closed under finite intersections,
i.e., for any λ1, λ2 ∈ Λ, there is an index λ ∈ Λ such that
Rλ1 ∩Rλ2 = Rλ and Sλ1 ∩ Sλ2 = Sλ.
Therefore, if g is a nonidentity element of G, then, considering a reduced form of
g and the fact that the families (Rλ)λ∈Λ and (Sλ)λ∈Λ are H ×K-filtration, there
exists λ ∈ Λ such that the image of g under the homomorphism ρλ = ρRλ,Sλ
differs from 1. Indeed, let g ∈ G.
• If g ∈ G1 ∗

H
(H × K), put λ ∈ Λ such that g /∈ Rλ. Note that, this choice is

possible since ∩
λ∈Λ

Rλ = 1. See that, ρλ(g) = gRλ ̸= Rλ. Similarly, we prove that

there exists λ ∈ Λ such that ρλ(g) = gSλ ̸= Sλ if g ∈ G2 ∗
K
(H ×K).

• If g /∈ G1 ∗
H
(H × K) ∪ G2 ∗

K
(H × K), write g = x1y1x2y2.....xnyn with

xi ∈ G1 ∗
H
(H ×K), yi ∈ G2 ∗

K
(H ×K), xi, yi /∈ H ×K, 1 ≤ i ≤ n. We choice

a convenient λ ∈ Λ such that xi /∈ (H ×K)Rλ and yi /∈ (H ×K)Sλ, 1 ≤ i ≤ n

as follows.
Put λ1 ∈ Λ such that xi /∈ (H ×K)Rλ1 . Note that this choice is possible since
(Rλ)λ∈Λ is H × K-filtration and closed under finite intersection. Similarly, put
λ2 ∈ Λ such that yi /∈ H ×KSλ2 , 1 ≤ i ≤ n.
Put then λ ∈ Λ such that Rλ = Rλ1 ∩Rλ2 , Sλ = Sλ1 ∩ Sλ2 .
See that, ρλ(g) = x1Rλy1Sλx2Rλy2Sλ...xnRλynSλ ̸= Rλ = Sλ in Gλ.
Now, throught Lemma 3.1, Gλ = GRλ,Sλ is C-residual. Indeed, Gλ is the free
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product of two groups of C with amalgamated subgroup
(H ×K)Rλ/Rλ = (H ×K)Sλ/Sλ which is central in G1 ∗

H
(H ×K)/Rλ.

To see that (H ×K)Rλ/Rλ = (H ×K)Sλ/Sλ is central in G1 ∗
H
(H ×K)/Rλ,

let u ∈ G1 ∗
H
(H ×K)/Rλ. That is u = xRλ with x ∈ G1 ∗

H
(H ×K). Assume

that x = g1k1g2k2 . . . gnkn, in its reduced form inG1 ∗
H
(H×K)/Rλ with gi ∈ G1

and ki ∈ K.
Let v = yRλ ∈ (H ×K)Rλ/Rλ with y = hk ∈ H ×K (h ∈ H , k ∈ K).

uv = xRλyRλ

= xyRλ

= g1k1g2k2 . . . gnknhkRλ

= hkg1k1g2k2 . . . gnknRλ since H is central in G1, K is abelian

and commute with G1

= yxRλ

= yRλxRλ

= vu

Now, since ρλ(g) ̸= 1 and Gλ is C-residual, it follows that there exists a
homomorphism l fromGλ to a group of C such that for every nonidentity element
g of G we have lρλ(g) ̸= 1, a nonidentity image. Consequently, G is C-residual.
And the Theorem is proven.

4. PROOF OF THEOREM 1.2

We first prove the following lemma.

Lemma 4.1
Let C be the class of all finite solvable groups. Let G1 and G2 be two pro-C groups with
respective closed subgroups H and K. Then, the pro-C topology of G = G1 ∗

[H,K]
G2

induces on G1 ∗
H
(H×K), (H×K) ∗

K
G2 and H×K their respective pro-C topologies.

Proof. Set,
N = {N �f G = G1 ∗

[H,K]
G2 : N ∩Gi is open in Gi, i = 1, 2 and G/N ∈ C},

N1 = {N�fG1 ∗
H
(H×K) : N∩G1 is open in G1, N∩(H×K) is open in H×K and

(G1 ∗
H
(H ×K))/N ∈ C},

N2 = {N�fG2 ∗
K
(H×K) : N∩G2 is open in G2, N∩(H×K) is open in H×K and

(G2 ∗
K
(H ×K))/N ∈ C}, and
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Ninduced = {N ∩ (G1 ∗
H
(H ×K)) : N ∈ N}.

Let prove that N1 = Ninduced.

1. Ninduced ⊂ N1 obviously.

2. Let now prove that N1 ⊂ Ninduced. Let N ∈ N1. Let determine M ∈ N such
that
M ∩ (G1 ∗

H
(H ×K)) = N . To do it, it suffices to determine M ′ ∈ N such that

M ′∩(G1 ∗
H
(H×K)) ≤ N . Indeed, if suchM ′ ∈ N exists, thenM ′∩(G1 ∗

H
(H×

K)) ∈ Ninduced. Consequently, N ∈ Ninduced as a subgroup of G1 ∗
H
(H × K)

containing the nonempty open set M ′ ∩ (G1 ∗
H
(H ×K)). See ([4], Proposition

32). It follows then that there exists M ∈ N such that M ∩ (G1 ∗
H
(H×K)) = N

as needed.
Let now construct M ′ ∈ N such that M ′ ∩ (G1 ∗

H
(H ×K)) ≤ N .

Clearly, N ∩ G1 is open in G1, N ∩ G1 �f G1 and G1/N ∩ G1 ∈ C. Since the
pro-C topology of G induces on G1 its pro-C topology (see Proposition 2.1), it
follows that there exists M1 ∈ N such that M1 ∩G1 = N ∩G1.
Similarly, there exists MK ∈ N such that MK ∩K = N ∩K.
Set M ′ =M1 ∩MK .

(a) Let prove that M ′ ∈ N .

i. It is obvious that M ′ �f G

ii. For any i = 1, 2, we have M ′ ∩ Gi = M1 ∩MK ∩ Gi = (M1 ∩ Gi) ∩
(MK ∩ Gi). By the definition of M1 and MK as elements of N we
have clearly that M1 ∩ Gi and MK ∩ Gi are open in Gi and so is their
intersection M ′ ∩Gi.

iii. Let prove that G/M ′ ∈ C.
Since G/M1 ∈ C and G/MK ∈ C, then G/M1∩MK ∈ C by [22] when
considering C as a root-class.

By i., ii. and iii., M ′ ∈ N .

(b) It remains to prove thatM ′∩(G1 ∗
H
(H×K)) ≤ N , i.e,M ′∩(G1 ∗

H
(H×K))

is a subgroup of N .
Here, we use the presentation of groups by the generators and relations. Let,

G1 = ⟨S|D⟩, H = ⟨Q|V ⟩ with Q ⊂ S,

G2 = ⟨T |E⟩, K = ⟨P |R⟩ with P ⊂ T,
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G = ⟨S ∪ T |D ∪ E, xy = yx ∀ x ∈ Q, ∀ y ∈ P ⟩,

G1 ∗
H
(H ×K) = ⟨S ∪ P |D ∪R, σ1(h) = τ1(h) ∀ h ∈ Q⟩ with

σ1 : H → G1 and τ1 : H → H ×K, the embedding maps

N = ⟨A ∪B|C⟩ with A ⊂ S and B ⊂ P,

M1 = ⟨I ∪ J |F ⟩ with I ⊂ S and J ⊂ T,

MK = ⟨L ∪O|X⟩ with L ⊂ S and O ⊂ T,

M ′ =M1 ∩MK = ⟨(I ∪ J) ∩ (L ∪O)|W ⟩.

Since
M1 ∩G1 = N ∩G1 ⇒ (I ∪ J) ∩ S = (A ∪B) ∩ S

and
MK ∩K = N ∩K ⇒ (L ∪O) ∩ P = (A ∪B) ∩ P,

it follows that:

M ′ ∩ (G1 ∗
H
(H ×K)) = M1 ∩MK ∩ (G1 ∗

H
(H ×K))

= ⟨[(I ∪ J) ∩ (L ∪O)] ∩ (S ∪ P )|Z⟩
= ⟨[(I ∪ J) ∩ (L ∪O) ∩ S] ∪ [(I ∪ J) ∩ (L ∪O) ∩ P ]|Z⟩
= ⟨[(A ∪B) ∩ S ∩ (L ∪O)] ∪ [(I ∪ J) ∩ (A ∪B) ∩ P ]|Z⟩
= ⟨(A ∪B) ∩ [(S ∩ (L ∪O)) ∪ ((I ∪ J) ∩ P )]|Z⟩
= ⟨Y |Z⟩ with Y ⊂ A ∪B,

≤ N.

By 1. and 2. we conclude that N1 = Ninduced, i.e., the pro-C topology of G induces on
G1 ∗

H
(H ×K) its own pro-C topology.

We argue similarly to prove that the pro-C topology of G induces on (H×K) ∗
K
G2 and

on H ×K their own pro-C topologies. And the Lemma is demonstrated.
□

Proof of Theorem 1.2 Consider,
N = {N �f G = G1 ∗

[H,K]
G2 : N ∩Gi is open in Gi, i = 1, 2, G/N ∈ C},

N1 = {N�fG1 ∗
H
(H×K) : N∩G1 is open in G1, N∩(H×K) is open in H×K and

(G1 ∗
H
(H ×K))/N ∈ C},

N2 = {N�fG2 ∗
K
(H×K) : N∩G2 is open in G2, N∩(H×K) is open in H×K and

(G2 ∗
K
(H ×K))/N ∈ C} and ,
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N3 = {N �f (H×K) : N ∩H is open in H, and N ∩K is open in K, (H×K)/N ∈
C}.
We have:

G1 ⨿
[H,K]

G2 = ̂G1 ∗
[H,K]

G2
N
, (1)

̂G1 ∗
[H,K]

G2
N

=
︷ ︸︸ ︷
(G1 ∗

H
(H ×K)) ∗

H×K
((H ×K) ∗

K
G2)

N , (2)

︷ ︸︸ ︷
(G1 ∗

H
(H ×K)) ∗

H×K
((H ×K) ∗

K
G2)

N =
︷ ︸︸ ︷
G1 ∗

H
(H ×K) N1 ⨿

ĤK
C

︷ ︸︸ ︷
(H ×K) ∗

K
G2

N2 , (3)

︷ ︸︸ ︷
G1 ∗

H
(H ×K) N1 ⨿

ĤK
C

︷ ︸︸ ︷
(H ×K) ∗

K
G2

N2 = (G1 ⨿
H
(H ×K)) ⨿

H×K
((H ×K)⨿

K
G2). (4)

Equation (1) is the construction of free pro-C products of pro-C groups with commuting
subgroups which is the generalization of free profinite products of profinite groups with
commuting subgroups presented by G. Mantika and D. Tieudjo in [10].
Equation (2) is obtained by writting the free abstract product of abstract groups with
commuting subgroups as a double amalgamation presented by E. Loginova in [8].
Equation (3) is obtained by [20] using two reasons:

1. G = G1 ∗
[H,K]

G2 induces on G1 ∗
H
(H × K), (H × K) ∗

K
G2 and H × K their

respective pro-C topologies, see Lemma 4.1, and

2. G = G1 ∗
[H,K]

G2 is C-residual since G1 and G2 are C-residual and the subgroups

H and K are C-separated (see Theorem 1.1).

Equation (4) is obtained by the construction of free pro-C products of pro-C groups with
amalgamation presented by L. Ribes and P. Zalesskii in [20], and using the equality

Ĥ ×K
C
= H ×K (by hypotesis). Thus, the Theorem is proven.

5. PROOF OF THEOREM 1.3

Lemma 5.1
Let C be the class of all finite solvable groups. Let G1 and G2 be two pro-C groups with
respective closed subgroups H and K. Let G = G1 ⨿

[H,K]
G2 be the free pro-C product

of the pro-C groups G1 and G2 with commuting subgroups H and K. Then in G,

G1 ⨿
[H,K]

(H ×K) = G1 ⨿K = G1 ⨿
H
(H ×K) = (G1 ⨿K) ⨿

H×K
(H ×K).
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Proof. It suffices to prove that in G1 ∗
[H,K]

G2, we have

G1 ∗
[H,K]

(H ×K) = G1 ∗K = G1 ∗
H
(H ×K) = (G1 ∗K) ∗

H×K
(H ×K).

Indeed, assume that the above equalities hold. Then the following sets are the same:

Na = {N�fG1 ∗
[H,K]

(H×K) : N∩G1 is open in G1, N∩K is open in K, (G1 ∗
[H,K]

(H×K))/N ∈ C},

Nb = {N �f G1 ∗K : N ∩G1 is open in G1, N ∩K is open in K, (G1 ∗K)/N ∈ C},

Nc = {N�fG1∗
H
(H×K) : N∩G1 is open in G1, N∩K is open in K, (G1∗

H
(H×K))/N ∈ C},

Nd = {N �f (G1 ∗K) ∗
H×K

(H ×K) : N ∩G1 is open in G1, N ∩K is open in K,

((G1 ∗K) ∗
H×K

(H ×K))/N ∈ C}. Consequently the following completions are equals:

︷ ︸︸ ︷
G1 ∗

[H,K]
(H ×K) Na = Ĝ1 ∗K

Nb
=

︷ ︸︸ ︷
G1 ∗

H
(H ×K) Nc =

︷ ︸︸ ︷
(G1 ∗K) ∗

H×K
(H ×K) Nd ,

i.e.,

G1 ⨿
[H,K]

(H ×K) = G1 ⨿K = G1 ⨿
H
(H ×K) = (G1 ⨿K) ⨿

H×K
(H ×K)

as needed.
So, let prove that in G1 ∗

[H,K]
G2, we have:

G1 ∗
[H,K]

(H ×K) = G1 ∗K = G1 ∗
H
(H ×K) = (G1 ∗K) ∗

H×K
(H ×K).

Assume that G1 = ⟨S|D⟩, H = ⟨Q|V ⟩ with Q ⊂ S and K = ⟨P |R⟩.

G1 ∗
[H,K]

(H ×K) = ⟨S ∪ (Q ∪ P )|D ∪R, xy = yx, ∀x ∈ Q, ∀y ∈ P ⟩

= ⟨S ∪ P |D ∪R, xy = yx, ∀x ∈ Q, ∀y ∈ P ⟩.

• G1 ∗K = ⟨S ∪P |D ∪R > . Now, in G1 ∗
[H,K]

G2, ∀x ∈ Q, ∀y ∈ P, xy = yx. Then,

G1 ∗K = ⟨S ∪ P |D ∪R, xy = yx ∀x ∈ Q, ∀y ∈ P ⟩ = G1 ∗
[H,K]

(H ×K)

and the first egality is proven.

• Let σ : H → G1 ∗
[H,K]

G2 be the inclusion map. Let i1 : H → G1 and i2 : H → H×K
be the corestrictions of σ on G1 and H ×K respectively.

G1 ∗
H
(H ×K) = ⟨S ∪ P |D ∪R, xy = yx ∀x ∈ Q, ∀y ∈ P, i1(h) = i2(h) ∀h ∈ H⟩.
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Since in G1 ∗
[H,K]

G2, ∀h ∈ H, i1(h) = i2(h) then,

G1 ∗
H
(H ×K) = ⟨S ∪ P |D ∪R, xy = yx ∀x ∈ Q, ∀y ∈ P ⟩ = G1 ∗

[H,K]
(H ×K)

and the second egality is proven.

• Let α : H ×K → G1 ∗
[H,K]

G2 be the inclusion map. Let i3 : H ×K → G1 ∗K and

i4 : H ×K → H ×K be the corestrictions of α on G1 ∗K and H ×K respectively.

(G1 ∗ K) ∗
H×K

(H × K) = ⟨S ∪ P |D ∪ R, xy = yx ∀x ∈ Q, ∀y ∈ P, i3(h) =

i4(h) ∀h ∈ (H ×K)⟩. Since in G1 ∗
[H,K]

G2, ∀h ∈ (H ×K), i3(h) = i4(h) then,

(G1∗K) ∗
H×K

(H×K) = ⟨S∪P |D∪R, xy = yx ∀x ∈ Q, ∀y ∈ P ⟩ = G1 ∗
[H,K]

(H×K)

and the third egality is proven.
□

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3

1)⇒ 2) Assume that G = G1 ⨿
[H,K]

G2. Since the conditions in Theorem 1.2 are satisfied,

we write G as double pro-C amalgamation. That is:

G = G1 ⨿
[H,K]

G2 = (G1 ⨿
H
(H ×K)) ⨿

H×K
((H ×K)⨿

K
G2).

Following Ribes and Zalesskii through ([20], Theorem 9.3.1), it follows that the
natural homomorphism

ϕG : DerH×K(G,A) −→ DerH×K(G1⨿
H
(H×K), A)×DerH×K(G2⨿

K
(H×K), A)

(f 7−→ (f |G1⨿
H
(H×K), f |G2⨿

K
(H×K))) is an isomorphism for all [[ZĈG]]−modules

A ∈ C.
Now, through Lemma 5.1, we have:
DerH×K(G1 ⨿

H
(H ×K), A)×DerH×K(G2 ⨿

K
(H ×K), A) = DerH×K(G1 ⨿

H×K

(H ×K), A)× DerH×K(G2 ⨿
H×K

(H ×K), A).

Also, by ([20], Theorem 9.3.1), the natural homomorphism
ϕ1
(G1⨿K) ⨿

H×K
(H×K) : DerH×K((G1 ⨿ K) ⨿

H×K
(H × K), A) −→ DerH×K(G1 ⨿

K,A)× DerH×K(H ×K,A) is an isomorphism for all [[ZĈG]]−modules A ∈ C.
Obviously, DerH×K(H ×K,A) = 0. Now, let the isomorphism

δ1 : DerH×K(G1 ⨿K,A)× 0 −→ DerH×K(G1 ⨿K,A).
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We obtain the isomorphism

δ1ϕ
1
(G1⨿K) ⨿

H×K
(H×K) : DerH×K(G1 ⨿

H
(H ×K), A) −→ DerH×K(G1 ⨿K,A).

Similary, we obtain the isomorphism

δ2ϕ
2
(G2⨿H) ⨿

H×K
(H×K) : DerH×K(G2 ⨿

K
(H ×K), A) −→ DerH×K(G2 ⨿H,A).

The following diagram illustrate this situation.

DerH×K(G,A) DerH×K(G1 ⨿
H

(H ×K), A)×DerH×K(G2 ⨿
K

(H ×K), A)

DerH×K(G1 ⨿
H

(H ×K), A) =DerH×K((G1 ⨿K) ⨿
H×K

(H ×K), A)

DerH×K(G2 ⨿
K

(H ×K), A) =DerH×K((G2 ⨿H) ⨿
H×K

(H ×K), A)

DerH×K(G1 ⨿K,A) ×DerH×K(H ×K,A)︸ ︷︷ ︸
0

DerH×K(G2 ⨿H,A) ×DerH×K(H ×K,A)︸ ︷︷ ︸
0

DerH×K(G1 ⨿K,A)

DerH×K(G1 ⨿K,A)×DerH×K(G2 ⨿H,A) DerH×K(G2 ⨿H,A)

ϕG

≃

ψG ≃ φ ≃

P1

P2
ϕ1
(G1⨿K) ⨿

H×K
(H×K) ≃

ϕ2
(G2⨿H) ⨿

H×K
(H×K)≃

δ1 ≃

δ2 ≃

P3

P4

where P1, P2, P3 and P4 are the canonical projections. We can see that

DerH×K(G1 ⨿
H
(H ×K), A)× DerH×K(G2 ⨿

K
(H ×K), A)
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and
DerH×K(G1 ⨿K,A)× DerH×K(G2 ⨿H,A)

as two direct products of the groups DerH×K(G1 ⨿ K,A) and DerH×K(G2 ⨿
K,A). So, by the unicity of the direct product of two groups, ψG = φϕG is an
isomorphism since so are φ and ϕG.

2)⇒ 1) Assume that the natural homomorphism

ψG : DerH×K(G,A) −→ DerH×K(G1 ⨿K,A)× DerH×K(G2 ⨿H,A)

(f 7−→ (f |G1⨿K , f |G2⨿H), f ∈ DerH×K(G,A)) is an isomorphism for all
[[ZĈG]]−modules A ∈ C. Using Lemma 5.1,

ϕG : DerH×K(G,A) −→ DerH×K(G1⨿
H
(H×K), A)×DerH×K(G2⨿

K
(H×K), A)

is an isomorphism for all [[ZĈG]]−modules A ∈ C. Applying Theorem 9.3.1 (2
⇒ 1) in [20] we have:

G = (G1 ⨿
H
(H ×K)) ⨿

H×K
((H ×K)⨿

K
G2).

Since the conditions in Theorem 1.2 are satisfied, the following equality holds:

(G1 ⨿
H
(H ×K)) ⨿

H×K
((H ×K)⨿

K
G2) = G1 ⨿

[H,K]
G2.

Thus, G = G1 ⨿
[H,K]

G2. And the Theorem is proven.
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