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1. INTRODUCTION

The study of free constructions of abstracts groups began in 1882 when Walter
Von Dyck pointed out in his paper Gruppentheoretische Studien the concept of free
groups. The algebraic study of this notion began in 1924 by Jakop Nielsen, who
gave the name of free group and established many of its fundamental properties,
see [14]. Since 1927, free products of groups with amalgamated subgroups, were
introduced by Schreier and generalized since 1948 by Hanna Neumann. In [9], free
constructions (free products, amalgamated free products, HNN-extensions and free
products with commuting subgroups) of abstracts groups were clearly defined. In [8],
Loginova pointed out a link between free products with amalgamation and free products
with commuting subgroups by establishing that every free product with commuting
subgroups can be written as amalgamated free product of two amalgamated free
products, what we call a double amalgamation of abstracts groups.

Profinite groups are known since 1965 when J.P. Serre introduced them in his book
titled Cohomologie galoisienne [21]. A profinite group G is the inverse limit of a
projective system of finite groups, i.e., G = @Gi, where (G,);e; s a projective system
of finite (abstract) groups and [ is a directedzseelt. A profinite group G is isomorphic to a
closed subgroup of a direct product of finite groups. A profinite group is a topological,
compact, Haussdorff and totally disconnected group. A concrete example of a profinite
group is the profinite completion of an abstract group. Given G an abstract group,
the profinite completion G of group G is the inverse limit of the projective system
(G/N) e of the (finite) quotient groups G /N, where N is the collection of all normal

subgroups of finite index of G, i.e., G = @ GG /N. Many authors have studied profinite

NeN
groups in different directions [3, 15, 20, 17, 19, 6, 5]. Luis Ribes and Pavel Zalesskii

in [20] have introduced free constructions of profinite groups. They defined free
profinite products, amalgamated free profinite products and profinite HNN-extensions
of profinite groups. They studied the particular case of proper amalgamated free
profinite products and proper profinite HNN-extensions of profinite groups. They gave
examples of amalgamated free profinite product which are not proper and proved some
conditions for their properness [16, 15]. Similarly, G. Mantika and D. Tieudjo defined
free profinite product of profinite groups with commuting subgroups and they studied
their properness. See [10]. Let G; and G2 be two profinite groups, let H be a closed
subgroup of G1, K a closed subgroup of GG, and A a closed common subgroup of G4

and G5. We denote by G * Go, G1 I1 G5, G; * Gy and Gy 11 (G5, the abstract
A A [H,K] [H,K]

amalgamation, the profinite amalgamation, the abstract free product with commuting
subgroups and the free profinite product with commuting subgroups respectively.
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Today, profinite groups have been generalized to pro—C groups, where C is a class of
finite groups. A pro-C group G is the inverse limit of a projective system of groups of
C. When C is the class of all finite groups, all finite p-groups, all finite solvable groups
and all finite nilpotent groups, then we say profinite groups, pro-p groups, pro-solvable
groups and pro-nilpotent groups respectively. When G is an abstract group, its profinite
completion with respect to C is called the pro-C completion of group GG and denoted by
GC. Also, GC is a concrete example of a pro-C group. Therefore, free pro-C products
of pro-C groups with amalgamation are defined. See [20]. The topology on an abstract
group GG given by the fundamental system of neighborhoods of the identity consisting
of the collection of all its subgroups belonging in C, is called a pro-C topology on the
group GG. With this topology, G becomes a topological group. A subset S of a group
G is closed in the pro-C topology of G if for any element g € G \ S, there exists a
normal subgroup K of finite index in G with G/K € C such that ¢ ¢ SK. When
the trivial group is closed in the pro-C topology of a group G, then we say that the
group G is C-residual. Equivalently, G is C-residual if for any g # 14 there exists a
normal subgroup K in G such that G/K € C and g ¢ K. This means that, for every
g # 1, there exists a homomorphism ¢ from G onto a group of C such that p(g) # 1.
A subgroup H of a group G is C-separable if it is closed in the pro-C topology of G.
Equivalently, a subgroup H of a group G is C-separable if for any a € G\ H, there exists
a homomorphism ¢ from G onto a group of C such that p(a) ¢ ¢(H). D. Tieudjo in
[22] recalled root-class residuality of free groups and free products of root-class residual
groups. He proved some sufficient conditions for root-class residuality of generalized
residual groups. Loginova in [8] proved necessary and sufficient condition such that a
free product with commuting subgroups of residually finite p-groups, is again residually
finite p-group. In this paper, we study the case where C is the class of all finite solvable
groups. We prove:

Theorem 1.1

Let C be the class of all finite solvable groups. Let G and G5 be two C-residual groups
and let H and K be nonidentity subgroups of G and G4 respectively. Assume that H
is central in G4, K is abelian and commute with G;. Then, G = G [H*K] G, the free

product of G and Gy with commuting subgroups H and K, is C-residual if and only if
the subgroups H and K are C-separable in G, and G respectively.

Also, when studiying the residual finiteness of free products of abstract groups with
commuting subgroups, Loginova in [8] established that this construction can be written
as double amalgamation. That is, given (G; and G5 two abstract groups with respective
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subgroups H and K, the following situation holds:

Gy [HTK} Gy = (G4 * (H x K)) e ((H x K) ;:;G’g).
For profinite groups or pro—C groups in general, this is not always true. Let C be
the class of all finite solvable groups. Then, C is subgroup closed and is also closed
under taking quotients, under forming finite direct products, under extensions, and
for any group G with normal subgroups H and K such that G/H,G/K € C, then
G/H N K € C. See [20, 22]. C is an example of root-class. See [22]. In this paper,
under some conditions, we write the free pro-C product with commuting subgroups
of pro-C groups as a pro—C product with amalgamation of two pro—C products with
amalgamation. That is:

Theorem 1.2

Let C be the class of all finite solvable groups. Let Gy and G be two pro-C groups with
respective closed subgroups H and K. If H is central in G1, K is abelian and commute
with G, and H and K are C-separable and satisfy ITIT( ¢ = HK, then we have:

G1 [H],_[K] G2 = (Gl ]I;T[ (H X K)) H]>_<IK ((H X K) ][_([ Gg)

Some free constructions of groups (abstract or topological case) were also characterized
with cohomology tools [13, 17, 18]. Let C be the class of all finite solvable groups.
The pro-C completion of Z, the ring of integers, is the free pro-C group on a single
generator noted by Zx. It has an obvious structure of a compact, Haussdorff ring.
See [7]. Let R be a commutative ring and let G be a profinite group. The abstract
group algebra (or group ring) [RG] consists of all formal sums ) giec @igi (a; € R,
where a; is zero for all but a finite number of indices), with natural addition defined by
(>~ aigi) + (O bigi) = > (a; +b;)g; and multiplication defined by (3 a;g:)(>_ bjg;) =
> crgr where ¢ = > — a;b;. Let G be a pro-C group. The complete group algebra
of G is defined by [[Z,G]] = @[ZCAG /U], where U runs through the open normal

U
subgroups of G. [[ZxG]] is a profinite ring. Throughout this paper, DMod([[Z4G]])
denotes the category of discrete [[ZG]]-modules. Let now A/ be a closed subgroup of
G. For A € DMod([[ZsG]]), define

Dery(G.A) = {d: G — Al d(xy) = xd(y) + d(x), ¥,y € G, dlas =0},

the group of all continuous derivations from G to A vanishing on M. L. Ribes and
P. Zalesskii characterized cohomologically free pro-C products of pro-C groups with
amalgamation, where C is an extension closed variety of finite solvable groups. See
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[20, Theorem 9.3.1]. In this paper, following L. Ribes and P. Zalesskii, we obtain
an analogous criterion in terms of derivations, when a pro-C group G is a free pro-C
product with commuting subgroups of its subgroups. We prove:

Theorem 1.3

Let C be the class of all finite solvable groups. Let G be a pro-C group. Let G| and G5
be closed subgroups of G. If H and K are respective subgroups of G and G4 such that
H is central in G, K is abelian and commute with GG, and H and K are C-separable
and satisfy K ‘_ HK, then the following conditions are equivalent:

1. G=G, [HHK} G (free pro-C product with commuting subgroups);

2. The natural homomorphism
’(ﬂG : DeerK(G, A) — DerHX;((Gl II K, A) X DeerK(GQ II H, A),

(f — (flausk, fleaun)
is an isomorphism for all [[ZG|]—modules A € C.

2. PRELIMINARIES NOTIONS AND RESULTS

In this section, we recall definitions and properties of some notions we will use. One
can refer to [2, 4, 10, 20, 23] for more details.
In all what follows below, C is the class of all finite solvable groups.

2.1. Basic notions

Definition 2.1

Let GG be an abstract group. A profinite topology on G is a group topology on G such
that the subgroups of finite index of G is a basis of neighborhoods of the identity element
of G.

If this basis is consisting of subgroups N of finite index of G such that every quotient
G/N belongs to the class C, the above topology is the pro-C topology of G.

Definition 2.2

Let G be a pro-C group. A closed subgroup H of G is called the retract semidirect
factor of G if there exists a closed normal subgroup K of G satisfying: G = HK and
HnN K ={1}. K is then said to be a normal complement of H.

Equivalently, a closed subgroup H is the retract semidirect factor of G if there exists a
continuous homomorphism v : G — H such that v o s = idy where s : H — G is the

canonical homomorphism.
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It is obvious that:

Remark 2.1
Let G be a pro-C group and let H be a closed subgroup of G with a normal complement
K. G can be written as a semidirect product K x H.

2.2. Free abstract and pro-C products of abstract and pro-C groups with
amalgamations

Definition 2.3 (Pushout: Free abstract product of abstract groups with amalgamation)
Let G, Gy and H be abstract groups and let 0 : H — Gy and 7 : H — G5 be
monomorphisms. A free product of G1 and Gy with amalgamated subgroup H is a
group G together with homomorphisms ¢, : Gy — G and @y : Gy — G such that
P10 = oT, satisfying the following universal property: for any pair of homomorphisms

Y1 G — K and ¢y : Gy — K into a group K with 1,0 = 15T, there exists a unique
homomorphism ¢ : G — K such that Y, = 1 and Yy = 1)s.

We denote by G, * G5 the free product of groups G and G4 with amalgamated subgroup

H.

Definition 2.4
Let G4 * G5 be the free product of groups GG and G4 with amalgamated subgroup H.

1. Let R and S be normal subgroups of finite index in groups G and G5 respectively.
The subgroups R and S are (H, H)-compatible if RN H = SN H.

2. A family (R;)ic; of subgroups of a group G is called a filtration if ‘ﬂIRZ- = {1}.
1€
And the family (R;);cy is called a H-filtration if it is a filtration, and in addition
we have .ﬂIH R, = H.
1€

Definition 2.5 (Free pro—C product of pro-C groups with amalgamation)

Let Gy, Gy and H be pro—C groups and let f, : H — Gy and fo : H — G4 be
continuous monomorphisms. A free pro—C product of G1 and G5 with amalgamated
subgroup H is a pro—C group G together with continuous homomorphisms o1 : G1 —
G and s : Go — G such that o f1 = s fo, satisfying the following universal property:
for any pair of continuous homomorphisms ¢, : G; — K and ¢y : Go — K into a
pro—C group K with 11 f1 = s fo, there exists a unique continuous homomorphism

¥ G — K such that Vo1 = 1 and Vs = 1)s.
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2.3. Free abstract and pro-C products of abstract and pro-C groups with
commuting subgroups

Definition 2.6 (Free abstract product of abstract groups with commuting subgroups)
Let G1, Gy, H and K be abstract groups and let 0 : H — Gy and 7 : H — G,
be monomorphisms. A free product of G and G5 with commuting subgroups H and
K is a group G together with homomorphisms o1 : G; — G and ¢ : Gy — G
such that [p1(c(H)); p2(7(K))] = 1, satisfying the following universal property: for
any pair of homomorphisms ¢, : G; — K and 1y : Gy — K into a group K with
(V1 (0(H)); a(T(K))] = 1, there exists a unique homomorphism 1 : G — K such that
Y1 = Y1 and Yo = Y9, We denote this group by G = G, [HTK] Go.

We prove the following:

Proposition 2.1
Let Gy and G4 be two pro—C groups with respective closed subgroups H and K. Then,

the pro-C topology of G = G, [H*K] G5 induces on Gy, G, H and K their pro-C

topologies.

Proof. To prove that the pro-C topology of GG induces on G5 (for example, and the
similar reason for G;, H and K) its pro-C topology, it suffices to prove that G5 is the
retract semidirect factor of G. Indeed, assume that (G is a retract semidirect factor of GG
and let prove that the pro-C topology of GG induces on G5 its pro-C topology. So, let M,
be a normal subgroup of G5 of finite index such that G5 /M, € C. Since G+ is a retract
semidirect factor of G, there exists A, a normal subgroup of GG such that G = A x G,.
Clearly AM, <1y G since

GQ/MQ = GQ/(AMQ) N G2 >~ (AMQ)GQ/AMQ = G/AMQ where (AMQ) N G2 = MQ.

Therefore G/AM; € C, and it follows then that the pro-C topology of G induces on G5
its pro-C topology.

Let now prove that (5 is a retract semidirect factor of G. To do it, we will build a
homomorphism v : G — G with v o s = idg,, where s : G3 — G is the canonical
homomorphism.

Since G = G4 [H*K] (G5, so by the definition of free products, there is a (canonical)

map s : Gy — G, including GG as a subgroup. By the universal property of free
products, there exists a unique homomorphism v : G — G5 defined by the identity
map id : G5 — G5 and the trivial map ¢ : G; — G5. Clearly, K commutes with the
identity element, which is the image of /. This situation is illustrated by the following
commutative diagram.



376 S. Douboula and G. Mantika and D. Tieudjo

Gy i1 G s G2

v

G

Therefore (G4 is a retract semidirect factor of GG and the Proposition is proven.

Definition 2.7 (Free pro-C product of pro-C groups with commuting subgroups)

Let H be a closed subgroup of a pro-C group G and let K be a closed subgroup of a
pro-C group Gs. Let 0 : H — Gy and 7 : K — (G5 be the inclusion maps. The free
pro-C product of the pro-C groups G, and G5 with commuting subgroups H and K is
the family (G @1;¢2) where G is a pro-C group and ¢, : G1 — G and ps : Go — G

are continuous homomorphisms satisfying:

(1) [er(o(H)); p2(7(K))] = 1 and

(2) If G' is a pro-C group with continuous homomorphims i, : G — G and
o Gy — G’ such that [ (oc(H));o(T(K))|] = 1, then there exists a unique
continuous homomorphism v : G — G’ such that 11 = 1y and Yy = 1)s.

We denote by G; [[ G2 the free pro-C product of pro-C groups GG; and Gy with
[H.K]
commuting subgroups H and K, where G; and G5 are two pro-C groups, H is a closed

subgroup of the pro-C group (G; and K is a closed subgroup of the pro-C group G. Itis

proper if the continuous homomorphisms G; — G [[ Gy and G2 — G [] G5 are
[H, K] [H, K]
one to one.

24. Complete group algebra and cohomology with coefficients in discrete
modules

Let R be a profinite ring, i.e., R is an inverse limit of an inverse system of finite rings.
A R-module is an abelian Hausdorff topological group M satisfying the analogous
properties of abstract module over abstract ring. If M and N are two R-modules, we use
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the notation Hompg(M, N) for the abelian group of all continuous R—homomorphisms
from M to NN as abelian profinite groups. We refer to a continuous R—homomorphism
of R—modules as a morphism of R-modules. We will be interested in R-modules that
are discrete. Discrete modules together with their morphisms form a category denotes
by DMod(R). It is a subcategory of the category of all R-modules.

Let R be a commutative ring and let G be a profinite group. The abstract group
algebra (or group ring) [RG] consists of all formal sums »_ ., a;g; (a; € R, where
a; is zero for all but a finite number of indices), with natural addition defined by
(>~ aigi) + (O bigi) = > (a; +b;)g; and multiplication defined by (3 a;g:)(>_ bjg;) =
> crgr wWhere ¢ = Zgig‘j:gk a;b;.

Now, let GG be a pro-C group. In the context of pro—C groups, the analogue of the group
ring is the concept of complete group algebra.

Definition 2.8
Let G be a pro-C group and R a profinite ring. The complete group algebra of G
denoted by [|[RG]| is defined by

[RG]] = lim[RG/U]
U
where U runs through the open normal subgroups of G.

Then, [[RG]] is a profinite ring since we can express it as an inverse limit of finite rings,
1.e.,

[RG]] = m[(R/T)(G/U)],
where [ and U range over the open ideals of R and the open normal subgroups of G,
respectively. See[20].
Recall also that every [[RG]]-module is a G-module (see Proposition 5.3.6 in [20]).
DMod([[Z4G]]) denotes the category of discrete [[ZG]]-modules.
Let GG be a pro-C group and let A be a discrete G-module. Let C" (G, A) be the (abelian)
group of all continuous functions f : G — A. Define a cochain complex

0 — COG, A) — CY G, A) — ... — C"(G, A) L5 cm (@G, A) — .,
where 0" is defined as follow

(anﬂf)(l“l, ey Tng1) = 1 f (T2, oo Tpgr)

+ Z(_1)1f<x17 vy TiLgg 1y oeny xn+1)+(_1>i+lf(x17 ) xn)
=1

with z1, ..., 2,11 € G.
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Definition 2.9

Let G be a pro-C group and let A be a discrete G-module. Then the n—th cohomology
group of G with coefficients in A is defined as the n—th cohomology group of the above
cochain complex, i.e.,

H"(G,A) = ker(0™*h)/Im(0™).

According to above definition, H'(G, A) = ker(9?)/Im(d'). The elements of ker(0?)
are called crossed homomorphisms or derivations from G to A. So, a derivation
d : G — A is a continuous function such that d(zy) = xd(y) + d(z), for all
x,y € G. We denote by Der (G, A), the (abelian) group of derivations. The elements of
Im(0") are called principal crossed homomorphisms or inner derivations. Each
inner derivations d, : G — A is determined by an element a € A and is defined by
d.(x) = za — a (r € G). See again [20].

3. PROOF OF THEOREM 1.1

The following property is the extension to C-groups of ([1], Theorem 2.).

Lemma 3.1

Let C be the class of all finite solvable groups. Let G = A o B be the free product of A
and B, two groups of C, with amalgamated subgroup H. If H is central in A or in B,
then G is C-residual.

Proof. Let A and B be groups of C with a common subgroup H. Suppose that H is
centralin Aorin B. LetG = A * B be the free product of A and B with amalgamated
subgroup H. Using simultaneously ([11], Corollary 15.2, p. 532) and ([12], Theorem
4., p. 11), there is a finite group GGy of C containing isomorphic copies A; and B; of A
and B, respectively, with isomorphisms

0:A— Ay; 0 B— By.

(71 can be chosen such that the isomorphisms ¢ and ¢ coincide on H. See ([11], p.
532).

Since G is the free product of A and B with amalgamated subgroup H, it follows that
0 and ¢ can be simultaneously extended to a homomorphism x of GG onto G;. Consider
K the kernel of . Since (G is finite, it follows that K is of finite index in GG. Since p is
one-to-one when restricted to either A or B, it follows that

KNA=1=KnNBkB.



On a Cohomological Characterization of a Free Profinite Product... 379

In accordance to ([1], Theorem 2.), K is free. Consequently, using the fact that C can
be seen as a root-class, K is C-residual by ([22], Theorem 2.1). Finally, G is clearly

C-residual as a finite extension of a C-residual group, and the Lemma is demonstrated.
m

Proof of Theorem 1.1 Let C be the class of all finite solvable groups. Let G; and
G5 be two C-residual groups and let 4 and K be nonidentity subgroups of G; and
(5 respectively such that H is central in G; and K is abelian and commute with Gj.
Following Loginova in [8], we write G as a double amalgamation. That is,

G = (Gl;x;(Hx K))H*K (GQI*((HX K)).

X

1. Assume that the subgroups H and K are not C-separable. Let prove that G is
not C-residual. Since K is not C-separable, let a € G5 \ K and let 7 be an
arbitrary homomorphism of (G5 onto a finite group in C such that n(a) € n(K).
Let h be a nonidentity element of H. Then the element w = [a, h] of the group
G ot (H x K) differs from 1, since w = a~'h~'ah is reduced in the free product
with amalgamation G, ® (H x K). Clearly, the image of this element under
any homomorphism of G5 * (H x K) onto a finite group in C equals 1. Thus,
Go x (H x K) is not C-residual and likewise GG. The same result is obtained

similarly when considering the subgroup H not C-separable.

2. Conversely, let now subgroups H and K be C-separable in (G; and Gs
respectively. And let prove that the group G = G, [H*K] (G5 is C-residual. Consider

(R;)icr, the family of all normal subgroups of finite index in G * (H x K) with
Gy * (H x K)/R; € Cforalli € I and let (S});cs be the family of all normal
subgroups of finite index in G d (H x K) with G jd (H x K)/R; € C for all
J € J. Denote by A the subset of I x .J that consists of the various pairs (7, j) such
that the subgroups R; and R, are (H x K, H x K )-compatible and put Ry = R;
and Sy = S, for an arbitrary element A = (7, j) € A.

Let X and Y be arbitrary normal subgroups of finite index in G; and G,
respectively with G;/X € C and G,/Y € C. Since the groups GG; and G5 are
C-residual and their subgroups H and K are C-separable, then, using ([8], Lemma
1.), it follows that for every nonidentity element g of GGy d (H x K), there exists

an element \;, € A such that
GiNRy,, =X and (H x K) NRy, = (XNH).(YNK)withg ¢ Ry, .

Moreover, if g does not belong to H x K, the subgroup R, can be chosen so that
g ¢ (H x K)R,,. Consequently, )\mAR)\ = 1 and AﬁA(H x K)Ry, = H x K.
S S
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Therefore, the family (R))xep is a H x K-filtration. Similarly, we obtain that the
family (S))aen is @ H x K-filtration.
Thus, for every A € A, the map

(H X K)R)\/R)\ — (H X K)S)\/S)\

from the subgroup (H x K)R, /R, of the quotient group G4 * (H x K)/ R, onto
the subgroup (H x K)S) /S, of the quotient group G d (H x K) /S, determined
by the rule

YR, .5, (xRy) = xS\ (x € H x K), is well defined and clearly an isomorphism
since Ry and S) are (H x K, H x K)-compatible. Therefore, we constuct the

group

= Hx K
GR)”SA Gl ;!jl ( % )/R)\ (HXK)RA/R)\i(HXK)S,\/SA
The natural mappings from the group G, bt (H x K) onto the quotient group
Gy x (H x K)/R, and from the group Go d (H x K) onto the quotient

GQ;(H X K)/S)\

group Gs x (H x K)/S\ extend to a homomorphism pg, s, from the group
G= (G, * (H x K)) . (Gay * (H x K)) onto the group G\ = Gp, s, .

Note that the families (Ry)xea and (S))aea are closed under finite intersections,
i.e., for any A\j, Ay € A, there is an index A € A such that

Ry, N Ry, = Ry and S, N Sy, = S).

Therefore, if g is a nonidentity element of (=, then, considering a reduced form of
g and the fact that the families (Ry)xeca and (Sy)xea are H x K-filtration, there
exists A € A such that the image of g under the homomorphism py = pg, s,
differs from 1. Indeed, let g € G.

olf g e G4 * (H x K), put A € A such that g ¢ R,. Note that, this choice is
possible since /\QAR,\ = 1. See that, p)(g) = gR) # R,. Similarly, we prove that
there exists A € A such that p)(g) = ¢S\ # Sy if g € G d (H x K).

olfg ¢ Gy jd (H x K) U Gs d (H x K), write ¢ = z1122Ya.....TnY, With
T; GGl;S(HxK),yi EGg;i;(HXK),xi,y,- ¢ H x K,1 < i< n.Wechoice
a convenient A € A suchthatx; ¢ (H x K)Ryandy; ¢ (H x K)S,,1<i<n
as follows.

Put A\; € A such that z; ¢ (H x K)R,,. Note that this choice is possible since
(Ra)xea is H x K-filtration and closed under finite intersection. Similarly, put
Ay € Asuchthaty, ¢ H x KS),,1 <i<n.

Put then A € A such that Ry = Ry, N Ry,, Sy = Sy, N Sh,.

See that, py(g) = 1 Ray1S\T2 RaY2Sx...xn RAYn Sy # Ry = S\ in G.

Now, throught Lemma 3.1, G, = Gg, s, is C-residual. Indeed, G is the free
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product of two groups of C with amalgamated subgroup

(H x K)Ry/R) = (H x K)S,/S, which is central in G, * (H x K)/Rj.

To see that (H x K)Ry\/R\ = (H x K)S,/S, is central in G, x (H x K)/Ry,
letu € Gy x (H x K)/Ry. Thatis u = zR) withx € G} jd (H x K). Assume
that x = g1 k1goks . . . gnkp, in its reduced form in G1;‘;(H x K)/ Ry with g; € G
and k; € K.

Letv =yRy € (H x K)R\/R) withy =hk € H x K (h € H, k € K).

uv = rR\yR)
= 2y R)
= g1k1goks . .. gnknhkR),
= hkg1k192ks . . . gk, Ry since H is central in GG, K is abelian
and commute with G
= yxR)
=yR\TR)

= vu

Now, since p)(g) # 1 and G, is C-residual, it follows that there exists a
homomorphism [ from Gz, to a group of C such that for every nonidentity element
g of G we have lp,(g) # 1, a nonidentity image. Consequently, G is C-residual.
And the Theorem is proven.

4. PROOF OF THEOREM 1.2

We first prove the following lemma.

Lemma 4.1
Let C be the class of all finite solvable groups. Let G| and G5 be two pro-C groups with

respective closed subgroups H and K. Then, the pro-C topology of G = G [H*K] G

induces on G4 x (HxK), (HxK) ;';GQ and H x K their respective pro-C topologies.

Proof. Set,

N={N<;G=G,; i Gy : NNG;isopenin G;, i = 1,2and G/N € C},

N = {N<1fG1[>5(H><K) : NNGy is openin Gy, NN(H x K) is open in H x K and
(G % (H x K))/N €},

Ny = {N<1fG2I>§(H><K) : NNGy is open in Go, NN(H x K) is open in H x K and
(GQ;‘;(H x K))/N € C}, and
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N’induced = {Nﬂ (Gl ;—kI (H X K)) : N GN}
Let prove that N7 = Npduced-

1. Ninducea C N7 obviously.

2. Let now prove that N7 C Ninaguced- Let N € Ni. Let determine M € N such
that
M N (Gy x (H x K)) = N. To do it, it suffices to determine M’ € A such that
M’ﬂ(GlE(Hx K)) < N. Indeed, if such M’ € N\ exists, then M’ﬂ(Gl;kI(H X
K)) € Ninducea- Consequently, N € Ni,aquceq @s a subgroup of G % (H x K)
containing the nonempty open set M’ N (G4 * (H x K)). See ([4], Proposition
32). It follows then that there exists M € A such that M N (G4 * (HxK))=N
as needed.
Let now construct M’ € A such that M’ N (G, * (H x K)) <N.

Clearly, N N Gy isopenin Gy, N NGy <y Gy and G /N NGy € C. Since the
pro-C topology of GG induces on (5 its pro-C topology (see Proposition 2.1), it
follows that there exists M, € N such that M; NG, = N N G;.

Similarly, there exists My € N suchthat Mg N K = NN K.

Set M/ = My, N M.

(a) Let prove that M’ € N.

i. Itis obvious that M’ <, G

ii. Foranyi = 1,2, wehave M'NG; = M NMgNG; = (MyNG;) N
(Mg N G;). By the definition of M; and My as elements of N we
have clearly that M; N G; and Mk N G; are open in GG; and so is their
intersection M’ N G;.

iii. Let prove that G/M’ € C.
Since G/M; € C and G/M[ € C, then G/M; N Mg € C by [22] when
considering C as a root-class.

By i., ii. and iii., M’ € V.
(b) It remains to prove that M’ﬂ(GlE(HxK)) < N,ie, M’ﬂ(Glz(HxK))

is a subgroup of .
Here, we use the presentation of groups by the generators and relations. Let,

G1 = (SID), H = (Q|V) with Q C .

Gy = (T|E), K = (P|R) with P C T,
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G=(SUT|DUE, zy =yzVzx €Q,Vy€ P),
Gl;kI(HxK) = (SUP|DUR, o1(h) =71(h)V h € Q) with

o1:H— Gyand 1 : H— H x K, the embedding maps
N =(AUBI|C)with AC Sand B C P,

M, =(IUJ|F)with] C Sand J C T,
Mg =(LUO|X)with L C Sand O C T,
M' =M N Mg ={(TUJ)N(LUO)|W).

Since
MinGi=NNnG;=({IuJ)NnS=(AUB)NS

and
MgNK=NNK=(LUO)NP=(AUB)NP,

it follows that:

’ﬂ(GlE(HxK)):MlﬁMKﬂ(Glz(HxK))

(TUJ)N(LUO)N(SUP)|Z)
(TuJ)yN(LUO)NSJU[IUJ)N(LUO)N P||Z)
[(AUB)NSN(LUO)U[IUJ)N(AUB)NP||Z)
(AUB)N[(SN(LUO)U((TUuJ)NnP))|Z)

|Z) withY C AU B,

{
{
{

=V
N.

IN

By 1. and 2. we conclude that N7 = N, quced, 1.€., the pro-C topology of G induces on
G, d (H x K) its own pro-C topology.

We argue similarly to prove that the pro-C topology of GG induces on (H x K) * G and
on H x K their own pro-C topologies. And the Lemma is demonstrated.

Proof of Theorem 1.2 Consider,

N={N<;G=G; [ijK] Gy: NNG;isopenin G;, i = 1,2, G/N € C},
le{quGlz(HxK):NﬂGl is open in Gy, NN(H x K) is open in H x K and
(G1x (H x K))/N € C},

sz{quGzz(HxK):NﬁGg is open in G, NN (H x K) is open in H x K and
(GQ;‘;(H x K))/N € C}and,
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Ns={N<;(HxK): NNHisopenin H, and NN K isopenin K, (H x K)/N €

C}.
We have:
— N
Gl II G2=G1 * G2 y (1)
[H,K] [H,K]
G x Gy = r (HxK) + (HxK)xGy) N 2
1[H7K} 2 =(G1% X o X * G2) 7, (2)

—_— —_———
N _ N1 Na
(GIE(HXK»HiK((HXK)?;GQ) —GI;}(HXK) EI%I(C(HXK);;GQ , 3

rm— N — rm——
Gy % (H x K) M ﬁ}}g{c (H x K) * G Nz — (GiIL(H x K)) 11 ((Hx K)11Gy). (4)
Equation (1) is the construction of free pro-C products of pro-C groups with commuting
subgroups which is the generalization of free profinite products of profinite groups with
commuting subgroups presented by G. Mantika and D. Tieudjo in [10].

Equation (2) is obtained by writting the free abstract product of abstract groups with
commuting subgroups as a double amalgamation presented by E. Loginova in [8].
Equation (3) is obtained by [20] using two reasons:

1. G =G, % Gyinduceson Gy * (H x K), (H x K) * Gy and H x K their
[H,K] H K

respective pro-C topologies, see Lemma 4.1, and

2. G =G, [H*K] (G5 is C-residual since G; and G5 are C-residual and the subgroups

H and K are C -separated (see Theorem 1.1).

Equation (4) is obtained by the construction of free pro-C products of pro-C groups with
amalgamation presented by L. Ribes and P. Zalesskii in [20], and using the equality

_— ¢
H x K = H x K (by hypotesis). Thus, the Theorem is proven.

S. PROOF OF THEOREM 1.3

Lemma 5.1
Let C be the class of all finite solvable groups. Let GGy and G5 be two pro-C groups with
respective closed subgroups H and K. Let G = G [HHK] G be the free pro-C product

of the pro-C groups G and G5 with commuting subgroups H and K. Then in G,

Gi I (HxK)=GUK=GI(HxK)=(GIK) Il (HxK).

[H,K] HxK
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Proof. It suffices to prove that in GGy [H*K] G5, we have

G, * (HxK)=GxK=Gx(HxK)=(G1*xK) x (HxK).
[H,K] H HxK

Indeed, assume that the above equalities hold. Then the following sets are the same:

Ny = {NQfGl[H*K](HxK) : NNG1 isopenin G, NNK is open in K, (Gl[HK](HXK))/N € C},

Ny ={N <G *K:NNGyisopenin G;, NN K isopenin K, (G1 x K)/N € C},
N = {N<1fG1]>S(H><K) : NNGy is openin G, NNK is open in K, (Glz(HxK))/N € C},

Ng={N <5 (G1 *K) H*K(H x K): NNGyjisopenin G, NN K isopenin K,
X
((G1 % K) .. (H x K))/N € C}. Consequently the following completions are equals:
X

_—— N e
G * (HxK)Ne=G«K "=G x(HxK)N=(G*K) » (HxK)™a,
[H,K] H HxK
i.e.,
Gi I (HxK)=GiIIK=GII(HxK)=(GIIK) II (HxK)
[H,K] H HxK
as needed.

So, let prove thatin G; * (G5, we have:
[H,K]

G, *+ (HxK)=GxK=Gx(HxK)=(G1*xK) *x (HxK).
[H,K] H HxK

Assume that G; = (S|D), H = (Q|V) with ) C S and K = (P|R).

Gl[H*K](HxK)z(SU(QUP)\DUR, xy =yx, Ve € Q, Yy € P)

= (SUP|DUR, zy =yx, Vr € Q, Yy € P).

oeGix K =(SUP|DUR > .Now, in G, [H*K] Gy, Vx € Q, Yy € P, vy = yx. Then,

Gi*K=(SUP|IDUR, zy=yzVx e Q,Vye P)=G; *x (HxK)

[H,K]
and the first egality is proven.
eleto: H— Gy [H*K} G, be the inclusion map. Let¢; : H — Giandiy : H - HXK

be the corestrictions of o on GG; and H x K respectively.

Gli}(HxK) =(SUP|DUR, xy =yxVx € Q, Vy € P, i1(h) =ia(h) Vh € H).
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Since in Gy [H*K] Go, Vh € H, i1(h) = is(h) then,

GlE(HXK):(SUP\DUR, ry=yxVreQ,Yye P)=G; *x (HxK)

[H,K]
and the second egality is proven.

eleta: Hx K — Gy [H*K] (G5 be the inclusion map. Let iz : H x K — G * K and

14 : H x K — H x K be the corestrictions of & on G; * K and H x K respectively.

(Gl*K)H*K(HXK) = (SUP|IDUR, zy = yzVr € Q, Vy € P, i3(h) =
X
is(h)Vh € (H x K)). Since in Gy % Ga, Vh € (H x K), is(h) = ia(h) then,

[H,K]
(G1xK) % (HxK)=(SUP|DUR, zy=yxVr e Q,Vye P) =G, * (HxK)
HxK [H,K]
and the third egality is proven.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3

1)=2) Assume that G = (G [HHK] (5. Since the conditions in Theorem 1.2 are satisfied,

we write GG as double pro-C amalgamation. That is:

[ HxK

Following Ribes and Zalesskii through ([20], Theorem 9.3.1), it follows that the
natural homomorphism

¢G : DeerK(G,A) — DCI'HXK(GlII_{I(HXK), A)XDGI‘HXK(GQII_([(HXK), A)

(f — (f\Glg(HxK), f|G211g(HxK))) is an isomorphism for all [[Z;G]]—modules
AeC.
Now, through Lemma 5.1, we have:
DCIHXK(Gl IITI[ (H X K), A) X DCIHXK(GQ II_([ (H X K), A) = DCI'HXK(Gl HHK
X
(H X K), A) X DCI'HX}(<G2 HHK (H X K), A)
X
Also, by ([20], Theorem 9.3.1), the natural homomorphism
HxK HxK

K, A)x Dergxx(H x K, A) is an isomorphism for all [[Z;G]]—modules A € C.
Obviously, Dery . (H x K, A) = 0. Now, let the isomorphism

51 : DCI'HXK(Gl HK,A) X0 — DCI'HXK(Gl]_[K,A).
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We obtain the isomorphism

51¢%G1HK) I (HxK) . DCI'HXK(Gl ]I_{[ (H X K), A) — DCI'HXK(Gl I K, A)
HxK

Similary, we obtain the isomorphism

HXxK

The following diagram illustrate this situation.

Dergr x 1 (G, A) ¢c » Derpy i (G1 I (H X K), A)xDery x (G2 1L (H x K), A)

Py

Derrx rc (G1 I (H X K), A) =Derprx x ((G1 LK) T (H x/K), A)

1
¢(G1L[K)H]>_<[K(H><K) ~ P,

Dergw x(G1 I K, A) X Dergx g (H X K, A)
————

0

(Ga 1L (H x K), A) =Detp i (G2 TH) |1 _(H x K), A)

Yo |~

A 2
~\®
Derpyx i (G1 11 K, =\ (G IH) I (H X K)

Derpyw i (Go I1 H, A) X Derpy x (H x K, A)
—_——
0

P
Derpyx i (G1 I1 K, A)XDerpg  ic (G 11 H, A) 4 Derpyy i (G 11 H, A)

where Py, P, P; and P, are the canonical projections. We can see that

DCI'HXK(Gl ]I_-I[ (H X K),A) X DeerK(GQ ]I_([ (H X K),A)
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and
DeerK(Gl 11 K, A) X DCI‘HXK(GQ I H, A)

as two direct products of the groups Dery .k (G II K, A) and Deryy (G 11
K, A). So, by the unicity of the direct product of two groups, ¥¢ = p¢¢ is an
isomorphism since so are ¢ and ¢¢.

Assume that the natural homomorphism
QZJG : DeerK(G, A) — DCI'HXK(Gl II K, A) X DCI'HXK(GQ I H, A)

(f — (flewuk, fle,um), [ € Dermxi(G,A)) is an isomorphism for all
[ZsG]]—modules A € C. Using Lemma 5.1,

¢G : DGI'HXK(G,A> — DGIHXK(Glg(HXK),A)XDCI'HXK(GQII_([(HXK),A)

is an isomorphism for all [[Z:G]]—modules A € C. Applying Theorem 9.3.1 (2
= 1) in [20] we have:

G=(GiI(H x K)) I ((H x K)ILGy).

HxK

Since the conditions in Theorem 1.2 are satisfied, the following equality holds:

(GVIL(H x K)) I ((Hx K)I1Gy) =Gy I Gs.

HxK [H,K]

Thus, G = G, [HHK] (5. And the Theorem is proven.
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