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Abstract

Let G = (V,E) be a simple connected graph. A subset S C V is called a
geodetic set if every vertex of GG lies on a shortest path between some pair of
vertices u,v € S. The geodetic number of GG, denoted by g(G), is the minimum
cardinality among all geodetic sets of G. A subset C' C (G) is called a vertex
cover if every edge of G is incident to at least one vertex in C. A vertex cover
is said to be minimum if |C| < |C’| for any other vertex cover C' C V(G) with
C'#£C.

In this paper, we introduce and study a new parameter, the vertex covering
transversal geodetic number of a graph. We explore this parameter across various
graph classes and analyze its structural and combinatorial properties in detail.
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1. INTRODUCTION

We consider a graph G = (V, F), as a finite undirected connected graph without any
loops or multiple edges throughout this research article. The number of vertices in
G is called the order of G, denoted by n. The distance d(u,v) between two vertices
w and v in a connected graph G is the length of a shortest w-v path in G [1, 3].



420 R.Vasanthi and M.Perumalsamy

For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest
from v. The minimum eccentricity among the vertices of G is called the radius and the
maximum eccentricity is called the diameter of G and are denoted by rad GG and diam GG
respectively [2, 3]. A vertex v is an extreme vertex of a graph G if the subgraph induced
by its neighbours is complete.

A subset C' C V(G) is called a vertex covering set if every edge of G is incident with at
least one vertex in C'. Also C' is said to be a minimum vertex covering set if |C| < |C’|
for any other vertex covering set C' C V(G) with C’ # C'. The minimum cardinality of
a vertex covering set is denoted by ag(G). A vertex covering set of minimum cardinality
is called as «-set.

Aset S C V(G) is called a geodetic set if every vertex of G lies on a shortest u-v path
for some u, v € S. The minimum cardinality among all geodetic sets is called geodetic
number and is denoted by g(G). A geodetic set of minimum cardinality is called as
g-set.

Geodetic sets and Geodetic number are introduced and analyzed in [4, 5]. Vertex
covering transversal domination number is introduced in [7] and Vertex covering
transversal domination number of regular graphs are analyzed in [8]. The maximum
independent sets (5y-sets) are the complements of the minimum vertex covering sets
(ap-sets) in a graph. In this paper, we introduce the parameter vertex covering
transversal geodetic number of a graph. We analyze it in some standard graphs and
also its characteristics in detail.

The following existing theorems are referred whenever needed.

Theorem 1.1. [4] Each extreme vertex of a graph G belongs to every geodetic set of G.
In particular, each end vertex of G belongs to every geodetic set of G.

Theorem 1.2. [4] For any cycle C,, (n > 3),

g(Cn):{g if n is odd

2 if n is even
Theorem 1.3. [4] For a connected graph G, g(G) = p if and only if G = K,,.

Theorem 1.4. [4] If W, ,, is a wheel graph with n > 3, then

4 if n=3
3

Q(WL"):{ Gy
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2. VERTEX COVERING TRANSVERSAL GEODETIC NUMBER

Definition 2.1. Let G=(V, E) be a simple connected graph with at least three vertices. A
geodetic set S C V(G) which intersects every minimum vertex covering set (-set) is
called a vertex covering transversal geodetic set. The minimum cardinality of a vertex

covering transversal geodetic set of G is called the vertex covering transversal geodetic
number of G and is denoted by g,.(G).

Example 2.2. Consider the graph G shown in Figure 1.

U3
U2

v1 V4

- \ vs

Figure 1: Graph G

For the graph G, S1 ={v1, ve, v3, vs}, So ={v1, vy, v3, U6}, Sz ={v1, va, vy, U5},
Sy ={v1, v3, vy, v6} and S5 ={vs, vy, vs, Vg} are the minimum vertex covering sets
(ap-sets).

Let S={vy, v3, vg}. Then S is a geodetic set that intersects Sy, So, S3, Sy and Ss in G.
Hence S is a vertex covering transversal geodetic set of minimum cardinality in G.

Therefore g, (G) = 3.

Remark 2.3. In example 2.2, the set S = {vy, vs, vg} is identified as the minimum
geodetic set for the graph G shown in Figure 1. Therefore the geodetic number of G
is g(G) = 3. Hence the geodetic number and the vertex covering transversal geodetic
number are equal in this graph.

Remark 2.4. It is also observed that in example 2.2, the set {vs, v4, U5} is another
vertex covering transversal geodetic set of minimum cardinality in G. It is noted that

{va, vy, v} is the complement set of S = {vy, vs, vg} in this graph.
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Example 2.5. Let G be the graph shown in Figure 2.

v3
v2

v1

Figure 2: Graph G

Here Sy ={vy, vg, v4}, So ={v1, v3, vs} and S5 ={vs, v3, v5} are the minimum vertex
covering sets(cg-sets) of G.
Then S={v1, vs, vs} is a geodetic set which intersects every ay-set of G.

So S is a vertex covering transversal geodetic set of minimum cardinality in G.
Therefore g,.(G) = 3.

Remark 2.6. It is noted that in example 2.5, the only minimum geodetic set for the
graph G shown in Figure 2 is the set S = {vs, vs} and thus g(G) = 2. Hence, the
geodetic number and the vertex covering transversal geodetic number are not equal for
this graph.

Example 2.7. Consider the graph G shown in Figure 3.

It is examined that S; ={v, vy, vy, Us, U7}, So ={v1, Vg, V4, Ve, U7}, Sz ={v1, U3, vy,
Ve, ?Jg}, S4 :{?}1, V3 Vs, Usg, Ug}, 55 :{UQ, V3, Us, Vg, US} Cll’ld SG :{?}2, V4, Us, U7, ’Ug}
are the aq-sets of G.

Let S={vs, vg}. Then S is a geodetic set that intersects every c-set in G.

So S is a vertex covering transversal geodetic set of minimum cardinality in G.

Therefore g, (G) = 2.
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V2 v3 V4
\ 4
v,
U1 5
@ o
v vr 6

Figure 3: Graph G

Remark 2.8. It is observed that in example 2.7, {vy, vs} is also a vertex covering
transversal geodetic set of minimum cardinality in G.

3. VERTEX COVERING TRANSVERSAL GEODETIC NUMBER OF
STANDARD GRAPHS

Example 3.1. Consider the Triangular prism graph G shown in Figure 4 which is
3-regular.

V4

U3

U5

—

Cal
2

Figure 4: Triangular prism graph G

Here Cl :{’Uly V2, Vg4, US}) 02 :{/Uly V2, Uy, /06}) 03 :{’Uly U3, V4, ’US}) 04 :{vly U3, Us,
ve}, Cs ={vg, v3, vy, v6} and Cs ={vs, v3, V5, v} are the ay-sets of G.
It is clear that S = {vy, vy, v4} is a geodetic set of minimum cardinality in G that also

intersects every ay-set of G mentioned above.
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So S is a vertex covering transversal geodetic set of minimum cardinality in G.
Therefore g,.(G) = 3.

Remark 3.2. It is observed that in Example 3.1, S¢ = {vs, vs, vg} is also a vertex
covering transversal geodetic set of minimum cardinality in G.

Similarly, the set {vy, vs, vs} and its complement are also vertex covering transversal
geodetic sets of minimum cardinality in G.

Likewise, the set {vy, vs, vg} and its complement are also vertex covering transversal

geodetic sets of minimum cardinality in G.

Example 3.3. Consider Peterson graph G shown in Figure 5 which is 3-regular.

U1

U5 v2

[

V4 v3
Figure 5: Peterson graph G

Cy :{UL Ug, U3, V2 Uy, U5}, Cy :{Ul, Uz, Us, V1 U3, 714}, Cs :{Ul, Uy, Us, V2 V3, U5},
Cy ={usg, ug, uy, v1 v3, v5} and Cs ={us, u4, us, v1 Vo, v4} are the ag-sets of G.

It is clear that S = {u, us, u4, Ve, Us} is a vertex covering transversal geodetic set of
minimum cardinality in G.

Therefore g,.(G) = 5.

Remark 3.4. It can be observed that the geodetic number of Peterson graph G is 4 as
{us, w4, vo, v5} is a geodetic set of minimum cardinality in G.

Theorem 3.5. For the complete graph K, on n vertices, g,.(K,) = n.
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Proof: Since K, is a complete graph on n vertices, rad(K,,) = diam(K,) = 1.
If a graph G is such that rad(G) = diam(G) = 1, then each vertex of G is joined to
every other vertex by an edge. So any shortest path between two vertices in G is of
length 1. Therefore the only geodetic set in G is the entire vertex set V.
Hence if V(K,,) ={v1, vs,... ,u,}, then this set itself is the unique geodetic set.
Also V — {v;},7 = 1,2,...,n are the ap-sets of K,,. Obviously, each of these ag-sets
are contained in V.
So V' is the unique vertex covering transversal geodetic set in /<,,.
Therefore g, (K,,) = n.

[ |

Result 3.6. If G is a star containing n vertices as shown in Figure 6, then
9uet(G) = n since the entire vertex set {u, vy, vg,... ,U,_1} IS a geodetic set which
intersects the unique ap-set {u} in G.

U4

v3

V2 °

U1

u

Figure 6: Graph G

Remark 3.7. It can be observed that the geodetic number of the star graph G mentioned

in Result 3.6 is n — 1 as {vy, vo,... ,u,_1} is the geodetic set of minimum cardinality in

G.

Remark 3.8. It can be noted that the graph G shown in Figure 6 is the complete
bipartite graph K, ,,_; which is also known as a star.

Theorem 3.9. If K,, ,, is a complete bipartite graph with m,n > 2, then

2 if m=2andn > 2
gvct(Km,n): 3 'Lf m=2,n:2andl’fm=3,n>3
4 if my,n>3
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Proof: K, , is a complete bipartite graph with the vertex set V partitioned into two
disjoint subsets V; = {uy, ug, ..., uy, } and Vo = {vy, va, ..., v, }. Each vertex in V; is
connected to every vertex in V5 by an edge.

Casel: m =2andn > 2

Then V; = {uy, us} and Vo = {vq, vo, ..., v, }

Since n > 2, V; (of size 2) is the unique minimum vertex covering set of K, .

Also V itself is a geodetic set of minimum cardinality.

Therefore, V; is the unique vertex covering transversal geodetic set of size 2 which is
also of minimum cardinality in K, ,,.

Hence gyt (Kom,n) = 2 in this case.

Case2: m=2n=2andm=3,n>3

For m = 2,n = 2, both V; and V; (each of size 2) are ay-sets of K, ,,.

Let S = {uy, ug, v1 }. Then S is a geodetic set that intersects both V; and V5.

So S'is a vertex covering transversal geodetic set of minimum cardinality in this case.
Therefore gyct(Kpmpn) = 3.

Form = 3,n > 3,let V} = {uy, us, us} and V4 = {vy, vg, ..., v, }

Since n > 3, V; (of size 3) is the unique oy-set of K, ,,.

Also V itself is a geodetic set of minimum cardinality.

Therefore, V7 is the unique vertex covering transversal geodetic set of minimum
cardinality in K, ,,.

Hence ¢yct(K;,,,) = 3 in this case.

Case3: m,n > 3

If m = n, then both V; and V5 are minimum vertex covering sets of size n in K, ,, .

If m # n, then the smaller of the two (either V; or 15) is the unique minimum vertex
covering set in K, .

Now define S = {uw;, uj, vg, v;} forany i,j = 1,2,...,m and k,l = 1,2,....,n with
1# jand k # 1.

Since S contains exactly 2 vertices from both V; and V5, it intersects both.

Obviously S is a geodetic set of minimum cardinality.

Thus S is a vertex covering transversal geodetic set of minimum cardinality 4 and so
Guet(Km.n) = 4 in this case. [ |

Remark 3.10. The geodetic number of a complete bipartite graph K, ; is
8(K, ) =min {4, r} where2 <r < s [6].

Theorem 3.11. If P, (n > 2) is a path on n vertices, then g,..(P,) = 3.

Proof: Let V(P,) = {v1, v, ..., Un}.
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If n is odd, the set C' = {vs, vy, ..., v,_1 } is the unique ay-set in the path graph P,.

If n is even, the sets S; = {vy, v3, ..., Uy_1}, So = {v2, V4, ..., U}, S3 = {va, V3, Vs,
V7ees Up—1} and Sy = {vg, vy, ..., Uy_2, U, 1} are the ap-sets in P,.

Define S = {v1, vo, v, }. Then S is a geodetic set in P, which intersects every «g-set
for odd as well as even n.

So S'is a vertex covering transversal geodetic set of minimum cardinality in P,.

gvct(Pn) = 3.

Theorem 3.12. If Cy,, 11 is an odd cycle withn > 1, then gyet(Capni1) = 3.

Proof: Let V = {1, 2, 3,..., 2n + 1} be the vertex set of the odd cycle Cy,, .

For an odd cycle with 2n 4+ 1 vertices, there are 2n + 1 ay-sets, each containing n + 1
vertices. Denote these a-sets by S;;7 = 1,2,...,2n + 1.

Now, define 7; = {i,i+ 1,7 +n+ 1},7 = 1,2, ..,n. Then each T; is a geodetic set of
minimum cardinality in Cy,, .

We claim that 7; intersects every ap-set S; of Cy,, 1 Where j = 1,2,...,2n + 1.
Suppose that 7; N .S; = ¢ for some j.

Then the vertices 4, i + 1, ¢ +n + 1 do not belong to .S;.

So S; contains n + 1 vertices from the remaining 2n — 2 vertices in C,,41. Since S; is
a minimum vertex covering set, every edge of C5,, 1 is incident with at least one vertex
in S;.

But the edge (7,7 + 1) in Cy,41 is not incident with any vertex in S; as both the vertices
¢ and 7 + 1 do not belong to \S;. This leads to a contradiction as S is a minimum vertex
covering set of Cy,, 1.

Hence, fori = 1,2,..,n, T;NS; # ¢ forall j = 1,2, ...,2n + 1. Therefore T} intersects
every ag-set S; of Coypyq .

Thus each T is a vertex covering transversal geodetic set of minimum cardinality in

CV2n-§-1-

gvct(CQnJrl) = 3. [ ]
Remark 3.13. Additionally, it is noted that T; = {j, j+n, (j+n-+1)(mod(2n+1))},
7 = 1,2,...,n 4+ 1 are also vertex covering transversal geodetic sets of minimum

cardinality in Cy,, 1.

Theorem 3.14. [f C5,, is an even cycle with n > 2, then

2 if n is odd

3 if n is even

gvct<02n) = {
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Proof: Let V(Cy,) = {1, 2, 3,..., 2n}.
Obviously, the sets 51 = {1, 3, 5,..., 2n — 1} and Sy = {2, 4, 6,..., 2n} are the only two
ap-sets of Cy,,.

Case 1: n is odd.

Define T; = {i, i+ n},i =1,2,...,n.

Then each 7; is a geodetic set of minimum cardinality in Cy,,.

Also if 7 € Sy, then i +n € Sy and vice versa.

This implies that each 7; intersects both .S; and S5.

Hence each T is a vertex covering transversal geodetic set of minimum cardinality in
Co,.

Therefore g,.;(Ca,) = 2 if n is odd.

Case 2: n is even.

Define W; = {i,i+ 1,i+n},i=1,2,...,n.

Then each W is a geodetic set in C'y,,.

If7 € S;,theni + 1 € S5 and vice versa.

Thus each W, intersects both S; and .S5.

Hence each W; is a vertex covering transversal geodetic set of minimum cardinality in
Co.

Therefore g,.¢(Ca,) = 3 if n is even. |

Remark 3.15. It is observed that the sets W; = {j, j +n, (j +n + 1)(mod(2n))},
7 = 1,2,....,n can also be identified as vertex covering transversal geodetic sets of

minimum cardinality in Cy,, when n is even.

Theorem 3.16. If W ,, is a wheel graph with n > 3, then

4 if n=3
gvct(Wl,n) = I_g-l Zf n s odd
5+1 if n is even

Proof: Let V (W,,) = {u, vy, 2,03, ...,0,}.

Case 1: n = 3.

Here S; = {vy, va, v3}, So = {v1, v, u}, S3 = {v1, v3, u} and Sy = {v9, v3, u} are the
ap- sets in Wy 5.

Then it is obvious that entire vertex {u, vy, vo, v3} set of W 5 is the unique geodetic set
which intersects every - set. And so it is a vertex covering transversal geodetic set of
minimum cardinality in W 5.

Therefore g,:(W1,) =4if n = 3.
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The wheel graph W, 3 is as shown in the following Figure 7.

U3

1 v

Figure 7: Wheel Graph W 3

Case 2: n is odd.

For odd n, the wheel W, with n + 1 vertices contains n «y-sets, each containing
"TH + 1 vertices including the centre vertex u in each set. Denote these ag-sets by
Si)=1,2,..,n.

Now define S = {v;, v, v5,...,v,}. Then S is a g-set in W7 ,,.

We claim that S intersects every og-set S; of W, ,, where j = 1,2, ..., n.

Suppose, for contradiction assume that SN.S; = ¢ for some j. Then all the ”T“ vertices
U1, U3, Us, ..., Uy, in S do not belong to S;. That is, S; C S¢ ={u, vy, vy, Vg, ..., Vp_1}. Of
ntl

2
+ 1 vertices.

course, S¢ contains ! vertices only. Therefore |S;| < which is a contradiction

2
since any oy-set of IV ,, contains exactly ”T“

5.9 NS; # ¢forall j.

If n = 7, the wheel graph W, ; is as shown in the following Figure 8.

Hence S itself is a vertex covering transversal geodetic set of minimum cardinality in
W1, when n is odd. So gye:(W1,,) = [5] in this case.

Case 2: n is even.

For even n, the wheel W, , with n + 1 vertices contains only 2 agp-sets namely,
S1 = {u,v1,v3,0s, ..., 0,1} and Sy = {u, v, v4, Vg, ..., Uy }.

When n = 8, the wheel graph W, g is as shown in the following Figure 9.

It is obvious that the sets {vq, v4, v, .., U, } and {vq,v3, vs, ..., v,_1} are the only two
g-sets in 11/, when n is even.
But these sets do not intersect .S and S and so they are not vertex covering transversal
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U1 V4

V6

Figure 8: Wheel Graph:W, 7

V1 U5

Figure 9: Wheel Graph:W, g

geodetic sets.
Hence define S = {vy, va, vy, Vg, ..., U }. Then S intersects both S; and Sy. So it is a
vertex covering transversal geodetic set of minimum cardinality.

Thus guet(W1,n) = § + 1 in this case.

Definition 3.17. Hypercube
For n > 2, the hypercube or n-dimensional cube (), is defined as the graph containing
2" vertices whose vertex set is the set of ordered n-tuples of 0’s and 1’s in which two

vertices are adjacent if their ordered n-tuples differ in exactly one position.[7]

Theorem 3.18. If Q,, is a hypercube on n vertices with n > 3, then
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2 if n is odd
3 if mn is even

Goct (Qn) =

Proof: The hypercube (),, contains 2" vertices and is n-regular. Each vertex in @), is
represented by an n-tuple consisting of 0’s and 1’s. Two vertices in (),, are adjacent if
and only if their corresponding n-tuples differ in exactly one position.

For any v € @), let v° denote its complement, obtained by replacing every 0 in v with
al,and every 1 with a 0.

The weight of a vertex is defined as the number of 1’s in its binary representation. There
are exactly 2"~! vertices of odd weight and 2"~! vertices of even weight. Furthermore,
each edge in (),, connects one vertex of even weight with one vertex of odd weight.
Therefore, the set of all vertices of even weight forms a vertex covering set, and so does
the set of all vertices of odd weight. As a result, (),, is bipartite with with bipartition
sets S ={vertices of even weight} and S, ={vertices of odd weight}.

Moreover, S; and S, are the only two «g-sets of ().

Case 1: n is odd.

Let S = {u,u®} where u is any vertex in Q,.

For odd n, if u € I, then u¢ € I, and vice-versa.

So S intersects both I; and .

Also, all vertices of ), lie on some geodesic between u and ¢, and so S = {u, u} is
a geodetic set.

Thus S is a vertex covering transversal geodetic set of minimum cardinality.

Hence g,:(Q,) = 2 if nis odd.

Case 2: n is even.

For any u € Sy, the complement of v viz. u¢ € S itself as n is even. Similarly, for any
u € Sy, it’s obvious that u¢ € S,.

So define S = {u,v,u‘} where u and v are any two adjacent vertices in @),, so that if
u € S1, then v € S, and vice versa.

It is clear that every vertex in (), lies on a shortest path between some pair of vertices in
S. So S is a geodetic set which intersects both S; and S;. Thus S is a vertex covering
transversal geodetic set of minimum cardinality in this case.

Hence ¢,.:(Q,) = 3 if nis even. [ |
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4. BOUNDS OF g,.. AND EXISTENCE THEOREM ON g,

Theorem 4.1. If G = (V, E) is a simple connected graph on n vertices, then vertex

covering transversal geodetic number of G satisfies the inequality 2 < g,(G) < n.

The following Theorem follows immediately from Theorem 1.1.

Theorem 4.2. Let G be a simple connected graph. Then every extreme vertex of G
belongs to every vertex covering transversal geodetic set of G. In particular, every end
vertex of G is contained in every vertex covering transversal geodetic set of G.

Theorem 4.3. For positive integers 1, d and k > 2 with r < d < 2r, there exists a
connected graph G with rad G = 1, diam G = d and ¢,..(G) = k.

Proof: Suppose that r = 1. Then there are two possiblities: d =1 ord = 2.

If d =1, let us take G = K. Then by Theorem 3.5, we have g,(G) = k.

If d =2, let us assume G = K ;_;. By Result 3.6, we have ¢,.(G) = k.

Now suppose that r > 2. Then there are two casesr=d and r < d.

Case 1: r=d.

For k =2, 3, G = Cy, or (s, exhibit the desired properties for any value of r > 2.
Now letr = 2.

Fork=4,let G = K,,,, withm,n > 3. Thenr=d =2 and ¢,+(G) =4 =k.

For k > 5, construct the graph G by starting with the 4-cycle C} :x u, y, v, v and adding
k — 2 new vertices z1, o, ..., Ty_2, €ach adjacent to both z & wu.

Then the ag-sets in G are S; ={z, u, v} and Sy = {z, u, y}.

Now S ={x1, xa, ..., Tx_2, u, v} is a geodetic set intersecting both S; and Ss. Hence S
forms a vertex covering transversal geodetic set of minimum cardinality in G.

So gvet(G) = k.

The graph G is shown in the following Figure 10 for k = 5.

It is noted that {x1, xo, ..., Tx_o, =, v}, {21, To, ..., T2, T, y} and {uy, ug, ..., Up_o,
y, v} can also be identified as vertex covering transversal geodetic sets of minimum
cardinality in G.

Now let r = 3. Construct the graph G as follows:
Begin with the 6-cycle Cj : z, u, y, v, z, w, x. Then perform the following steps:
(1)Add k& — 3 new vertices uy, us, ..., Ux_3, €ach joined to both x & y
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A

¥

v

Figure 10: Graph G withr=d =2 and ¢,4(G) =5

(2)Add k£ — 3 new vertices wy, ws, ..., W,_3 each joined to both to x & 2

(3)Add a final set of £ — 3 new vertices x1, o, ..., Tx_3 Where x; is joined to u; and w;
fort =1,2,....,k — 3.

The graph G thus obtained is shown in Figure 11 for k = 5.

Let S7 = {u, uy, ug, ..., ux_3}, So = {v} and S5 = {w, wy, w, ..., wx_3}

Figure 11: Graph G withr=d =3 and ¢,+(G) =5

Then I = S; U Sy U S5 is the unique (y-set in G.

Hence its complement S ={z, y, 2, 1, X3, ..., Tx_3} is the unique p-set in G.

It is obvious that T'={x, z2, ..., Tx_3, u, v, w} is a minimum geodetic set of G. Also
T intersects the unique ap-set S. So 7' is a vertex covering transversal geodetic set of
minimum cardinality.
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Hence g,:(G) = k.

Next, consider the case r = 4.

For each ¢ with 1 <i <k — 4, let F; = {u;1, u;2} and H; = {w;1, wiz } be two copies of
the path P;.

Construct the graph G as follows:

Start with the 8-cycle Cs:vy, va, ..., vg, v1. Then perform the following additions:
()Foreach? = 1,2, ...,k — 4, join u;; to vy and ;o to vy

(2)Foreach v = 1,2, ...,k — 4, join w;; to vg and w;s to vg

(3)Then add k£ — 4 new vertices x1, X2, ..., Tx_4 and join z; with u;; & w;; for each
1=1,2,....k — 4.

The graph G thus obtained is shown in Figure 12 forr =4 & k = 6.

Figure 12: Graph G withr=d =4 and ¢,+(G) =6

It is obvious that I = {uis, U2, ..., Ug—a2 } U {wiz, waa, .., W2 } U
{1, 29, ..., x4} U {v1, v3, U5, v7} is the unique [y-set of G.

Then its complement S ={vy, V4, Vg, Vs, U11, U1y weey U(—a)1> Wils WL, ooy W(k—a)1} 1S
the unique ap-set in G.

Define T' = {vy, vy, vg, vs} U {21, xa, ..., Tx_4}. Then it is a geodetic set intersecting
the unique ap-set S.

Therefore 1" is a vertex covering transversal geodetic set of minimum cardinality k& and

S0 guet(G) = k.

When r > 5, there are two sub cases.

Subcase 1.1: k =2p + 1 > 3 is odd.

For each 2 with 1 <7 <2p — 2,

let 21, 22, ..., Zi(2r—5) form a path isomorphic to P, _s.
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We construct a graph G starting with the even cycle Cy,: v1, V9, ..., V9., v1 and joining
2i1 10 Vg, & 2j(2r—5) tO v foreach i =1,2,...,2p — 2.

Also I = {21, 2ig, ..., Zizr—5)31 <4 <2p—2} U {1, vs, ..., vyr_1 } is the unique fy-set
of G. Then its complement S ={2;2, Zia, ..., Zi(2r—6);1 <7< 2p —2 } U {v2, vy, ..o, Var }
is the unique «ay-set of G.

Define T = {Zi(LgJH);(l <i<2p—2)}U{vy, v41, va.}. Then T is a geodetic set
of minimum cardinality that intersects unique «-set S and thus is a vertex covering
transversal geodetic set. Therefore, g,.(G) =2p—2+3=2p+ 1 = k.

The graph G is shown in Figure 13 forr=d=6 & k=7.

U1

Figure 13: Graph G withr=d =6 and ¢,.+(G) =7

Subcase 1.2: k = 2p + 2 >4 is even.

Now, construct the graph G by extending the graph from Subcase 1.1 (for k=2p+1) by
adding a new vertex u and joining it to the vertices v, and vy;..

Now, I = {2, zi3, ..., Ziar—5);1 <4 < 2p =1} U {u, v1, vs, ..., vyr_1} is the unique
Bo-set of G. Then its complement S ={2;2, Zia, ..., Zi2r—5)31 <1< 2p — 1} U {vg, vy,
..., Ug,. } 18 the unique ag-set of G.

Define T = {Zi(LgJH);(l <i<2p— 1)} U{vs, vpy41, Vo, }. Then T is a geodetic set of
minimum cardinality that intersects S and thus is a vertex covering transversal geodetic
set. Therefore, g,.(G) =2p—1+3=2p+2 = k.

The graph G is shown in the Figure 14 forr=d =5 and k = 6.

Case 2: r < d.
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V10

Figure 14: Graph G withr=d =5 and ¢,+(G) =6

Let Cs, be a cycle with vertices vy, v, ..., v, Where the edges form a closed loop:
Cyr =(v1, V2, ...y V2p, V1).

Let P; .1 be a path with vertices: wug, ui,us, ..., uq_, where the edges connect
consecutive vertices: Py_,11 = Ug, U1,U2, ..y Ug_r-

Then identify vertex v; from the cycle with vertex u from the path, effectively merging
the two graphs at this common vertex.

Finally, create the graph G by adding k£ — 3 new vertices wy, ws, ..., Wi_3 and connecting
each of them to vertex u,_,_1 in the path.
Now rad. G =r and diam.G = d.

The graph G thus obtained is as shown in Figure 15.

Ud—r—1 Ud—r
Ur+1 Cor

Ur

Wg—3
w2

Figure 15: Graph G with rad. G =r, diam. G =d and ¢,,+(G) =k

Let S = {ug_, w1, Wy, ..., wi_3} be a set consisting of k& — 2 end vertices of the graph
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G. By Theorem 1.1, it follows that S is necessarily a subset of every geodetic set in G.
Moreover, S is a subset of every maximum independent set in G.

So S C [ for every [3y-set I.

This shows that S is not contained in any «q-set of G.

However, in Cy,, the sets S; ={v1, v3, Us,...,09,_1 } and Sy ={va, V4, Vg,...,09, } are the
only two ay-sets. So these sets are necessarily the subsets of any ay-set in G.

Consider the set S = S U {v,, v,41}. This set forms a geodetic set.

Also v, € Sy and v, € Sy ifrisodd and v, € S5 and v,,; € Sy if ris even. Thus
S’ intersects every agp-set of G, making it a vertex covering transversal geodetic set of
minimum cardinality.

Hence g,.:(G) = k.
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