
Global Journal of Pure and Applied Mathematics.
ISSN 0973-1768 Volume 21, Number 3 (2025), pp. 419-437
©Research India Publications
http://www.ripublication.com/gjpam.htm

Vertex Covering Transversal Geodetic Number of a
Graph

R.Vasanthi1, M.Perumalsamy2

1Department of Mathematics, Alagappa Chettiar Government College of Engineering
and Technology, Karaikudi, India. E-mail id:vasanthi2014accet@gmail.com

2Department of Mathematics, Government College of Technology, Coimbatore, India.
E-mail id:pervas2014@gmail.com

Abstract

Let G = (V,E) be a simple connected graph. A subset S ⊆ V is called a
geodetic set if every vertex of G lies on a shortest path between some pair of
vertices u, v ∈ S. The geodetic number of G, denoted by g(G), is the minimum
cardinality among all geodetic sets of G. A subset C ⊆ (G) is called a vertex
cover if every edge of G is incident to at least one vertex in C. A vertex cover
is said to be minimum if |C| < |C ′| for any other vertex cover C ′ ⊆ V (G) with
C ′ ̸= C.

In this paper, we introduce and study a new parameter, the vertex covering
transversal geodetic number of a graph. We explore this parameter across various
graph classes and analyze its structural and combinatorial properties in detail.
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1. INTRODUCTION

We consider a graph G = (V,E), as a finite undirected connected graph without any
loops or multiple edges throughout this research article. The number of vertices in
G is called the order of G, denoted by n. The distance d(u, v) between two vertices
u and v in a connected graph G is the length of a shortest u-v path in G [1, 3].
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For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest
from v. The minimum eccentricity among the vertices of G is called the radius and the
maximum eccentricity is called the diameter of G and are denoted by rad G and diam G

respectively [2, 3]. A vertex v is an extreme vertex of a graph G if the subgraph induced
by its neighbours is complete.
A subset C ⊆ V (G) is called a vertex covering set if every edge of G is incident with at
least one vertex in C. Also C is said to be a minimum vertex covering set if |C| < |C ′|
for any other vertex covering set C ′ ⊆ V (G) with C ′ ̸= C. The minimum cardinality of
a vertex covering set is denoted by α0(G). A vertex covering set of minimum cardinality
is called as α0-set.
A set S ⊆ V (G) is called a geodetic set if every vertex of G lies on a shortest u-v path
for some u, v ∈ S. The minimum cardinality among all geodetic sets is called geodetic
number and is denoted by g(G). A geodetic set of minimum cardinality is called as
g-set.
Geodetic sets and Geodetic number are introduced and analyzed in [4, 5]. Vertex
covering transversal domination number is introduced in [7] and Vertex covering
transversal domination number of regular graphs are analyzed in [8]. The maximum
independent sets (β0-sets) are the complements of the minimum vertex covering sets
(α0-sets) in a graph. In this paper, we introduce the parameter vertex covering
transversal geodetic number of a graph. We analyze it in some standard graphs and
also its characteristics in detail.
The following existing theorems are referred whenever needed.

Theorem 1.1. [4] Each extreme vertex of a graph G belongs to every geodetic set of G.
In particular, each end vertex of G belongs to every geodetic set of G.

Theorem 1.2. [4] For any cycle Cn (n ≥ 3),

g(Cn) =

{
3 if n is odd

2 if n is even

Theorem 1.3. [4] For a connected graph G, g(G) = p if and only if G = Kp.

Theorem 1.4. [4] If W1,n is a wheel graph with n ≥ 3, then

g(W1,n) =

{
4 if n = 3

⌈n
2
⌉ if n ≥ 4
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2. VERTEX COVERING TRANSVERSAL GEODETIC NUMBER

Definition 2.1. Let G=(V, E) be a simple connected graph with at least three vertices. A
geodetic set S ⊆ V (G) which intersects every minimum vertex covering set (α0-set) is
called a vertex covering transversal geodetic set. The minimum cardinality of a vertex
covering transversal geodetic set of G is called the vertex covering transversal geodetic
number of G and is denoted by gvct(G).

Example 2.2. Consider the graph G shown in Figure 1.

v1

v2

v4

v3

v5v6

Figure 1: Graph G

For the graph G, S1 ={v1, v2, v3, v5}, S2 ={v1, v2, v3, v6}, S3 ={v1, v2, v4, v5},
S4 ={v1, v3, v4, v6} and S5 ={v2, v4, v5, v6} are the minimum vertex covering sets
(α0-sets).
Let S={v1, v3, v6}. Then S is a geodetic set that intersects S1, S2, S3, S4 and S5 in G.
Hence S is a vertex covering transversal geodetic set of minimum cardinality in G.

Therefore gvct(G) = 3.

Remark 2.3. In example 2.2, the set S = {v1, v3, v6} is identified as the minimum
geodetic set for the graph G shown in Figure 1. Therefore the geodetic number of G
is g(G) = 3. Hence the geodetic number and the vertex covering transversal geodetic
number are equal in this graph.

Remark 2.4. It is also observed that in example 2.2, the set {v2, v4, v5} is another
vertex covering transversal geodetic set of minimum cardinality in G. It is noted that
{v2, v4, v5} is the complement set of S = {v1, v3, v6} in this graph.
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Example 2.5. Let G be the graph shown in Figure 2.

v1

v2
v3

v4
v5

Figure 2: Graph G

Here S1 ={v1, v2, v4}, S2 ={v1, v3, v5} and S3 ={v2, v3, v5} are the minimum vertex
covering sets(α0-sets) of G.
Then S={v1, v3, v5} is a geodetic set which intersects every α0-set of G.
So S is a vertex covering transversal geodetic set of minimum cardinality in G.
Therefore gvct(G) = 3.

Remark 2.6. It is noted that in example 2.5, the only minimum geodetic set for the
graph G shown in Figure 2 is the set S = {v3, v5} and thus g(G) = 2. Hence, the
geodetic number and the vertex covering transversal geodetic number are not equal for
this graph.

Example 2.7. Consider the graph G shown in Figure 3.

It is examined that S1 ={v1, v2, v4, v5, v7}, S2 ={v1, v2, v4, v6, v7}, S3 ={v1, v3, v4,
v6, v8}, S4 ={v1, v3 v5, v6, v8}, S5 ={v2, v3, v5, v6, v8} and S6 ={v2, v4, v5, v7, v8}
are the α0-sets of G.
Let S={v2, v6}. Then S is a geodetic set that intersects every α0-set in G.
So S is a vertex covering transversal geodetic set of minimum cardinality in G.

Therefore gvct(G) = 2.
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Figure 3: Graph G

Remark 2.8. It is observed that in example 2.7, {v4, v8} is also a vertex covering
transversal geodetic set of minimum cardinality in G.

3. VERTEX COVERING TRANSVERSAL GEODETIC NUMBER OF
STANDARD GRAPHS

Example 3.1. Consider the Triangular prism graph G shown in Figure 4 which is
3-regular.

v1 v2

v3

v4

v5v6

Figure 4: Triangular prism graph G

Here C1 ={v1, v2, v4, v5}, C2 ={v1, v2, v4, v6}, C3 ={v1, v3, v4, v5}, C4 ={v1, v3, v5,
v6}, C5 ={v2, v3, v4, v6} and C6 ={v2, v3, v5, v6} are the α0-sets of G.
It is clear that S = {v1, v2, v4} is a geodetic set of minimum cardinality in G that also
intersects every α0-set of G mentioned above.
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So S is a vertex covering transversal geodetic set of minimum cardinality in G.
Therefore gvct(G) = 3.

Remark 3.2. It is observed that in Example 3.1, Sc = {v3, v5, v6} is also a vertex
covering transversal geodetic set of minimum cardinality in G.
Similarly, the set {v1, v3, v5} and its complement are also vertex covering transversal
geodetic sets of minimum cardinality in G.
Likewise, the set {v2, v3, v6} and its complement are also vertex covering transversal
geodetic sets of minimum cardinality in G.

Example 3.3. Consider Peterson graph G shown in Figure 5 which is 3-regular.

v4 v3

u5

v5

u1

v1

u4 u3

u2

v2

Figure 5: Peterson graph G

C1 ={u1, u2, u3, v2 v4, v5}, C2 ={u1, u2, u5, v1 v3, v4}, C3 ={u1, u4, u5, v2 v3, v5},
C4 ={u2, u3, u4, v1 v3, v5} and C5 ={u3, u4, u5, v1 v2, v4} are the α0-sets of G.
It is clear that S = {u1, u3, u4, v2, v5} is a vertex covering transversal geodetic set of
minimum cardinality in G.
Therefore gvct(G) = 5.

Remark 3.4. It can be observed that the geodetic number of Peterson graph G is 4 as
{u3, u4, v2, v5} is a geodetic set of minimum cardinality in G.

Theorem 3.5. For the complete graph Kn on n vertices, gvct(Kn) = n.
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Proof: Since Kn is a complete graph on n vertices, rad(Kn) = diam(Kn) = 1.
If a graph G is such that rad(G) = diam(G) = 1, then each vertex of G is joined to
every other vertex by an edge. So any shortest path between two vertices in G is of
length 1. Therefore the only geodetic set in G is the entire vertex set V .
Hence if V (Kn) ={v1, v2,... ,vn}, then this set itself is the unique geodetic set.
Also V − {vi}, i = 1, 2, ..., n are the α0-sets of Kn. Obviously, each of these α0-sets
are contained in V .
So V is the unique vertex covering transversal geodetic set in Kn.
Therefore gvct(Kn) = n.

■

Result 3.6. If G is a star containing n vertices as shown in Figure 6, then
gvct(G) = n since the entire vertex set {u, v1, v2,... ,vn−1} is a geodetic set which
intersects the unique α0-set {u} in G.

v1

v2

v3

v4

vn−1

u

Figure 6: Graph G

Remark 3.7. It can be observed that the geodetic number of the star graph G mentioned
in Result 3.6 is n− 1 as {v1, v2,... ,vn−1} is the geodetic set of minimum cardinality in
G.

Remark 3.8. It can be noted that the graph G shown in Figure 6 is the complete
bipartite graph K1,n−1 which is also known as a star.

Theorem 3.9. If Km,n is a complete bipartite graph with m,n ≥ 2 , then

gvct(Km,n) =


2 if m = 2 and n > 2

3 if m = 2, n = 2 and if m = 3 , n > 3

4 if m, n ≥ 3
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Proof: Km,n is a complete bipartite graph with the vertex set V partitioned into two
disjoint subsets V1 = {u1, u2, ..., um} and V2 = {v1, v2, ..., vn}. Each vertex in V1 is
connected to every vertex in V2 by an edge.
Case 1: m = 2 and n > 2

Then V1 = {u1, u2} and V2 = {v1, v2, ..., vn}
Since n > 2, V1 (of size 2) is the unique minimum vertex covering set of Km,n.
Also V1 itself is a geodetic set of minimum cardinality.
Therefore, V1 is the unique vertex covering transversal geodetic set of size 2 which is
also of minimum cardinality in Km,n.
Hence gvct(Km,n) = 2 in this case.
Case 2: m = 2, n = 2 and m = 3, n > 3

For m = 2, n = 2, both V1 and V2 (each of size 2) are α0-sets of Km,n.
Let S = {u1, u2, v1}. Then S is a geodetic set that intersects both V1 and V2.
So S is a vertex covering transversal geodetic set of minimum cardinality in this case.
Therefore gvct(Km,n) = 3.

For m = 3, n > 3, let V1 = {u1, u2, u3} and V2 = {v1, v2, ..., vn}
Since n > 3, V1 (of size 3) is the unique α0-set of Km,n.
Also V1 itself is a geodetic set of minimum cardinality.
Therefore, V1 is the unique vertex covering transversal geodetic set of minimum
cardinality in Km,n.
Hence gvct(Km,n) = 3 in this case.
Case 3: m,n ≥ 3

If m = n, then both V1 and V2 are minimum vertex covering sets of size n in Km,n .
If m ̸= n, then the smaller of the two (either V1 or V2) is the unique minimum vertex
covering set in Km,n.
Now define S = {ui, uj , vk, vl} for any i, j = 1, 2, ...,m and k, l = 1, 2, ..., n with
i ̸= j and k ̸= l.
Since S contains exactly 2 vertices from both V1 and V2, it intersects both.
Obviously S is a geodetic set of minimum cardinality.
Thus S is a vertex covering transversal geodetic set of minimum cardinality 4 and so
gvct(Km,n) = 4 in this case. ■

Remark 3.10. The geodetic number of a complete bipartite graph Kr,s is
g(Kr,s) = min {4, r} where 2 ≤ r ≤ s [6].

Theorem 3.11. If Pn (n ≥ 2) is a path on n vertices, then gvct(Pn) = 3.

Proof: Let V (Pn) = {v1, v2, ..., vn}.
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If n is odd, the set C = {v2, v4, ..., vn−1} is the unique α0-set in the path graph Pn.
If n is even, the sets S1 = {v1, v3, ..., vn−1}, S2 = {v2, v4, ..., vn}, S3 = {v2, v3, v5,
v7..., vn−1} and S4 = {v2, v4, ..., vn−2, vn−1} are the α0-sets in Pn.
Define S = {v1, v2, vn}. Then S is a geodetic set in Pn which intersects every α0-set
for odd as well as even n.
So S is a vertex covering transversal geodetic set of minimum cardinality in Pn.
∴ gvct(Pn) = 3.

■

Theorem 3.12. If C2n+1 is an odd cycle with n ≥ 1, then gvct(C2n+1) = 3.

Proof: Let V = {1, 2, 3,..., 2n+ 1} be the vertex set of the odd cycle C2n+1.
For an odd cycle with 2n + 1 vertices, there are 2n + 1 α0-sets, each containing n + 1

vertices. Denote these α0-sets by Sj; j = 1, 2, ..., 2n+ 1.
Now, define Ti = {i, i + 1, i + n + 1}, i = 1, 2, .., n. Then each Ti is a geodetic set of
minimum cardinality in C2n+1.
We claim that Ti intersects every α0-set Sj of C2n+1 where j = 1, 2, ..., 2n+ 1.
Suppose that Ti ∩ Sj = ϕ for some j.
Then the vertices i, i+ 1, i+ n+ 1 do not belong to Sj .
So Sj contains n+ 1 vertices from the remaining 2n− 2 vertices in C2n+1. Since Sj is
a minimum vertex covering set, every edge of C2n+1 is incident with at least one vertex
in Sj .
But the edge (i, i+1) in C2n+1 is not incident with any vertex in Sj as both the vertices
i and i+1 do not belong to Sj . This leads to a contradiction as Sj is a minimum vertex
covering set of C2n+1.
Hence, for i = 1, 2, .., n, Ti ∩Sj ̸= ϕ for all j = 1, 2, ..., 2n+1. Therefore Ti intersects
every α0-set Sj of C2n+1 .
Thus each Ti is a vertex covering transversal geodetic set of minimum cardinality in
C2n+1.
∴ gvct(C2n+1) = 3. ■

Remark 3.13. Additionally, it is noted that Tj = {j, j+n, (j+n+1)(mod(2n+1))},
j = 1, 2, ..., n + 1 are also vertex covering transversal geodetic sets of minimum
cardinality in C2n+1.

Theorem 3.14. If C2n is an even cycle with n ≥ 2, then

gvct(C2n) =

{
2 if n is odd

3 if n is even
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Proof: Let V (C2n) = {1, 2, 3,..., 2n}.
Obviously, the sets S1 = {1, 3, 5,..., 2n− 1} and S2 = {2, 4, 6,..., 2n} are the only two
α0-sets of C2n.

Case 1: n is odd.
Define Ti = {i, i+ n}, i = 1, 2, ..., n.
Then each Ti is a geodetic set of minimum cardinality in C2n.
Also if i ∈ S1, then i+ n ∈ S2 and vice versa.
This implies that each Ti intersects both S1 and S2.
Hence each Ti is a vertex covering transversal geodetic set of minimum cardinality in
C2n.
Therefore gvct(C2n) = 2 if n is odd.
Case 2: n is even.
Define Wi = {i, i+ 1, i+ n}, i = 1, 2, ..., n.
Then each Wi is a geodetic set in C2n.
If i ∈ S1, then i+ 1 ∈ S2 and vice versa.
Thus each Wi intersects both S1 and S2.
Hence each Wi is a vertex covering transversal geodetic set of minimum cardinality in
C2n.
Therefore gvct(C2n) = 3 if n is even. ■

Remark 3.15. It is observed that the sets Wj = {j, j + n, (j + n + 1)(mod(2n))},
j = 1, 2, ..., n can also be identified as vertex covering transversal geodetic sets of
minimum cardinality in C2n when n is even.

Theorem 3.16. If W1,n is a wheel graph with n ≥ 3, then

gvct(W1,n) =


4 if n = 3

⌈n
2
⌉ if n is odd

n
2
+ 1 if n is even

Proof: Let V (W1,n) = {u, v1, v2, v3, ..., vn}.
Case 1: n = 3.
Here S1 = {v1, v2, v3}, S2 = {v1, v2, u}, S3 = {v1, v3, u} and S4 = {v2, v3, u} are the
α0- sets in W1,3.
Then it is obvious that entire vertex {u, v1, v2, v3} set of W1,3 is the unique geodetic set
which intersects every α0- set. And so it is a vertex covering transversal geodetic set of
minimum cardinality in W1,3.
Therefore gvct(W1,n) = 4 if n = 3.



Vertex Covering Transversal Geodetic Number of a Graph 429

The wheel graph W1,3 is as shown in the following Figure 7.

v1

u

v3

v2

Figure 7: Wheel Graph W1,3

Case 2: n is odd.
For odd n, the wheel W1,n with n + 1 vertices contains n α0-sets, each containing
n+1
2

+ 1 vertices including the centre vertex u in each set. Denote these α0-sets by
Sj; j = 1, 2, ..., n.
Now define S = {v1, v3, v5, ..., vn}. Then S is a g-set in W1,n.
We claim that S intersects every α0-set Sj of W1,n where j = 1, 2, ..., n.
Suppose, for contradiction assume that S∩Sj = ϕ for some j. Then all the n+1

2
vertices

v1, v3, v5, ..., vn in S do not belong to Sj . That is, Sj ⊆ Sc ={u, v2, v4, v6, ..., vn−1}. Of
course, Sc contains n+1

2
vertices only. Therefore |Sj| ≤ n+1

2
which is a contradiction

since any α0-set of W1,n contains exactly n+1
2

+ 1 vertices.
∴ S ∩ Sj ̸= ϕ for all j.

If n = 7, the wheel graph W1,7 is as shown in the following Figure 8.

Hence S itself is a vertex covering transversal geodetic set of minimum cardinality in
W1,n when n is odd. So gvct(W1,n) = ⌈n

2
⌉ in this case.

Case 2: n is even.
For even n, the wheel W1,n with n + 1 vertices contains only 2 α0-sets namely,
S1 = {u, v1, v3, v5, ..., vn−1} and S2 = {u, v2, v4, v6, ..., vn}.
When n = 8, the wheel graph W1,8 is as shown in the following Figure 9.

It is obvious that the sets {v2, v4, v6, ..., vn} and {v1, v3, v5, ..., vn−1} are the only two
g-sets in W1,n when n is even.
But these sets do not intersect S1 and S2 and so they are not vertex covering transversal
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Figure 8: Wheel Graph:W1,7
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Figure 9: Wheel Graph:W1,8

geodetic sets.
Hence define S = {v1, v2, v4, v6, ..., vn}. Then S intersects both S1 and S2. So it is a
vertex covering transversal geodetic set of minimum cardinality.
Thus gvct(W1,n) =

n
2
+ 1 in this case.

■

Definition 3.17. Hypercube
For n ≥ 2, the hypercube or n-dimensional cube Qn is defined as the graph containing
2n vertices whose vertex set is the set of ordered n-tuples of 0’s and 1’s in which two
vertices are adjacent if their ordered n-tuples differ in exactly one position.[7]

Theorem 3.18. If Qn is a hypercube on n vertices with n ≥ 3, then



Vertex Covering Transversal Geodetic Number of a Graph 431

gvct(Qn) =

{
2 if n is odd

3 if n is even

Proof: The hypercube Qn contains 2n vertices and is n-regular. Each vertex in Qn is
represented by an n-tuple consisting of 0’s and 1’s. Two vertices in Qn are adjacent if
and only if their corresponding n-tuples differ in exactly one position.
For any v ∈ Qn, let vc denote its complement, obtained by replacing every 0 in v with
a 1, and every 1 with a 0.
The weight of a vertex is defined as the number of 1’s in its binary representation. There
are exactly 2n−1 vertices of odd weight and 2n−1 vertices of even weight. Furthermore,
each edge in Qn connects one vertex of even weight with one vertex of odd weight.
Therefore, the set of all vertices of even weight forms a vertex covering set, and so does
the set of all vertices of odd weight. As a result, Qn is bipartite with with bipartition
sets S1 ={vertices of even weight} and S2 ={vertices of odd weight}.
Moreover, S1 and S2 are the only two α0-sets of Qn.

Case 1: n is odd.
Let S = {u, uc} where u is any vertex in Qn.
For odd n, if u ∈ I1, then uc ∈ I2 and vice-versa.
So S intersects both I1 and I2.
Also, all vertices of Qn lie on some geodesic between u and uc, and so S = {u, uc} is
a geodetic set.
Thus S is a vertex covering transversal geodetic set of minimum cardinality.
Hence gvct(Qn) = 2 if n is odd.

Case 2: n is even.
For any u ∈ S1, the complement of u viz. uc ∈ S1 itself as n is even. Similarly, for any
u ∈ S2, it’s obvious that uc ∈ S2.
So define S = {u, v, uc} where u and v are any two adjacent vertices in Qn so that if
u ∈ S1, then v ∈ S2 and vice versa.
It is clear that every vertex in Qn lies on a shortest path between some pair of vertices in
S. So S is a geodetic set which intersects both S1 and S2. Thus S is a vertex covering
transversal geodetic set of minimum cardinality in this case.
Hence gvct(Qn) = 3 if n is even. ■
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4. BOUNDS OF gvct AND EXISTENCE THEOREM ON gvct

Theorem 4.1. If G = (V,E) is a simple connected graph on n vertices, then vertex
covering transversal geodetic number of G satisfies the inequality 2 ≤ gvct(G) ≤ n.

The following Theorem follows immediately from Theorem 1.1.

Theorem 4.2. Let G be a simple connected graph. Then every extreme vertex of G
belongs to every vertex covering transversal geodetic set of G. In particular, every end
vertex of G is contained in every vertex covering transversal geodetic set of G.

Theorem 4.3. For positive integers r, d and k ≥ 2 with r ≤ d ≤ 2r, there exists a
connected graph G with rad G = r, diam G = d and gvct(G) = k.

Proof: Suppose that r = 1. Then there are two possiblities: d = 1 or d = 2.
If d = 1, let us take G = Kk. Then by Theorem 3.5, we have gvct(G) = k.
If d = 2, let us assume G = K1,k−1. By Result 3.6, we have gvct(G) = k.
Now suppose that r ≥ 2. Then there are two cases r = d and r < d.
Case 1: r = d.
For k = 2, 3, G = C2r or C2r+1 exhibit the desired properties for any value of r ≥ 2.
Now let r = 2.
For k = 4, let G = Km,n with m,n ≥ 3. Then r = d = 2 and gvct(G) = 4 = k.
For k ≥ 5, construct the graph G by starting with the 4-cycle C4 :x u, y, v, x and adding
k − 2 new vertices x1, x2, ..., xk−2, each adjacent to both x & u.
Then the α0-sets in G are S1 ={x, u, v} and S2 = {x, u, y}.
Now S ={x1, x2, ..., xk−2, u, v} is a geodetic set intersecting both S1 and S2. Hence S

forms a vertex covering transversal geodetic set of minimum cardinality in G.
So gvct(G) = k.

The graph G is shown in the following Figure 10 for k = 5.

It is noted that {x1, x2, ..., xk−2, x, v}, {x1, x2, ..., xk−2, x, y} and {u1, u2, ..., uk−2,
y, v} can also be identified as vertex covering transversal geodetic sets of minimum
cardinality in G.

Now let r = 3. Construct the graph G as follows:
Begin with the 6-cycle C6 : x, u, y, v, z, w, x. Then perform the following steps:
(1)Add k − 3 new vertices u1, u2, ..., uk−3, each joined to both x & y
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v y

x

x1

x2

x3

u

Figure 10: Graph G with r = d = 2 and gvct(G) = 5

(2)Add k − 3 new vertices w1, w2, ..., wk−3 each joined to both to x & z

(3)Add a final set of k − 3 new vertices x1, x2, ..., xk−3 where xi is joined to ui and wi

for i = 1, 2, ..., k − 3.
The graph G thus obtained is shown in Figure 11 for k = 5.
Let S1 = {u, u1, u2, ..., uk−3}, S2 = {v} and S3 = {w, w1, w2, ..., wk−3}

z
v

y

w1

w2

x

x1

x2

w
u u1

u2

Figure 11: Graph G with r = d = 3 and gvct(G) = 5

Then I = S1 ∪ S2 ∪ S3 is the unique β0-set in G.
Hence its complement S ={x, y, z, x1, x2, ..., xk−3} is the unique α0-set in G.
It is obvious that T={x1, x2, ..., xk−3, u, v, w} is a minimum geodetic set of G. Also
T intersects the unique α0-set S. So T is a vertex covering transversal geodetic set of
minimum cardinality.
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Hence gvct(G) = k.
Next, consider the case r = 4.
For each i with 1 ≤ i ≤ k − 4, let Fi = {ui1, ui2} and Hi = {wi1, wi2} be two copies of
the path P2.
Construct the graph G as follows:
Start with the 8-cycle C8:v1, v2, ..., v8, v1. Then perform the following additions:
(1)For each i = 1, 2, ..., k − 4, join ui1 to v2 and ui2 to v4
(2)For each i = 1, 2, ..., k − 4, join wi1 to v6 and wi2 to v8
(3)Then add k − 4 new vertices x1, x2, ..., xk−4 and join xi with ui1 & wi1 for each
i = 1, 2, ..., k − 4.
The graph G thus obtained is shown in Figure 12 for r = 4 & k = 6.
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Figure 12: Graph G with r = d = 4 and gvct(G) = 6

It is obvious that I = {u12, u22, ..., u(k−4)2 } ∪ {w12, w22, ..., w(k−4)2 } ∪
{x1, x2, ..., xk−4} ∪ {v1, v3, v5, v7} is the unique β0-set of G.
Then its complement S ={v2, v4, v6, v8, u11, u21, ..., u(k−4)1, w11, w21, ..., w(k−4)1} is
the unique α0-set in G.
Define T = {v2, v4, v6, v8} ∪ {x1, x2, ..., xk−4}. Then it is a geodetic set intersecting
the unique α0-set S.
Therefore T is a vertex covering transversal geodetic set of minimum cardinality k and
so gvct(G) = k.

When r ≥ 5, there are two sub cases.
Subcase 1.1: k = 2p+ 1 ≥ 3 is odd.
For each i with 1 ≤ i ≤ 2p− 2,
let zi1, zi2, ..., zi(2r−5) form a path isomorphic to P2r−5.
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We construct a graph G starting with the even cycle C2r: v1, v2, ..., v2r, v1 and joining
zi1 to v2r & zi(2r−5) to v2 for each i = 1, 2, ..., 2p− 2.
Also I = {zi1, zi3, ..., zi(2r−5);1 ≤ i ≤ 2p− 2 } ∪ {v1, v3, ..., v2r−1} is the unique β0-set
of G. Then its complement S ={zi2, zi4, ..., zi(2r−6);1 ≤ i ≤ 2p− 2 } ∪ {v2, v4, ..., v2r}
is the unique α0-set of G.
Define T = {zi(⌊ r

2
⌋+1);(1 ≤ i ≤ 2p − 2)} ∪ {v2, vr+1, v2r}. Then T is a geodetic set

of minimum cardinality that intersects unique α0-set S and thus is a vertex covering
transversal geodetic set. Therefore, gvct(G) = 2p− 2 + 3 = 2p+ 1 = k.

The graph G is shown in Figure 13 for r = d = 6 & k = 7.
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Figure 13: Graph G with r = d = 6 and gvct(G) = 7

Subcase 1.2: k = 2p+ 2 ≥4 is even.
Now, construct the graph G by extending the graph from Subcase 1.1 (for k=2p+1) by
adding a new vertex u and joining it to the vertices v2 and v2r.
Now, I = {zi1, zi3, ..., zi(2r−5);1 ≤ i ≤ 2p − 1 } ∪ {u, v1, v3, ..., v2r−1} is the unique
β0-set of G. Then its complement S ={zi2, zi4, ..., zi(2r−5);1 ≤ i ≤ 2p − 1 } ∪ {v2, v4,
..., v2r} is the unique α0-set of G.
Define T = {zi(⌊ r

2
⌋+1);(1 ≤ i ≤ 2p − 1)} ∪ {v2, vr+1, v2r}. Then T is a geodetic set of

minimum cardinality that intersects S and thus is a vertex covering transversal geodetic
set. Therefore, gvct(G) = 2p− 1 + 3 = 2p+ 2 = k.
The graph G is shown in the Figure 14 for r = d = 5 and k = 6.

Case 2: r < d.
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Figure 14: Graph G with r = d = 5 and gvct(G) = 6

Let C2r be a cycle with vertices v1, v2, ..., v2r, where the edges form a closed loop:
C2r =(v1, v2, ..., v2r, v1).
Let Pd−r+1 be a path with vertices: u0, u1,u2, ..., ud−r where the edges connect
consecutive vertices: Pd−r+1 = u0, u1,u2, ..., ud−r.
Then identify vertex v1 from the cycle with vertex u0 from the path, effectively merging
the two graphs at this common vertex.

Finally, create the graph G by adding k−3 new vertices w1, w2, ..., wk−3 and connecting
each of them to vertex ud−r−1 in the path.
Now rad. G = r and diam.G = d.

The graph G thus obtained is as shown in Figure 15.

vr+1

vr+2

vr

v1 = u0

v2r

v2

u1

ud−r−1 ud−r

w1

w2
wk−3

C2r

Figure 15: Graph G with rad. G =r, diam. G = d and gvct(G) = k

Let S = {ud−r, w1, w2, ..., wk−3} be a set consisting of k − 2 end vertices of the graph
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G. By Theorem 1.1, it follows that S is necessarily a subset of every geodetic set in G.
Moreover, S is a subset of every maximum independent set in G.
So S ⊆ I for every β0-set I .
This shows that S is not contained in any α0-set of G.
However, in C2r, the sets S1 ={v1, v3, v5,...,v2r−1} and S2 ={v2, v4, v6,...,v2r} are the
only two α0-sets. So these sets are necessarily the subsets of any α0-set in G.
Consider the set S ′ = S ∪ {vr, vr+1}. This set forms a geodetic set.
Also vr ∈ S1 and vr+1 ∈ S2 if r is odd and vr ∈ S2 and vr+1 ∈ S1 if r is even. Thus
S ′ intersects every α0-set of G, making it a vertex covering transversal geodetic set of
minimum cardinality.
Hence gvct(G) = k.

■
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