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Abstract

The present paper deals with the distribution of ratio Z = X/Y when X and Y
are independently distributed as three parameter exponential distribution
involving Hypergeometric function and two parameter gamma random
variables respectively. The p.d.f. ,c.d.f. , moments and cumulants are also
derived for the distribution
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Introduction

Joshi & Modi [5] introduced exponentiated exponential distribution with three
parameters and its unique form with Hypergeometric function was given by Khan [6].
The ratio Z = X/Y has vast application in real life and it is extensively studied by
many researchers like Joshi &Joshi [4],Marsaglina [7] ,Nadarajah[8] . In the present
paper we derive distribution of X/Y when X and Y are independent random variables
having exponentiated exponential distribution involving Hypergeometric distribution.
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and two parameter gamma function with p.d.f.given as-
fy(y)=(am" /Tm)e ™ y"™?, (1.2)

for
m>0,a>0, y>0.

P.d.f.and c.d.f. Ratioof X & Y.
Theorem 2.1: If X and Y are distributed according to equations (1.1) and (1.2)
respectively then c.d.f. and p.d.f. of Z=X/Y can be given as -
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where; x> 0,a >0,4, >0,4>0,0< g <1.
Proof: Lets X/Y = Z then its c.d.f. can be defined as

F,(z)= P(és Z)=P(X <YZ)

= [Fe (y) £, (y)dy

— m T < ﬂl) IB =Ayz(l+n) —ay ,,m-1
= (@"/Tm) ! FC 0!,31 2 5) nzz;‘ PRCEE] (e 1)e®y™dy.

where F, (yz) is obtained by using (Eq.(1.2) page 252, khan[6] )and finally by using
well known formula for gamma function

0

I'n
J'e‘axx”‘ldx =—;n>0
! a

~ c (8), p"(@™ -[Az@+n)+a]")
RO F(- aﬂmﬂ Z (n+1)' [2z2(1+n) +a]"

and differentiation above equation w.r.t z we can easily obtained

f(z)= Aaf i (), pra”(-m)
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Hazard Rate Function
f(x)
1-F(x)

Aofs & (1-a),(8), p"a"(-m)
JF(a. By p) S ( ) (! [z@+n)+a]™
- aff i 1-a),(8), g"@™ -[z@+n)+a]")
JFEapirBE (), (n+1>' [Az(L+n)+a]"

The hazard rate function defined by h (x) = and for the variate z it is given

as

(3.1)

hZ (z) =

Further

h dafp (-m),F.Q—-a,BiriB) 3.2
(O) a[l_zF(_auBl;J’;ﬂ )] ( )

and h(e0) = 0, the hazard rate function ranges from h(0) to zero.
The Survival or Reliability function for c.d.f. of equation (1.2) is given as:
S(2)=1-F ,(2)
ap & (1-a),(B), p@" -1+ ) +a]")
IRafinf)is ()t [Az+n)+a]”

S@==1-— % N ST ¢ TATNTA ) 6.9

Moments
The rth moments for random variable Z=X/Y whose p.d.f. is given by equation (2.2)
IS -
; Aaf > "a™(-m
T RCairih) G m(n)!

j [Az(L+n)+a]™z"d

0

_ i a),(B.), B (-m)
1-, R (- aﬁmﬁ = 7n(n)-
a.I’
Taen B(m—r,r+1) (4.1)
Where
B (p, ) = %

On taking r=1, 2, 3, 4. (m >r), we can easily obtained first, second, third &fourth
moments about origin.
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Relation between Cumulants and Moments
Since cumulants is defined as -

2 3 r

K (1) = log, M (t) = k;t + K, —— &k 4ok S (5.1)
2! 3! r!

The coefficients k,k,,........ k. are called the first, second..... rth cumulants.

Further relation between moments and cumulants is given as.

=Y "C L u' K (5.2)

By using (4.1), we have
Lr+) & @-a) (), p™
2

A 7h(n)  (n+2)™
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s o eyt
3 i a),(B), B"(-m)
j=1 i l_ F( a, /81 7 ﬂ n=0 7/ n(n)!
a'l Bm—r+ j,r - ]+ DK, (5.3)

A (@+n) It

On specializing j=1, 2...r, we can get the values ofk,,k,,......k,.

Particular Cases
Case I: Setting g, =y ,a=1, A =1, the p.d.f. & c.d.f. of z is given by

op (L-a), " (-m), .
f (2) = a5 nZ? " [zL+n)+1]™" (6.1)
af 2 (l-a),p" 1 [z@+n)+1]"
F(2)= 1-(1-p)* & Z (n+D)! ° [z@+n)+1]" } ©.2)
Case Il: Setting #=1,n=0and « =-1 in above equations we get
f(z)= —m (6.3)

(Z +1) m+1
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1

F (z)=1- 6.4
,(2) 211" (6.4)

This is known result given by Joshi and Joshi [4, eq. (5.3) & (5.4) page 73]

Case I11: Setting m=1in (6.3) & (6.4)

f (z)= ! (6.5)

‘ (z+1)° '
z

,(2) (11 (6.6)

Which is also a known result given by Joshi and Joshi [4, eq. (5.5) & (5.6) page
74]
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