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Abstract 
 

Here we develop a finite difference method to obtain approximatesolutions of 
the generalized nonlinear Schrödingerequation (GNLS). The numerical 
method is derived through thesemidiscretization and application of the 
quadratic splineapproximation. Neumann boundary conditions are considered 
in thediscretized problem and second order difference approximation 
isemployed for obtaining the boundary values. Both continuous anddiscrete 
energy conservations are discussed and the stability ofthe present method is 
studied. Our investigation reveals that thepresent method is an efficient and 
reliable way for computing thesolitonian solutions of the GNLS equation. Two 
numerical examplesare provided to demonstrate the performance of our 
method. 
 
Keywords: Generalized nonlinearSchrödinger equation; quadratic spline; 
solitary waves; stability analysis. 

 
 
Introduction 
It is well known that Schrödinger type equationsare commonly used in modeling the 
physical processes of thecomputations of nonlinear waves, pulses, and beams. In 
thisarticle we study an efficient numerical method for solving thegeneralized 
nonlinear Schrödinger(GNLS) equation 

2( ) 0, , 0,t xxi u u f u u x t+ + = < ∞ ≥  (1.1 )a  
 
along with the initial condition 

( ,0) ( ) ( ),u x x i x xϕ ψ= + < ∞  (1.1 )b  
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where 1−=i  and )(sf  is sufficiently smooth with 0)0( =f . The functions )(xφ  
and )(xψ  are real valuedand are sufficiently smooth in the domain considered. The 
mostfrequently used functions f  include rssf =)(  with 0>r , sesf −−=1)( , 

sssf += 1/)( , and )1ln()( ssf += , see[1,4,5,7,8]. Equation )1.1( a  arises from 
plasma physics andquantum theory. It reduces to the nonlinearSchrödinger equation, 
denoted by NLS, as ssf =)( [6,13]. The nonlinear term in )1.1( a  helps in 
preventingdispersion of the wave. It balances the forces of dispersion andnonlinearity 
in solutions. These balanced solutions representdifferent kinds of interesting solitary 
waves including the singlesolitary wave and collision of two or more solitons [12]. It 
hasbeen shown that equation )1.1( a  possesses, in general, aninfinite set of 
conservation laws [9,10]. The conservation intime of the energy can be expressed 
through the −2L norm 

2

2
( , ) , 0,u u x t dx c t

∞

−∞
= = >∫  

(1.2 )a  

 
or the weighted −2L norm 

2

2,
( ) ( , ) , 0,u x u x t dx c t

γ
γ

∞

−∞
= = >∫  

(1.2 )b
 

 
where )(xγ  is positive and c  is a constant. Conditions )2.1( a  or )2.1( b provides an 

−2L boundness of thesolution and play a critical part in the dynamics of the 
solitarywave models. The initially unstable Fourier modes of the wave drawenergy 
from the stable modes, but because of conservation, theprocess must come to an end. 
In fact, it is possible for theenergy to return to its initial distribution among the modes. 
Thisis referred to as the so-called Fermi-Pasta-Ulam recurrence[1,9,13]. Several 
numerical methods have been developed and usedfor solving the nonlinear and the 
generalized nonlinearSchrödinger equations, see for example[3,6,9-13] and the 
references therein. More commonly used finitedifference methods are the five 
classical algorithms usingsemidiscretization, moving grid adaptation, and Crank-
Nicolsontype approximations [6,9,12]. In [5], several importantdifferent schemes are 
tested, analyzed, and compared. The use ofquartic spline approximation has been 
introduced in [11] wherean efficient and reliable method was developed for 
computinglong-time solitary wave solutions for problem (1.1). Also, in[3], a cubic 
spline approximation has been used to develop anumerical scheme for solving the 
GNLS problem (1.1). 

  In thispaper, we use a quadratic spline approximation for the spatialderivative to 
develop a numerical method for solving problem(1.1). The properties of the discrete 
conservation law of thepresent numerical method will be discussed under the −2l

normwhich is consistent with the original −2L norm used forcontinuous problems. 
Two numerical examples will be tested in thisregard. 
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The numerical Method 
We consider developing a numerical method for solving the GNLS problem (1.1). For 
the purpose of computation we may consider, as an approximation to the original 
problem, the following initial and boundary value problem 

 

 

where a  and b  are sufficiently large. Let bxatxqitxptxu ≤≤+= ),,(),(),(  and
0>t , where ),( txp  and ),( txq  are real functions. Also let 

Tqpv ],[=  then problem
)1.2(  can be written as 

 

 
where 

vAvfvg )()( 2= with 
0 1

.
1 0

A
⎡ ⎤

= ⎢ ⎥−⎣ ⎦  
(2.3)

 
 
 Now, we discretize the space interval ],[ ba  using the equally spaced points 

,,,1,,1,0, 10 bxaxNjhjax Nj ==+=+= + and ),1/()( +−= Nabh where 
N is a positive integer. The spatial derivative in )2.2( a  is approximated by the 
quadratic spline collocation relation [2] 

)4.2(,8),(),(6),( 2
211 jjnjxxjxxjxx ev

h
txvtxvtxv +=++ +− δ

 

where ,2 11
2

+− +−= jjjjn vvvvδ and ),(
24

2

tv
h

e jxxxxj η−= for Nj ,,2,1=  is the 

error associated with this approximation and jη  lies inside a neighborhood of jx . 
From equations )2.2( a  and )4.2(  it follows that 

)5.2(,0,0)()8(8)8( 22
2

2 >=++++ twgwA
h

w jxjx
j

tn δδδ

 
where ),( txww jj =  are approximations of ),( txv j  for Nj ,,2,1= . For the 
Neumann boundary conditions, weuse the central difference approximation )2.2( c  to 
obtain 
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where 0>t . Applying )6.2(  for approximating the boundary values from )2.2( c  and 
)5.2(  we have the second order nonlinear scheme 

)7,2(,)0(

)7.2(,0,08
2

bGw

atwBRPQB
h

wP t

=

>=⎟
⎠
⎞

⎜
⎝
⎛ ++

 
for approximating the initial and boundary value problem )1.2(  where the block-
tridiagonal matrices [ ]ijPP = , [ ]ijQQ = , and [ ]ijRR =  are defined by 

,,,2,1,

,1,,3,2,,2
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1,1,,
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where I  is the 22×  identity matrix and )( 22

jjj qpf +=σ , )( jj xpp = , and
)( jj xqq = for Nj ,,2,1= . The matrix B  is the NN 22 ×  block-diagonal matrix 

[ ]AAA  where A  is defined in equation )3.2( , and the −N2 dimensional vectors
[ ]TNwwww ,,, 21= , with [ ]Tjjj qpw ,=  and [ ]TNgggG ,,, 21=  with

[ ]Tjjjg ψφ ,=  where )( jj xφφ = , and )( jj xψψ = . It can be shown that for the 
conservation laws we have [11] 

)8,2(,0,,
2

>== tcuuu

 
and 

)9,2(,0,,
,2

>=Γ=
Γ

tcuuu

where u  is a −N2 dimensional vectors and Γ  is a NN 22 ×  nonsingular and positive 
matrix.  
 
Theorem 2.1 
The semidiscretized problem )7,2(  is conservative. 
 
Proof 
Let w  be the solution of problem )7,2( . Since P  is symmetric and A  is skew 
symmetric we have 

 
.0,1 =− wwQBP  

 
 Similarly, we find that 
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where 1D  and 2D  are, respectively, the matrices 
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 Observing that 

 
,0,0,,8,

2
1 1

2
2
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which indicate that the semidiscretized problem )7,2(  is conservative. □ 
 Now, to solve the system )7,2( , we consider the second order implicit midpoint 
rule for the time integration where we have the difference formula 
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)10.2(,
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where )(kw  is an approximation to ),(tw  and the time step ,0,1 ≥−=Δ + kttt kkk

10 <Δ< kt . 
 
Theorem 2.2 
The difference scheme )10.2(  is conservative. 
 
Proof 
Similar to the proof of Theorem 1.2 , we first observe that 

 
( ) ( ) ,0, )()1()()1(1 =++ ++− kkkk wwwwQBP  

 
and 
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 Now, from )10.2( a  it follows that 
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 Therefore, the scheme is conservative.  □ 
 
Theorem 2.3 
The difference formula )10.2( a is unconditionally stable. 
 
Proof 
Since a  and b  can be arbitrary large, and using )5.2( , we study the system derived 
from )10.2( a : 

( )( ) ( ) ( ) ( )
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Where ( ) ( ) .22 wAqpfwg +=  Following conventional linearization process, we 
assume that 
( ) ( ) )12.2(.wAfwg η≈

 
 
 From )11.2(  and )12.2(  we obtain the following linearized systems of equations 

( )( ) ( ) ( )
)13.2(.,2,1,0,,,2,1

,08)(148 )()1(22
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 Now, let ϕγ khjik

j Mew =)( be thetest function, where ℜ∈γ , 2ℜ∈ϕ  and
22×ℜ∈M  is the amplifying matrix. Substituting thetest function into )13.2(  we obtain 

( ) ( ) )14.2(,0=−−+ AIMAI βαβα
 
where 

( )( ) ( ) )15.2(.)(
2

1cos,cos3
4
1 2

2 ⎟⎟
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⎞
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⎛
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h
h

h
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h k

 
 Since A  is skew symmetric matrix, then the matrix AI βα +  is nonsingular and 
shares the same set ofeigenvalues with the matrix AI βα − , namely, ii βαβα −+ , . 
Thus, the maximal module ofthe eigenvalues of M  is one. Hence, the linearized 
scheme isnon-dissipative and the scheme )10.2(  is stable. □ 
 
 
Numerical results 
In this section, we use the implicit finite difference method developed in section 2  to 
solve the following problems: 
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Example 3.1 
The single soliton problem 

)1.3(,0,,02 ≥∞<=++ txuuuui xxt

 

 

 
 Where 1=== γβα . 
 
Example 3.2 
The collision of two solitons problem. Here we consider the nonlinear Schrödinger 
equation 1.3  along with the initial condition 
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 Where 5.0=α , 11 == γβ , 1.02 =γ , and the initial location of the slower solitary 
wave is 253 =γ .  
 We have used our present method with a variety of h , ktΔ , a , and b  values, 
however, for the sake of comparisonwith the numerical results given in ]11,3[  we give 
here thenumerical results for example 1.3  when 30=a  and 70=b andthose for 
example 2.3  as 20=a and 80=b . Also, we choose 5.0=h  and 25.0=Δ=Δ ttk  for 
both examples.Let n  denote the time level index tntn Δ=  be thecorresponding time 
and nu  be the numerical solution at the timelevel nt . According to the exact solution 
for problem )2.3()1.3( −  we have 2.82842702

2
≈u 0≥t .It is observed that the total 

energy of the numerical solution ispreserved very well during the computations. The 
energy profile ofthe numerical solution nu for problem )2.3()1.3( − are givenin Table 
1. From this table it is clear that the error 2

)( nn utu −  increases linearly with time. 
Also, as timeincreases the computed solution for a solitary wave shifts to theright with 
unchanged pattern. Three-dimensional plots of thenumerical solutions along with the 
associated contour lines havebeen drawn. The real part np  and the imaginary part nq

ofthe solution nu  along with their projections are plotted inFigures 1(a) and 1(b), 
respectively. In Figure 1(c)we plot the modules and projections of nu  at each grid 
point.  
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Figure 1: The computed functions (a) ),( txpn , (b) ),( txqn  and (c)

),(),( 22 txqtxp nn +  along with their projections for example 1.3  
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Table 1: The energy conservation of numerical solution of )2.3()1.3( − . 
 

n   nt  
2nu   n 

nt  
2nu   n   nt  

2nu  

1  0.25  2.82842742  180 45.0 2.82842795 330 82.5  2.82842788 
10  2.5  2.82842742  200 50.0 2.82842826 340 85.0  2.82842789 
30  7.5  2.82842742  220 55.0 2.82842821 350 87.5  2.82842795 
80  20.0  2.82842787  240 60.0 2.82842805 360 90.0  2.82842789 
100  25.0  2.82842798  260 65.0 2.82842816 370 92.5  2.82842793 
120  30.0  2.82842794  280 70.0 2.82842875 380 95.0  2.82842807 
140  35.0  2.82842803  300 75.0 2.82842848 390 97.5  2.82842783 
160  37.5  2.82842797  320 80.0 2.82842801 400 100.0 2.82842752 

 
 
 
 For the second example, we use our method to solve thedifferential equation )1.3(  
along with the initial condition )3.3( . The total energy for the exact solution of this 
problemis 4.75682829

2
≈u , 0≥t . As for the firstproblem, we observe that the 

total energy of the computed solutionis preserved and the error increases linearly with 
time. Also, astime increases both solitary waves move to the right and afterinteraction 
each solitary wave maintains its original shape andspeed. In Table 2, we list the 
energy profile of the numericalsolution nu  for this problem. The real and imaginary 
parts ofthe numerical solution along with their projections are plotted inFigures 2(a) 
and 2(b), respectively. In Figure 2(c) the energyfunction 22

nn qp +  and the contour 
lines are alsoplotted for this case.  

 
 
 

Table 2: The energy conservation of numerical solution of )3.3()1.3( − . 
 

n   nt  
2nu   n   nt  

2nu   n   nt  
2nu  

2  0.5  4.75682827  70  17.5 4.75682833 140 35.0 4.75683406 
10  2.5  4.75682829  80  20.0 4.75682836 150 37.5 4.75683670 
20  5.0  4.75682827  90  22.5 4.75682832 160 40.0 4.75683754 
30  7.5  4.75682839  100 25.0 4.75682950 170 42.5 4.75683587 
40  10.0  4.75682838  110 27.5 4.75683008 180 45.0 4.75683338 
50  12.5  4.75682831  120 30.0 4.75683320 190 47.5 4.75683333 
60  15.0  4.75682833  130 32.5 4.75683252 200 50.0 4.75683469 
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Figure 2: The computed functions (a) ),( txpn , (b) ),( txqn  and (c)

),(),( 22 txqtxp nn +  along with their projections for example 2.3 . 
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Conclusion 
A quadratic spline approximation for the spatial derivative hasbeen successfully used 
to construct a new numerical method forsolving the generalized nonlinear 
Schrödingerequation. The stability of the method has been studied and thenumerical 
experiments indicate that the −2l norm of solitarywave solutions remain constant for 
long time evaluation. 
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