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Abstract

A system of third-order nonlinear neutral delay differential equations
[rlz O, ) (1) - R O)x (- Tl))l],]l =Rt X (t-0), - X% {t-0,)),

[rzz (O, (O (%, (1) — P (1) x, (t _Tz))']']' =Rt x{t-0), - x({t-0,)),
where 7, >0,0,,0,,+,0, 20,1 (t) € C([t;, +),R"), B (t) € C([t,, +), R),
F e C([t,,+0)xR™,R),i, j €{L, 2} is studied in this paper, and some sufficient

conditions for existence of bounded solutions for this system are established
by Krasnoselkii and Schauder fixed point theorems, and expressed through
several theorems according to the range of the value of the functions

P.(t), P,(t) and their combination.
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Introduction and preliminaries

Recently, the interest in the study of differential equations and the system of

differential equations has been increasing (see [1,3,6-14] and references cited therein).
We consider the following nonlinear differential system

[rlz O, O, ) - RO)x (t- Tl))l],]l =Rt X (t—0), - %{t-0,)),
[rzz (O, () (% (1) — P, ()%, (t _Tz))']'], =Rt xt-0y), - x(t-0,)),
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which may be rewritten as

(R OIL OO -ROX-z)T] (11)
=R X (t—07), % i(t—0,), . % (t—0,)), t 21,
where 7, >0,0,,0,,::+,0, 20,1, (t) € C([t), ), R"), P, (t) € C([t,, +0), R) ,

F e C([t,, +o0)x R™, R) and i, j e {1, 2}.

By applying Krasnoselkii and Schauder fixed point theorems, we obtained a few
sufficient conditions for the existence of a bounded solution of the system (1.1).

Lemma 1.1(Krasnoselskii Fixed Point Theorem)[2] Let Q be a bounded closed
convex subset of a Banach space X and Q,S:Q — X satisfy Qx+ Sy € Q for each

X,y e Q. If Q isa contraction mapping and S is a completely continuous mapping,
then the equation Qx -+ Sx = x has at least one solution in Q.

Lemma 1.2(Schauder Fixed Point Theorem)[2] Let Q@ be a closed, convex and
nonempty subset of a Banach space X and S:Q — Q be a continuous mapping such
that SQ is a relatively compact subset of X . Then S has at least one fixed point in
Q. That is there exists an x € Q such that Sx =x.

Existence of bounded solutions
In this section, a few sufficient conditions of the existence of bounded solutions for
system (1.1) will be given.

Theorem 2.1 Let functions h;,q;,r;(t) € C([ty, +0),R") and R(t) € C([ty, +),R)
satisfy that
P(t)=1, (2.1)

[F(tu, Uy, U ) = RV, Ve v ) Sh ) maxd]u; —v; 1< j<m},  (2.2)
|Fi(t’ul’u2""’um)|3Qi(t), (2.3)

J. s RS TIRS (,)1f,maxda(s), h(s)kdsds, ds, < o0, (2.4)
where R;(t) = J': % and i, j €{1,2}. Then the system (1.1) has a bounded solution.
0 rij S

Proof According to a known result (Theorem 3.2.6 in [4]), (2.4) is equivalent to the
condition



Bounded Solutions for a System of Third-Order 247

> 17 IR EI IR, () max{o, (5).h (9))dsds,ds, < oo, i{L 2}, (25)

By (2.5), a sufficiently large T >t, can be chosen such that

> I IR GRS )] max{a () h (s)dsds,ds <1, ief 2}, (26)

Let C([t,,+~),R?) be the set of all continuous vector functions
X(t) = (% (), x,(t)) with the norm |X||=sup{| X (t)],| X,(t) [} <+. Obviously,
t>t,

C([t,, +»),R?) is a Banach space. Now, define a bounded, closed and convex subset
Q of C([t,,+xo),R*) by:
Q={x=(x,%,) € C([t,, +),R?):1< x (t) <3,i e{L, 2},t > t.}.

Let mapping S =(S,,S,): Q — C([t,, +), R*) be defined by

243 7 R/ R
(S;x)(t) = F(s, X (S—0,),-++, X (s — 0, ))dsds, dis;, t>T (2.7)
(S;x)(T), t, <t<T

forall xe Q, where i e{l,2}.

It is claimed that S is a self mapping on Q. For all x=(x,x,) e Q,ie{l,2} and
t>T, by (2.3) and (2.6), we have

(Sx)(t) = 2- kZ;,J.nkTil Ry (s)) |L IR (s,) |J.S2 g; (s)dsds,ds, >1,

S0O<2+3 [ RGO TR, (5,)1f, i(s)dsds,ds, <3.

Therefore, SQc Q.
Now we show that S is continuous. Let x, =(X,, X, )€Q and X, (t) —> x(t) as

k — +o0. Since Q is closed, x=(X,,X,) € Q. For t>T, (2.2) guarantees that
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| (Six)(®) = (Sx)(1) |
< Z o IR TR G, TR (8% (= 00). %4 (= 07)
- F (S, X (s—0,),"*, X ;(s—0,,)) | dsds,ds,
< Z Jo IR OIIRS I
ri (S)max{lx; ;, (s—0;) =X, ;(s—0;):1< j<m|dsds,ds,
<[, - x||ki [ RS IR (61 h(s)dsds,ds,
This above inequality together with (2.6) implies that S is continuous.

Next, we prove SQ is relatively compact. It is sufficient to show that the family
of functions {Sx:xeQ} is uniformly bounded and equicontinuous on [t;,+c0).

SQ < Q ensures the uniform boundedness. For the equicontinuity, it is only need to
prove that, for any given & >0, [t,,+o) can be decomposed into finite subintervals in

such a way that on each subinterval all functions of the family have change of
amplitude less than ¢. By (2.6), forany & >0, take T'>T large enough so that

O et , +o0 , +o0 &
) [ RS TR (51, ay(s)dsds,ds, < (2.8)

Then, forany xeQ and t, >t >T', (2.8) ensures that
| (S)(t) - (S0®) |
<O RS GRS ()], IR (8%, (50300, % 4 (5= 7,)) lsds,ds,
k=1 "2 2
2 TR TR )T IF (8% (5= 0), o %, (- 0,)) fsdls s,
k=1 * 1T 2
<O IR TTR, () 1], ai(9)dsds,ds,
k=1 i 2
2 [ IR IR, () (s)dsds,ds,
k=1 i 2
<—+—=¢.
2 2

Forany xeQ and T <t <t, <T', there exists § >0 such that if 0<t, -t <5,
then
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| (S)(&) = (5;X)(t) |

ke ' +o0 , 4o
< ;Lﬁkri IRy (8))] Ll IR, (s,) |LZ IF(s,%,(S—0,),+, %, (s—0,,)) [dsds,ds,

L rt+ky , oo , .
< ;j , |Riy (5) ] L IR, (s,) |LZ q; (s)dsds,ds, < ¢.

t+kz;

Forany xeQ and t, <t <t, <T, itis easy to get that
| (Six)(t,) - (S))() =0 <e.

Consequently, {S;x: x € (2} is uniformly bounded and equicontinuous on [t,,+x) .

Therefore SQ is relatively compact. Applying Lemma 1.2, we could find a
Xy = (Xo1, X5p) € Q such that Sx, = X,. That is

2D MEHCRCHC

Xi(t) =1 F($,X5,(8=0,), ", % 5(S—0,))dsds,ds;,  t=>T (2.9)
Xi (T), t, <t<T

where i e{l,2}. For t>T,
X O =X t=7) == R/, R, ()
F (S, % 5 (S—01), . Xy 5 (S— 0y, ))dsds, ds;.
Then,
(X (1) =X (t—7,))" = Ri1’ (t)J.:OO Ri2, (SZ)I: F (S, % 3:(5—01), -+ % 5 (S—0,,))dsds,,

which we can rewrite it as
ril(t)(XOi (t) — Xoi (t - Ti))l = J.:w Riz’ (Sz)J.:O Fi (5’ Xo 3 (5 - ‘71)’ X (5 —On ))desz-

Finding the derivative,
[r, ()% (1) =X (t=7))T = _Rizl (t)fOO F (8% 3i(5—01), " X 55(S—0,,))ds.

Proceeding as before, we get

[riz (t)[ril (t)(XOi t)- Xoi (t- 7 ))']I]I =F (t, Xo 3 (t- 0'1)’  Xp s (t- On ).

Therefore, x,(t) is a bounded solution of the system (1.1). This completes the
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proof.

Theorem 2.2 Let functions h;,q;,r;(t) € C([t,, +0),R") and R(t) € C([ty, +),R)
satisfy that (2.2), (2.3) and

1P (1) |s§<%, (2.10)

j:’m {| ()I g (t), h ()3t < +o0, (2.11)

where i, j €{1,2}. Then the system (1.1) has a bounded solution.
Proof: In virtue of (2.11), a sufficiently large T >t, can be chosen such that

et a() _
L neet sis s <5, (212)

where ie{l,2}. Let C([t,,+),R*) be the set like that in the proof of Theorem 2.1
and define a bounded, closed and convex subset Q of C([t,,+x), R?) as following:
Q={x=(x,%,) € C([t,,+),R?):0< x (t) <L, i e{L,2},t > t,}.

Let mappings Q=(Q,,Q,) and S=(S,,S,):Q — C([t,, +»),R?) be defined by

QX)) = ;”’“)X“ woteT (2.13)
@X)(T), t<t<T
+o0 w E (8% (s—0,),-+, %, (s—0,))
(SX)(t) = 1L ()0 (S,) ot 12T o 14
(Sx)(T), t,<t<T

forall xe Q, where i e{l,2}.
() It is claimed that Qx+Sy e Q forall x,yeQ,ie. QQU AQcC Q.
In fact, for each x,y e Q and t>T , it follows from (2.3), (2.10) and (2.12) that

QX))+ (S y)(®)
>_—Px(t T,)— I IMJ-M RS, Ya(8 il(asg (Sy)s,(s du ))%dsds ds,

1 o q()
2— —j J' Lz|r(s) (S)lsdszdslzo
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and

q,(s)

sds,ds, <1.
HCYACH]

QIO+ENO<5R+[ ]

Thus, 0<(QXx)(1)+(S;y)t) <Lie{l 2} for t>t,.
(i) It is declared that Q is a contraction mapping on Q.
In reality, forany x,yeQ and t>T , it is easy to derive that

[ (Q)(®) +(QY)®) I B (1) |X(t -7,)-y(t _Ti)| < Ei”X_ y” < %”X_ y”,

which implies that

1
[Qx=Qy]<Zx-vl.

That is, Q is a contraction mapping on Q.

(iii) It can be asserted that S is completely continuous, just like what we did in
Theorem 2.1. Hence, we omit it.
It follows from Lemma 1.1 that there is x, € such that Qx,+SxX,=X,.

Obviously, X,(t) is a bounded solution of the system (1.1). This completes the proof.

Theorem 2.3 Let functions h;,q;,r;(t) € C([ty, +0),R") and R(t) € C([ty, +),R)
satisfy that (2.2), (2.3) and

R =1, (2.15)
POKP <3, (2.16)
J. s RS ()], TR, ()], max{a(s),hy(s)}dsds, s, <40, (2.17)
I max{“ﬂ%)',qz(t),hz(t)}dt«oo, (218)

where j e{1,2}. Then the system (1.1) has a bounded solution.

Proof By (2.17) and (2.18), a sufficiently large T >t, can be chosen such that

i [ RGO TR () 1], max{g,(s). b (s))dsds,ds, <1, (2.19)
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I MI mj " mexdd, (5).hy (S)}dsds ds, < 1—5 (2.20)
T 9 e (SN, (S,) | T2 " |

where ie{l,2}. Let C([t,,+),R*) be the set like that in the proof of Theorem 2.1
and define a bounded, closed and convex subset Q of C([t,,+x), R?) as following:
Q={x=(x,%,) € C([ty, +0),R?):1< x (1) <3,0< X, (t) <L t>1}.

Let mappings S,,Q, and S, : Q — C([t,,+x),R*) be defined as

DN LGS LA i

(Sx)(t) = F(s,x,(s—0,),... X,(s—0o,))dsds,ds;, t=>T (2.21)
(SX)(T), t<t<T
1

QX)) = 2 TROX(t-n), 2T (2.22)
(Q,x)(T), t, <t<T
_rwrwrw F(6.%(5-01),. X(8-00) gy gs 1T

(Szx)(t) = R r21(sl)r22 (Sz) e - (2.23)
(Sp)(T), t,<t<T

forall xeQ.

Proceeding similarly as in the proof of Theorem 2.1 and 2.2, we get that there are
Xo11 %o € Q such that S;X,;, = X,; and Q,X,, +S,Xy, = Xy, . Then X, (t) = (X, (t), X, (1)) is
a bounded solution of the system (1.1). This finishes the proof.

Remark 2.4 Proceeding as before, we can prove that no matter P(t) belongs to
which cases:
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@ R =1,

®) |Pi(t)|sﬁ<%,

(3) 0<P(t) < P, <1,

(4) 1<R <P(t) <P, <+,

(5) -1<PB < P(t) <0,

(6) —o<R<P(M)<P<-1

(7) any combination of the above.

The system (1.1) has a bounded solution.
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