On Divisors of a^m+1

Venkatesh Sripad

Department of Mathematics, ACE Engineering College Ankushapur (V), Ghatkesar, R.R.District, Andhra Pradesh Email: vanisri1978@gmail.com

Abstract

Can we find infinite number of primes which do not divide $a^m + 1$?

In this paper we propose to answer the following question Can we find infinite number of primes which do not divide $a^m + 1$? In what follows, p stands for odd prime and all the congruence's are mod p Before proving the main theorem we prove the following two lemma's

Lemma 1: $a^x = -1$ does not possess a solution whenever $a^m = 1$ where m is odd.

Proof: Suppose assume the contrary, then

$$a^{n} \equiv -1 \tag{1}$$

$$a^{2n} \equiv 1$$

Therefore we have

$$a^d \equiv 1 \tag{2}$$

where d = (2n, m). It clearly follows that $d \mid n$, so let n = kd and from (2) we get

$$a^n \equiv 1 \tag{3}$$

From (1) & (3) we have $2 \equiv 0$ which is absurd.

Lemma 2: If p is of the form 4aq-1 then a is a quadratic residue of p

Proof: Let $a = 2^x y$, where y is odd

let
$$y = 4r - 1$$
, then $(y|p)(p|y) = (-1)^{\frac{(p-1)(y-1)}{4}}$
= $(-1)^{(2aq-1)(2r-1)} = -1$

so that
$$(y|p) = \frac{-1}{(p|y)} = \frac{-1}{-1} = 1$$

Note that here (p|y) = (-1|y), since y|a we have $p \equiv -1 \pmod{y}$

Let
$$y = 4r + 1$$
, then $(y|p)(p|y) = (-1)^{\frac{(p-1)(y-1)}{4}}$

$$= (-1)^{\frac{(4r)(4am-2)}{4}} = 1$$

so that
$$(y|p) = \frac{1}{(p|y)} = \frac{1}{(-1|y)} = \frac{1}{1} = 1$$

If *a* is even, p = 8r - 1, then $(2^x | p)(y | p) = 1.1 = 1$

Thus the lemma is proved

Theorem: A prime of the form 4aq - 1 does not divide $a^m + 1$

Proof: Let p = 4aq - 1, then by lemma 2, (a|p) = 1, by Euler's criterion

$$(a|p) \equiv a^{\frac{p-1}{2}}$$
 this in other words says
 $1 \equiv a^{2aq-1}$

so by lemma 1, $a^x = -1$ possesses no solution thereby proving the theorem.

In particular for a = 2, a prime number of the form 8q - 1 does not divide $2^m + 1$ for every m

References

- [1] Elementary Number Theory David M Burton
- [2] Analytical Number Theory Tom M Apostol