On Divisors of $\boldsymbol{a}^{\boldsymbol{m}}+\mathbf{1}$

Venkatesh Sripad
Department of Mathematics, ACE Engineering College
Ankushapur (V), Ghatkesar, R.R.District, Andhra Pradesh
Email: vanisri1978@gmail.com

Abstract

Can we find infinite number of primes which do not divide $a^{m}+1$?

In this paper we propose to answer the following question
Can we find infinite number of primes which do not divide $a^{m}+1$?
In what follows, p stands for odd prime and all the congruence's are mod p
Before proving the main theorem we prove the following two lemma's
Lemma 1: $a^{x} \equiv-1$ does not possess a solution whenever $a^{m} \equiv 1$ where m is odd.
Proof: Suppose assume the contrary, then

$$
\begin{align*}
& a^{n} \equiv-1 \tag{1}\\
& a^{2 n} \equiv 1
\end{align*}
$$

Therefore we have

$$
\begin{equation*}
a^{d} \equiv 1 \tag{2}
\end{equation*}
$$

where $d=(2 n, m)$. It clearly follows that $d \mid n$, so let $n=k d$ and from (2) we get

$$
\begin{equation*}
a^{n} \equiv 1 \tag{3}
\end{equation*}
$$

From (1) \& (3) we have $2 \equiv 0$ which is absurd.
Lemma 2: If p is of the form $4 a q-1$ then a is a quadratic residue of p
Proof: Let $a=2^{x} y$, where y is odd

$$
\begin{aligned}
& \text { let } y=4 r-1 \text {, then }(y \mid p)(p \mid y)=(-1)^{\frac{(p-1)(y-1)}{4}} \\
& =(-1)^{(2 a q-1)(2 r-1)}=-1
\end{aligned}
$$

so that $(y \mid p)=\frac{-1}{(p \mid y)}=\frac{-1}{-1}=1$
Note that here $(p \mid y)=(-1 \mid y)$, since $y \mid a$ we have $p \equiv-1(\bmod y)$
Let $y=4 r+1$, then $(y \mid p)(p \mid y)=(-1)^{\frac{(p-1)(y-1)}{4}}$
$=(-1)^{\frac{(4 r)(4 a m-2)}{4}}=1$
so that $(y \mid p)=\frac{1}{(p \mid y)}=\frac{1}{(-1 \mid y)}=\frac{1}{1}=1$
If a is even, $p=8 r-1$, then $\left(2^{x} \mid p\right)(y \mid p)=1.1=1$
Thus the lemma is proved
Theorem: A prime of the form $4 a q-1$ does not divide $a^{m}+1$

Proof: Let $p=4 a q-1$, then by lemma $2,(a \mid p)=1$, by Euler's criterion
$(a \mid p) \equiv a^{\frac{p-1}{2}}$ this in other words says

$$
1 \equiv a^{2 a q-1}
$$

so by lemma $1, a^{x} \equiv-1$ possesses no solution thereby proving the theorem.
In particular for $a=2$, a prime number of the form $8 q-1$ does not divide $2^{m}+1$ for every m

References

[1] Elementary Number Theory - David M Burton
[2] Analytical Number Theory - Tom M Apostol

