On Products of Conjugate Secondary Range \boldsymbol{k} Hermitian Matrices

S. Krishnamoorthy ${ }^{1}$ and B.K.N. Muthugobal ${ }^{2}$
${ }^{1}$ Professor in Mathematics, ${ }^{2}$ Research Scholar, Ramanujan Research Centre, Government Arts College (Autonomous), Kumbakonam, Tamil Nadu, India E-mail: bkn.math@gmail.com

Abstract

The concept of products of conjugate secondary range k-hermitian matrix [4] (con-s-k-EP) is introduced. We explore the conditions for the product of con-$s-k-E P_{r}$ matrices to be con-s-k-EP ${ }_{r}$.

AMS Classification: 15A09, 15A15, 15A57.
Keywords: EP-matrices, con-EP matrices, con-s-k-EP matrices.

Introduction

Let $C_{n x n}$ be the space of $n x n$ complex matrices of order n. Let C_{n} be the space of all complex n-tuples. For $A \in C_{n x n}$, let $\bar{A}, A^{T}, A^{*}, A^{\mathrm{S}}, A^{\dagger}, \mathrm{R}(\mathrm{A}), \mathrm{N}(\mathrm{A})$ and $\rho(\mathrm{A})$ denote the conjugate, transpose, conjugate transpose, secondary transpose, conjugate secondary transpose, Moore-Penrose inverse, range spaces, null spaces and rank of A respectively. A solution X of the equation $\mathrm{AXA}=\mathrm{A}$ is denoted by A^{-}(Generalized Inverses of A). For $\mathrm{A} \in \mathrm{C}_{\mathrm{nxn}}$, the Moore Penrose inverse A^{\dagger} of A is the unique solution of the equations

$$
\mathrm{AXA}=\mathrm{A}, \mathrm{XAX}=\mathrm{X},[\mathrm{AX}]^{*}=\mathrm{AX},[\mathrm{XA}]^{*}=\mathrm{XA}[2] .
$$

Anna Lee [1] has initiated the study of secondary symmetric matrices that is matrices whose entries are symmetric about the secondary diagonal. Cantoni Antono and Butler Paul [3] have studied per-symmetric matrices that is matrices are symmetric about both the diagonals and their applications to communication theory. In [1] Anna Lee has shown that for a complex matrix A, the usual transpose A^{T} and A^{S} are related as $A^{S}=V A^{T} V$ where ' V ' is the permutation matrix with units in its
secondary diagonal. Also the conjugate transpose A^{*} and the secondary conjugate transpose $\mathrm{A}^{-\mathrm{S}}$ are related as $\mathrm{A}^{-S}=\mathrm{VA}^{*} \mathrm{~V}$. Throughout let ' k ' be fixed product of disjoint transpositions in $\mathrm{S}_{\mathrm{n}}=\{1,2,3 \ldots \mathrm{n}\}$ and ' K ' be the associated permutation matrix.

Products of conjugate secondary range \mathbf{k}-hermitian matrix

It is well known that the product of non singular matrix is non singular. In general, the product of symmetric, hermitian, normal, EP, con-EP con-k-EP and con-s-EP matrices. Similarly, the product of con-s-k-EP matrices need not be con-s-k-EP. For instance let

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad B=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

For $\mathrm{k}=(2,3), K=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ and

$$
V=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) . \mathrm{A} \text { is con-s-k-EP3}
$$

3 is con-s-k-EP ${ }_{1}$ then

$$
A B=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \text { is not con-s-k-EP } 1
$$

In this section, we explore the conditions for the product of con-s-k-EP ${ }_{r}$ matrices to be con-s-k-EP . Also we study the question of when BA is con-s-k-EP ${ }_{r}$, for con-s-kEP_{r} matrices A, B and AB .

Theorem 2.1

Let $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3} \ldots . \mathrm{A}_{\mathrm{n}}(\mathrm{n} \geq 1)$ be con-s-k-EP P_{r} matrices and $\mathrm{A}=\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3} \ldots . \mathrm{A}_{\mathrm{n}}$. Then the following statements are equivalent:

A is con-s-k-EP P_{r}.
2. $\mathrm{R}\left(\mathrm{A}_{\mathrm{I}}\right)=\mathrm{R}(\mathrm{An})$ and $\rho(\mathrm{A})=\mathrm{r}$
3. $R\left(A_{i}^{T}\right)=R\left(A_{n}^{T}\right)$ and $\rho(\mathrm{A})=\mathrm{r}$.

Proof

Since A_{1} and $\mathrm{A}_{\mathrm{n}}(\mathrm{n}>1)$ are con-s-k-EP P_{r} matrices, $R\left(\mathrm{~A}_{1}\right)=R\left(K V A_{i}^{T}\right) R\left(A_{n}\right)=R\left(K V A_{n}^{T}\right)$ (by Theorem 2.). Since $\mathrm{A}=\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3} \ldots . \mathrm{A}_{\mathrm{n}}, \quad R(A) \subseteq R\left(\mathrm{~A}_{1}\right) \quad$ and
$\rho(A)=\rho\left(A_{1}\right) \Rightarrow R(A)=R\left(A_{1}\right)$.
Also, $A^{T}=A_{n}^{T} A_{n-1}^{T} \ldots . A_{2}^{T} A_{1}^{T}, R\left(A^{T}\right) \subseteq\left(R A_{n}^{T}\right)$ and $\rho\left(A^{T}\right)=\rho\left(A_{n}^{T}\right)=r \Rightarrow \rho\left(A^{T}\right)=\rho\left(A_{n}^{T}\right)=r$

Therefore,

$$
R\left(A^{T}\right)=\left(R A_{n}^{T}\right) \Rightarrow R\left(K V A^{T}\right)=R\left(K V A_{n}^{T}\right)
$$

Now, is con-s-k-EP ${ }_{\mathrm{r}} \quad \Leftrightarrow R(A)=R\left(K V A^{T}\right)$ and $\rho(A)=r$

$$
\Leftrightarrow R\left(A_{1}\right)=R\left(K V A_{n}^{T}\right) \text { and } \rho(A)=r
$$

$$
\Leftrightarrow R\left(A_{1}\right)=R\left(A_{n}\right) \text { and } \rho(A)=r \quad \text { (by Theorem 2.) }
$$

(ii) \Leftrightarrow (iii)

$$
\begin{aligned}
R\left(A_{1}\right)=R\left(A_{n}\right) & \Leftrightarrow R\left(K V A_{i}^{T}\right)=R\left(K V A_{n}^{T}\right) \\
& \Leftrightarrow R\left(A_{i}^{T}\right)=R\left(A_{n}^{T}\right)
\end{aligned}
$$

Hence the Theorem.
For the product of two con-s-k-EP P_{r} matrices A and B, Theorem (2.1) reduces to the following.

Corollary 2.2

Let A and B be con-s-k-EP E_{r} matrices, then AB is con-s-k-EP $\mathrm{E}_{\mathrm{r}} \Leftrightarrow \rho(A B)=r$ and $R(A)=R(B) \Leftrightarrow \rho(A B)=r$ and $R\left(A^{T}\right)=R\left(B^{T}\right)$.

Remark 2.3

In the above corollary (2.2) both the conditions that $\rho(A B)=r$ and $\mathrm{R}(\mathrm{A})=\mathrm{R}(\mathrm{B})$ are essential for the product of two con-s-k-EP P_{r} matrices to be con-s-k-EP P_{r}. This can be seen by the following example.

Example 2.4

$$
A=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad B=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

For $\mathrm{k}=(1)(2,3)$, the associated disjoint permutation matrix $K=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ and $V=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$

A is con-s- $\mathrm{k}-\mathrm{EP}_{2}$ and B is con-s-k-EP ${ }_{1}$

$$
A B=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text { is not con-s-k-EP }{ }_{1}
$$

Here $\rho(A B) \neq 1$

Example 2.5

$$
A=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad B=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

For $\mathrm{k}=(1,2)(3) K=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ and

$$
V=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

A is con-s-k- EP_{3}
B is con-s-k-EP ${ }_{1}$ then

$$
A B=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \text { is not con-s-k-EP }{ }_{1}
$$

Remark 2.6

If $k(i)=i$, for $i=1,2, \ldots . . n$, then corollary (2.2) reduces to the corollary for con-EP matrices.

Remark 2.7

Let $\rho(A B)=\rho(B)=r_{1}$, and $\rho(B A)=\rho(A)=r_{2}$, If AB, B are con-s-k-EP E_{r} and A is con-s-k-EP P_{r} then BA is con-s-k-EP r_{r}.

Proof

Since, $\rho(B A)=\rho(A)=r_{2}$, to prove BA is con-s-k-EP E_{r}, it is enough to show that $\mathrm{N}(\mathrm{BA})=\mathrm{N}\left[(\mathrm{BA})^{\mathrm{T}} \mathrm{VK}\right]$.

Now $N(A) \subseteq N(B A)$ and $\rho(B A)=\rho(A) \Rightarrow N(A)=N(B A)$
Also $N(B) \subseteq N(A B)$ and $\rho(A B)=\rho(B) \Rightarrow N(B)=N(A B)$
Now $N(B A)=N(A)$

$$
=N\left(A^{T} V K\right) \text { (since A is con-s-k-EP) }
$$

$$
\begin{aligned}
& \subseteq N\left(B^{T} A^{T} V K\right) \\
& =N\left((A B)^{T} V K\right) \\
& =N(A B) \\
& =N(B) \\
& =N\left(B^{T} V K\right) \quad \text { (since A is con-s-k-EP) } \\
& \subseteq N\left(A^{T} B^{T} V K\right) \\
& =N\left((B A)^{T} V K\right) \\
& N(B A) \subseteq N\left((B A)^{T} V K\right)
\end{aligned}
$$

Further, $\rho(B A)=\rho\left(\left(B A^{T}\right)\right)=\rho\left(\left(B A^{T}\right) V K\right)$

$$
\Rightarrow N(B(A))=N\left(B A^{T} V K\right)
$$

Hence the Theorem

Lemma 2.8

If A, B are con-s-k-EP P_{r} matrices and $A B$ has rank r, then $B A$ has rank r.

Proof

We know that [P.61][]
$\rho(A B)=\rho(A)-\operatorname{dim}\left(N(A) \cap N\left(B^{T}\right)^{\perp}\right)$.
Since $\quad \rho(A B)=\rho(A)=r, N(A) \cap N\left(B^{T}\right)^{\perp}=\{0\}$.

$$
N(A) \cap N\left(B^{T}\right)^{\perp}=\{0\} \Rightarrow N(A) \cap N(B V K)^{\perp}
$$

$$
=\{0\}
$$

(since B is con-s-k-EP P_{r})
$\Rightarrow N(A)^{\perp} \cap N(B V K)=\{0\}$.
$\Rightarrow N\left(A^{T} V K\right)^{\perp} \cap N(B V K)=\{0\} \quad$ (since B is con-s-k-EP r_{r})
Now, $\quad \rho(B A)=\rho((B V K)(K V A))$

$$
\begin{aligned}
& =\rho K V A-\operatorname{dim}\left(N(B V K) \cap N\left(A^{T} V K\right)^{\perp}\right) \\
& =\rho(K V A)-0=\rho(A)=r
\end{aligned}
$$

Hence the Lemma

Theorem 2.9

If A, B and $A B$ are con-s- $k-E P_{r}$ matrices then $B A$ is con-s-k-EP r.

Proof

Since A,B are con-s-k-EP P_{r} matrices and $\rho(\mathrm{AB})=r$, by Lemma (2.8) $\rho(\mathrm{BA})=r$. Now the Theorem follows from Theorem (2.7) for $r_{1}=r_{2}=r$

Corollary 2.10

Let A, B be con-s-k-EP P_{r} matrices. Then the following are equivalent.
I. $A B$ is con-s-k-EP .
II. $(\mathrm{AB})^{+}$is con-s-k-EP $\mathrm{r}_{\text {. }}$
III. $\mathrm{A}^{+} \mathrm{B}^{+}$is con-s-k-EP ${ }_{\mathrm{r}}$.
IV. $\mathrm{B}^{+} \mathrm{A}^{+}$is con-s-k-EP r .

Remark 2.11

In particular for $\mathrm{k}(\mathrm{i})=\mathrm{I}$, Theorem (2.9) reduces to the following.

Corollary

If A, B and $A B$ are con-s- $E P_{r}$ matrices, then $B A$ is con-s- $E P_{r}$ matrix.

References

[1] Anna Lee: Secondary symmetric, Secondary Skew symmetric, Secondary orthogonal matrices, period math, Hungary 7 (1976), 63-76.
[2] Ben Israel, A. and Greviue T.N.E: Generalized Inverses, Theory and Applications, Wiley, Newyour, (1974).
[3] Cantoni Anotnio and Bulter Paul., Properties of the Eigen vectors of persymmetric matrices with Applications to communication Theory, IEEE Trans, comm., 24 (1976), 804 - 809.
[4] Krishnamoorthy, S. Gunasekaran, K and Muthugobal,B.K.N., Con s-k-EP matrices, IJMSEA, Vol.5,No. 1 (Jan 2011) to be published.
[5] Baksalary.J.K., Kala,R., and Klaczynski,K,1983, "The matrix inequalities M>B*MB", Lin.Alg.Appl,54,77-86.

