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Abstract

The discovery of non-Euclidean geometry developed geometry dramatically.
These new mathematical ideas were the basis for such concepts as the general
relativity of a century ago and the physica theory of today. The idea of
curvature is a mathematical idea. Plane hyperbolic geometry is the simplest
example of a negatively curved space. Spherical geometry has even more
practical applications.

Riemann was the first geometer who really sorted out a concept in
geometry. He made a general study of curvature of spaces in all dimensions.
In two dimensions:

Euclidean geometry isflat. It is curvature zero and any triangle angle sum
is 180 degrees.

The non-Euclidean geometry of Lobachevsky is negatively curved, and
any triangle angle sum is smaller than 180 degrees. The geometry of the
sphere is positively curved, and any triangle angle sum is bigger than 180
degrees [1],[2].[3].[4].[5].[6].[7].[8].

| will show to combine Euclidean, Spherical, Minkowski, Hyperbolic
geometries on four dimensional Trigonometric Algebra. Trigonometric
Algebra is a four dimensional hypercomplex number theory. It is a
noncommutative and associative algebra. It is an isomorphism with
Quaternion algebra. My intuitive conception and observation of position and
motion suggest that the position of geometry in space can only be specified
relative to some other geometry, chosen as a reference. Likewise, the motion
of geometry can only be specified relative to some reference geometry.

Introduction
The foundations of Euclidean geometry are five postulates concerning points and
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lines. A point is an abstraction of the notion of a position in space. A line is an
abstraction of the path of a light beam connecting two nearby points. Thus, any two
points determine a unique line passing through them. This is Euclid's first postulate.
The second postul ate states that a line segment can be extended without limit in either
direction. Thisis rather less intuitive and requires an imaginative conception of space
as being infinite in extent. The third postulate states that, given any straight line
segment, a circle can be drawn having the segment as radius and one endpoint as
center, thereby recognizing the special importance of the circle and the use of straight-
edge and compass to construct planar figures. The fourth postulate states that al right
angles are equal, thereby acknowledging our perception of perpendicularity and its
uniformity. The fifth and final postul ate states that if two lines are drawn in the plane
to intersect a third line in such a way that the sum of the inner angles on one side is
less than two right angles, then the two lines inevitably must intersect each other on
that side if extended far enough. This postulate is equivalent to what is known as the
parallel postulate, stating that, given aline and a point not on the line, there exists one
and only one straight line in the same plane that passes through the point and never
intersects the first line, no matter how far the lines are extended. The parallel postulate
is somewhat contrary to our physical perception of distance perspective, where in fact
two lines constructed to run parallel seem to converge in the far distance. While any
geometric construction that does not exclusively rely on the five postulates of Euclid
can be called non-Euclidean, the two basic non-Euclidean geometries, hyperbolic and
elliptic, accept the first four postulates of Euclid, but use their own versions of the
fifth. Incidentally, Euclidean geometry is sometimes called parabolic. The parallel
postulate of Euclid has many implications, for example, that the sum of the angles of

atriangle is 180°. Not surprisingly, this and other implications do not hold in non-
Euclidean geometries. Classical, Newtonian mechanics assumes that the geometry of
space is Euclidean. The development of Euclidean geometry essentially relies on our
intuition that every line segment joining two points has a length associated with it.
Length is measured as a multiple of some chosen unit [1],[2],[3].[4],[5],[6].[7].

Geometric Spaces
EUCLIDEAN 3-SPACE, E?

Definition 1-1:
Euclidean 3-space, E® = {x = (x!,x%,x°): X*, 3%, x° € R}

Definition 1-2:
Dot Product;

For x,ye E®,

X- y_X1y1+X2y2+X3y3
x| = (e f (e +6e)
)=[x-y|
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Proposition 1-3:
d.ismetric.

Corollary 1-4:
Schwarz Inequality is|x- y| <|X|y]

Equality can be by including a multiple, cos(6(x, y)),in the inequality.
x-y=[x-|y|-codd(x,y))

Where 6(x, y)isthe angle between xand vy .

Definition 1-5:
Cross Product;
For x,y e E®,

i ] K

xxy=|xt x* x°

yl y2 3

Theorem 1-6:
1 Xxy=-yxX

3
3

3

Xt x?
2 (xxy)z=y' y* vy
zr 72¢ z

(xxy)-z=(zxx)-y=(yx2) x
3 xx(yxz)=(x-2)y-(x-y)z

X-Z x-\v/\J
y-2 'y
Property 4 combined with

x-y =[x-|y]-cod&(x, y))yields
xx y =X |y]-sin(@(x, y))[11,{21.[3].[4].[5].[6].[7].

4 (Xx y)-(zxw)=

Euclidean Trianglesin E®
Triangles inE?® consist of 3 points, X,Y,z< E*and the geodesics connecting points.
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Geodesics are “straight lines” between points. InE®, geodesics are straight lines.

SIDES [x, ] ly.z [z, x]
LENGTHS | a=d.(xy) |b=dc(y.2) |c=dc(zx)
ANGLES A B C
GEODESICS | f:[0,a] > E® | g:[0,b] > E?® | h:[0,c] > E®
A
)
A
= G
& g
C— -

Graphic 1: Euclidean triangle.

Euclidean Law of Sines
Euclidean Law of Sines

a b ¢
sinA snB snC

Euclidean L aw of Cosines
Euclidean Law of Cosines

2 2 2
COSA = b+c——a
2bc
Spherical 2-Space, S*
Defition 1-1:
Unit Sphere, S°

S? = {xe E*:[x =1}
x-y =|x|y|cos(6(x, y)) = cos(@(x, y)) and
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[xx ¥ =X yisin(6(x y)) = sin(e(x, y))

OnS?, the geodesic between two points is the shortest are of the great circle
passing through the points. This gives distance between two points on the sphere to be
ds(x,y)=0(xy) = cos™(x-y)
Then
0<ds(xy)<7
ds(x, y)=7 < y =—xisantipodal

Proposition 2-2:
dgismetric [1],[2],[3],[4].[5].[6].[7].

Spherical Trianglesin S?
Trianglesin S®consist 3 points, X, y, ze S?and the geodesics connecting the points.

SIDES [x, y] ly, Z] [z, x]
LENGTHS | a=0(x,y) b=46(y,2) c=6(zx)
ANGLES A B C
GEODESICS | f:[0,a] »S? | g:[0,b] > S? | h:[0,c] > S?
O(yxz,zxx)=m—-A | O(yxz,xxz)= A
O(zxx,xxy)=7z—-B | O(zxx, yxx)=B
O(xxy,yxz)=7-C | 8(xxy,zxy)=C

Graphic 2: Spherical triangle.
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Spherical Law of Sines

Similarly

(yx 2)x(zxx)=((yx 2)- x)z= ((yx 2)- 2)x = ((yx 2)- x)z
(yx z)x(zxx) =[((yx 2)- )4

lyx Z|zxqsind(yx z,zxx)=|((yx 2)- x)|2
sinbsincsin(z — A)=|((y x 2)- x)

sinbsincsinA=((yx z)- x)

((zxx)-y)x

((xxy)-2)y

(zx x)x (xx y)
(o y)x (yx 2)

Taking the norm of the reamining two equalities, noticing the right hand sides of
each are equal, yields

sinbsincsin A=sincsinasinB =sinasinbsinC

Spherical Law of Sines
Spherical Law of Sines

sna sinb _ sinc

SnA snB_ snC

Spherical Law of Cosines
Spherical Law of Cosines

cosa — cosbcosc
sinbsinc

COsA=

Minkowski 3- Space, M ®

Definition 3-1:

Minkowski 3-space;

Definition 3-2;

M3 :{x:x=(X1,X2,X3)}

Boxdot Product;

For x,ye M?,

XVy = X'yt 4 x2y? — x3y°

xx=[x"
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dy (. y) =[x~

x e M ®iscaled time-likeif xVvx < 0
x € M ®is called space-like if xVx >0
x € M 3iscalled light-like if xVx =0

We will be mainly concerned with time-like vectors for the remainder of the time.

Proposition 3-3:
d,, ismetric.

Corolarly 3-4:
For x and y timelike vectors,

xvy 2|y

Equality can be attained by including amultiple, cosh(6(x, y)) ,in the equality.
xVy = [ycosh(6(x, y)

where 6(x, y)isthe hyperbolic angle between xandy .

Definition 3-5:
Boxcroos Product;
For x,ye M?,
i j Kk
xAy =|xt x> x°
yboyroy?
Theorem 3-6:

Properties of Vectorsin Minkowski 3-Space
1. If x, yarepositivetime-like vectors, then xAy is space-like.

2. If u,vare space-like vectors, then the following are equivalent:
a. Thevectros uand vsatisfy the inequality

juvv<ulM

b. uAvisthetime-like.
c. The vector subspace V spanned by uand Vis space-like.Every nonzero
vector is space-like.

3. If u,vare space-like vectors spaning a space-like vector space,then
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uvv = [ul v cos(6(u,v)
Jluvi] = M sin(6(u, v))

where ‘||u|| ‘ —(uvu)

Theorem 3-7:
Propertiesof Vand A
1. XAy =-YyAX

Xl X2 3

2. (xaylvz=|y* y* vy°

vl S

3. xA(yAz)=~((xvz)y - (xVy)z)

4. (ayvizaw)=2 %
' Y |z oy

For xandy time-like vectors, property 4 combined with

xVy =[xy cosh(&(x, y))yields

[xx v = =|x|{|y|sinh(e(x, y))[11,[2,[3].[4].[5].[6].[7].

Hyperbolic 2- Space, H 2
Definition 4-1
Unit hyperboloid, H ?;

H? = {XEM X: xVx_—l}
xVy = |X|y| cosh(6(x, y)) = —cosh(6(x, y)) and
[xay] = [x||y|sinh(6(x, y)) = sinh(6(x, y))

On H?; the geodesic is the branch of a hyperbola passing through the points.
This gives the distance between two points on the hyperboloid to be

dy, (% y)=6(x,y) = cosh (- xvy)

0<d,(xy)

Proposition 4-2
d,isametric[1],[2],[3].[4].[5].[6].[7].
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Hyperbolic TrianglesIn H?
TrianglesinH 2 consist 3 points, X, Y,z e H*and the geodesics connecting the points.

SIDES [x, y] [y, z] [z, %]
LENGTHS | a=4(x,y) b=6(y,2) c=0(z,x)
ANGLES A B C
GEODESICS | f :[0,a] > H? | g:[0,b] > H?2 | h:[0,c]—> H?

Graphic 3: Hyperbolic triangle.

Hyperbolic Law Of Sines

Similarly

(yaz)A(zax) = ~(((yAz)Vx)z - ((yAz)VZ)x) = ~((yAZ)V x)z
(yaz)a(zax)] =[|- (yaz)vx)e]

[yazljzaxsin6(yaz 2ax) = |- ((yaz)vx)| 7|
sinhbsinhcsin(z — A)=|((yAz)Vx)(- zvz)

sinhbsinhcsin A= |((yAz)vx)

271
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(zax)A(xAy) = —((zax)Vy)x
(xay)A(yAz) = —((xay)Vz)y

Taking the norm of the reamining two equalities, noticing the right hand sides of
each are equal, yields

sinhbsinhcsin A=sinhcsinhasinB = sinhasinhbsinC

Hyperbolic Law of Sines
Hyperbolic Law of Sines

sinha sinhb sinhc
snA snB snC

Hyperbolic Law of Cosines
Hyperbolic Law of Cosines

coshbcoshc —cosha
sinhbsinhc

COsSA=

Trigonometric Algebras
Definition 2-1
Let
Euclidean Law of Sinesis
a b c

sinA:sinB:sinC

Spherical Law of Sinesis
sna sinb _ sinc
snA snB snC

Hyperbolic Law of Sinesis
sinha sinhb sinhc
sinA snB sinC

Gisatrigonometric space.
A isanangleanditslengthis a

The form of a trigonometry number is ¥ = (sin A)+(a)e, + (sna)e, +(sinha)e,
£={¥ =(snA)+(a)e +(snae, + (sinh a)e, « G|(sin A),(a)(sina),(snh a)e R}
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€8 =€,,68 =6,66e =-1
B isanangleanditslengthis b

: {\P =(snA)+(a)e +(sina)e, + (sinha)e, G‘el2 =e,’ =¢°=-1lee, =eg}

The form of a trigonometry number is ¥ = (sinB)+(b)e, + (sinb)e, +(sinhb)e,
£={¥ =(snB)+(b)e, +(snbe, + (snhble, e G[(sin B),(b)(sinb),(sinh b) e R}
~ {‘P = (sinB)+ (b)e, +(sinb)e, + (sinhb)e, € G‘el2 —e’=¢  =-lee, = eg}
€€ =6,,6,6 =6,,66,6 =—
Cisanangleanditslengthis

The form of a trigonometry number is ¥ = (sinC)+(c)e, +(sinc)e, + (sinhc)e,
£={¥ =(snC)+(cle, +(sincle, + (sinhc)e, e G|(sinC),(c)(sinc),(sinh c) e R}
~ {\P =(sinC)+(c)e, +(sinc)e, +(sinhc)e, e G‘el2 =e° =g’ =-1ee, = eg}
€€ =6,,6,6 =€,66,8 =—

Trigonometric Algebras Operators

Product
Let
¥ =(sinA)+(a)g, +(sina)e, + (snha)e,
E={w= (smA a)e +(sna)e, + (snh ae, « G|(sin A),(a),(sin a),(sinh a) R}

W

€8 =&, ezes €.,668 =
WY, =(snA)+ (sma)e2+(smha)e3

¥, _(sm B)+( Je, + (sinb)e, +(sinhbe,

)+ (
{\P (sinA)+(a)e +(sina)e, + (smhae3eG‘el —e°=¢ =-lee, = e3}

Multiplication is generally noncommutative W, x ¥, # ¥, x ¥,

Y, x¥W,|e |e |&
& -1 =) -&
le, -6 -1 |¢
e e, |—-¢|-1
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Conjugate

The conjugate of ¥ = (sin A)+(a)e, +(sina)e, +(sinhae, is

¥ =(sinA)-(a)e, - (sina)e, — (sinh a)e,

£={¥ =(snA)+(a)e +(snae, + (sinh a)e, < G|(sin A),(a)(sin a),(snh a)e R}

E= @ =(sinA)-(a)e, —(sina)e, —(sinha)e, e G(sinA)\—(a), - (sina)~(sinha) R}

Magnitude
The magnitude of ¥ = (sin A)+(a)e, + (sina)e, + (sinha)e, is

¥| = J(sinA) +(a)? +(sina)? + (sinha)?

Multiplicative Inverse
The multiplicative inverse of ¥ = (sin A)+(a)e, + (sina)e, +(sinha)e, is

y _ 1 W#0and P :i_
v Yy
g (sinA)-(a)e, —(sinaje, - (sinhae,

(sinA)+(a)e, +(sina)e, +(sinha)e, J(sin A)- (a)e, - (sinale, - (sinhale,)

p-1_ (8nA)—(a)e —(sinaje, - (sinhale,
(sin A +(a)’ +(sina)’ + (snha)’

Division
Let

=

=(sinA)+(a)g +(sinae, + (sinhae,
(sinB)+(b)e, +(sinbe, + (sinhb)e,and ¥, = 0

< <
Il

1

=(sinC)+(c)e, +(sinc)e, +(sinhc)e,

= {¥ =(snC)+(c)e, + (sncle, + (sinh c)e, € G|(sin C),(c)(sinc),(sinh ¢) e R}

i

The conjugates of ¥, = (sinA)+(a)e, +(sina)e, + (sinha)e, and
¥, =(sinB)+(b)e, +(sinb)e, +(sinhb)e, are

¥, = (sinA)-(a)e, — (sina)e, — (sinha)e, and

=(sinB)—(b)e, — (sinb)e, — (sinhb)e,

((snA)+(a)e, +(sina)e, +(sinha)e, ((snB)-(b)e, - (sinb)e, - (sinhb)e,)
((snB)+(b)e, +(sinb)e, + (sinhb)e, \(sinB) - (b)e, - (sinb)e, — (sinhb)e,)

v,
\Pl
\PZ
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(sinA)+(a)e, +(sina)e, +(sinhae, ((snB)-(b)e, - (sinb)e, - (sinhbe,)
(sinB)? + (b)? + (sinb)? + (sinhb)? )

el
7

Polar Notation
| developed these polar forms.

Let

¥ =(sinA)+(a)g, +(sina)e, + (snha)e,

£={¥ =(snA)+(a)e +(sna)e, +(snh a)e, e G|(sin A),(a)(sina),(snh a)e R}
The magnitude of ¥ = (sin A)+(a)e, + (sna)e, + (sinha)e, is

W] =/(sin A +(a)? +(sina)’* +(sinha)’

Arg(T) = {8, + 27K, 8, + 27K, 0, + 27K} and

0=1{0<6, <360°,0< 6, < 360°,0< 6, < 360° |6,,6,,0, < R}

Theradiusset is

r= {rl =+sin® A+a’,1r, =sin? A+sin?a,r, =+/sin’ A+sinh?a |r,r,,1, € R}

The polar notation is ¥ = r,(cosd, + €, sind, )r,(cosé, + e, sin8, )r,(cosb, + e,siné,)

cosd, = smA ,C0s6, = SnA ,C0SO, = SnA

1 N 3 . .
cosé = \/smzA+a Jsin? A+sin?a Jsin? A+sinh?a

cosd,,cosd,,cosd, € R

na sinha
Snf, = ——————,9n6, = ,Sing, =

sing = Jsin? A+a? Jsin? A+sin®a Jsin? A+sinh?a

sné,,sind,,sind, € R

The polar notation is
¥ =r,(cos, + € SN, )r,(cosb, + e,sin b, )r,(cosé, + e,sinb,)

Its conjugateis

¥ =r,(cosd, —e sind,)r,(cosh, —e,sin b, )r,(cosb, —e,sinb,)

Exponential Form

| developed these exponential forms.

Let

Arg(W) = {6, + 27K, 0, + 27K, 0, + 27K} and

0={0<6,<360°,0< 6, <360°,0< 6, <360° |6,,6,,0, < R},
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Theradiussetis
r= {rl —sin? A+a’,1, =vsin® A+sin’a,r, =vsin? A+sinh? a|r,,1,,1, € R}

The polar formis W =r,(cosé, + € siné, )r,(cosé, +e, sind, )r,(cosb, +e,sinb;)
The exponential formis
e¥hrelareh — (cos@, + € sind, )(cosh, +e, sind, )cosd, + e, sing,)

Its conjugateis
e ¥ 2% — (cos, — g sind, |cosé, — e, sing, )(cos, —e,sind,)

Power Form
| developed these power forms.
Let

Arg(W) = {6, + 27K, 0, + 27K, 6, + 27K} and
0={0<6,<360°,0< 6, <360°,0< 6, < 360° |6,,6,,0, < R},

Theradiussetis

r= {rl =sin? A+a’,1, =vsin® A+sin’a,r, =vsin? A+sinh? a|r,,r,,1, € R}
The polar formis W =r,(cosé, + e sind, )r,(cosd, + e, siné, Jr,(cos, + e,siné,)
The power form is from degree nth power and ne Z

¥" =1"(cosnd, + e sinné, )r,'(cosnd, +e, sinnd, )r.'(cosnd, +e,sinné,)

Root Form
| developed these root forms.
Let

Arg(W) = {6, + 27K, 0, + 27K, 0, + 27k} and
0=10<6, <360°,0< 6, <360°,0< 6, <360° | 6,,0,,0, < R},

Theradiussetis
r= {rl =sin? A+a%,1, =vsin® A+sin’a,r, =vsin? A+sinh? a|r,,1,,1, € R}

Theroot form isfrom degree nthroot,k =012,....n—-1 and k,ne Z

¥ :Q/E(COSL +r?w+qsi né%w rz(cosg%w +e9 né%w r{cosé%w +es n@%qj

ltsrootsare ¥, = {¥,,¥,,.... ¥, ,}
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Addition

\Pl
¥,

=(sinA)+(a)g +(sina)e, + (sinhae,
=(sinB)+(b)e, +(sinbe, +(sinhb)e,

¥, + 'V, =(SnA+sinB)+(a+b)e +(sna+sinble, +(sinha+sinhb)e,

¥, +¥, =(snD)+(d

b
Jg, +(sind)e, + (sinhd e,
{# =(snD)+(d)e, +(sind)e, + (snh d)e, € G|(sin D),(d)(sind),(sinh d) e R}

£ =
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