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Abstract 
 

The price of an option’s model with a stochastic volatility instead of the 
Black-Schole’s model which uses a constant volatility, that is  ߪௌ೔ሺ௧ሻ ൌ
lim்՜଴ ,ݐሺݒ ܶ, 1ሻ ൌ ,ݐሺݒ 0,1ሻ is considered herein. The value of an option 
based on such model is obtained by solving an elliptic partial differential 
equation. Prices of an option based on some assumptions are obtained. 
 
Keywords: stochastic volatility, option pricing, option, elliptic partial 
differential equation. 

 
 
Introduction  
Option pricing models with structure volatility are more realistic than the Black-
Schole’s model which uses a constant volatility. The prices of option based on such 
models can be obtained by solving a parabolic partial differential equation ( Osu and 
Okoroafor, 2007) The option price obtained using Black- Schole’s model( Black and 
Schole, 1973) are not consistent with observed option price. Ledoit, et al (2002) have 
shown that the Black-Schole’s implied volatilities of at- the- money option converge 
to the underlying assets instantaneous (Stochastic) volatility as the time to maturity 
goes to zero. That is, it is just a convenient and well known mapping from prices of 
option (that are actually traded) to volatilities (that are typically quoted). The mapping 
particularly, is continuous in the strike price and time to maturity, and in such that 
volatility of the strike price is equal to the limit as time to maturity goes to zero of at-
the-money volatility. 
 The traditional approach to pricing options on stocks with stochastic volatility 
starts by specifying the point process for the stock price and its volatility and making 
some assumption about the market price of volatility risk. Stein and Stein (1991), 
Heston (1993), Hull and White(1987), among others had followed this approach 
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which uses the risk adjusted point process followed by the stock price and its 
volatility to price options in closed form if possible, but more likely with numeric 
methods. This model are typically calibrated to the price of a few option or estimated 
from the time series of stock prices. 
 Derman and Kani (1997) offered a model, the dynamics of what they term the “ 
Local Volatility Surface” and found a no-arbitrage condition that it must satisfy. Their 
model assumed that the stock price volatility is a deterministic function of the stock 
price itself and time, so that the stock price is the only source of uncertainty. This 
assumption is in the same spirit with Osu, (2010) in the consideration of a stochastic 
model of the variation of the Capital Market Price, whereby precise conditions are 
obtained which determine the equilibrium price. 
 Local volatilities Իሺݐ, ,ݏ ݇ሻ are defined formally (Ledoit, 2002) at time ݐ as the 
stock volatility at future times and stock level ܵሺݏሻ ൌ  that would price all observed ܭ
options correctly by  

  Իሺݐ, ,ݏ ݇ሻଶ ൌ
ଶങ೎

ങೞ
ሺ௧,௦,௞ሻାሺ௥ି௤ሻ௞ങ೎

ങ೗ା௤஼ሺ௧,௦,௞ሻ

୩మ ಢమ

ಢౡమሺ௧,௦,௞ሻ
,  (1) 

 
where ܥሺݐ, ,ݏ ݇ሻ denotes the time ݐ price of a call option with maturity at time ݏ and 
strike price ܭ. 
 The problem with Derman and Kani (1997) approach is that local volatilities are 
not readily measurable and that there is no explicit relationship between option and 
local volatilities. The resulting arbitrage free prices and local volatility are rather 
complicated. 
 Ledoit et, al, (2002) offered a new approach for pricing options on assets with 
stochastic volatility. Their approach simply requires as inputs the stock price and local 
volatility the exotic option is to be priced, as well as estimates of the volatilities of the 
implied volatilities. 
 On the other hand Ikonen and Toivanen (2004) studied the operator splitting 
methods for performing time stepping after a finite difference space discretization is 
done for pricing America options using Heston’s Model. With stochastic volatility 
models it makes efficient solution procedures much simpler if the early exercise 
constraint can be treated in a separate paper. 
 In this paper, we consider the model presented by Heston,(1993) and obtain a 
solution of an elliptic partial differential, which variables are time, the underlying 
asset value, and the volatility. We also obtain prices of options based on this model. 
 
 
Model Formulation 
The choice of option sells, in-active, or sell, is represented as ௜ܵሺݐሻ א ሼെ1,0,1ሽ. Each 
decision, ௜ܵሺݐሻ א ሼെ1,0,1ሽ, is determined by option’s strategy. The value in the 
interval between ሺെ1,0,1ሻ is normalized such that it can be seen as probability, i.e 

   ܲሾ ௜ܵሺݐሻ ൌ ሿݏ ൌ
∑ ଡ଼౟ሺ୲ሻ౏౟ሺ౪ሻస౩

౟
∑ ௑೔೔

,  (2) 



On the Model of the Price of an Option base on Stochastic Volatility 281 
 

 

with total possibility follows:  
   ∑ ܲሾ ௜ܵሺݐሻ ൌ ሿݏ ൌ 1.  (3) 
 
 Where on the variable of influence strength ܺ௜, each option affects and is affected 
by its surroundings.  
 Given a finite time horizon ܶ ൐ 0, we consider herein a complete probability 
space ሺΩ, ࣠, ܲሻ equipped with a standard Wiener process 
ܹ ൌ ሺሼ ௜ܹሺݐሻ, … , ௡ܹሺݐሻሽ, 0 ൑ ݐ ൑ ܶሻ valued in ܴ௡, and generating the (P- 
augmented) filtration ࣠. The financial market consists of non-risky asset ܵሺ0ሻ 
normalized to unity, i.e. ܵሺ0ሻ ൌ 1, and ݊ risky assets with price process ܵ ൌ
ሺ ௜ܵሺݐሻ, … , ܵ௡ሺݐሻሻ whose dynamics is defined by a stochastic differential equation 
(Etheridge, 2002)  
 ݀ܵሺݐሻ ൌ ሻݐሺܵߤ ൅   ሻ,  (4)ݐሻܹ݀ሺݐሺܵߪ
 
with solution via Ito’s formula given as; 

   ܵሺݐሻ ൌ ܵሺ0ሻ݁݌ݔ ቄܹߪሺݐሻ ൅ ቀߤ െ ఙమ

ଶ
ቁ ቅݐ , ,ሾ0 ߳ݐ ׊ 1ሿ  (5) 

 
 Suppose the price of a certain option is transformed into a price at a time ݐ, let ܭ 
be the initial price, and ܵሺݐሻ be the prince of option at time ݐ. 
 Then ݇ െ ܵሺݐሻ ሺ݂ݎ݋ ݇ ൐ ܵሻ is the contingent claim after a given time horizon ݐ. 
Suppose further that the change in price is “autocatalytic” (that is the change is due to 
the option value itself at time ݐ and not necessarily option price), then ௗௌ

ௗ௧
 is 

proportional both to ܵሺݐሻ and ݇ െ ܵሺݐሻ and we have;  

  ௗௌሺ௧ሻ
ௗ௧

ൌ ܭሻሺݐሺܵߤ െ ܵሺݐሻሻ,  (6)  

 
 where ߤ is a positive constant (the drift in economic parlance). Assume in addition 
that the stock price change is characterized by white noise, ܯ௧ (i.e. uncertainty, which 
is usually the case), that is ݀ ௧ܹ ~ ܰ ሺ0, ∆௧ሻ, then ܯ௧݀ݐ ൌ Ի௧ܹ݀ሺݐሻ so we can write 
(4) as; 

   ݀ܵሺݐሻ ൌ ܭሻ൫ݐሺܵߤ െ ܵሺݐሻ൯݀ݐ ൅ Ի௧ܵሺݐሻ൫ܭ െ ܵሺݐሻ൯݀ ଵܹ,  (7)  

   ݀Ի௧ ൌ ߚሺߙ െ Ի௧
ଶሻ݀ݐ ൅ Ի௧݀ߛ ଶܹ.  (8) 

 
 The set of equations above are stochastic differential equations similar to that in 
Heston’s model. They define the stock price process ܵ௧ and the variance process Ի௧. 
Equation (7) models the stock price process ܵ௧. The parameter ߤ is the average rate of 
the deterministic growth of the stock price and Ի௧ is the standard deviation (volatility) 
of the stock returns ௗௌ

ௌሺ௄ିௌሻ
. The model for the variance process  Ի௧ is given by (8). The 

volatility of the variance process Ի௧ is denoted by ߛ (volatility of volatility) and the 
variance will drift back to mean value ߚ ൐ 0 at a rate ߙ ൐  These two processes .݋
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contain randomness, that is, ଵܹ and ଶܹ  are Wiener processes and furthermore, the 
processes are linked together with the correlation factor א ߩ ሾെ1,1ሿ (Clarke and 
Parrott, 1999). 
 For the price of the America option, a two-dimensional parabolic partial 
differential equation can be derived using the previous stochastic volatility model 
(Zvan et al, 1998), thus;  

   - డ௨
డ௧

ൌ  Իమ

ଶ
 ൫ݏሺ݇ െ ሻ൯ଶݏ డమ௨

డ௦మ ൅ ሺ݇ݏԻଶ ൫ߛߩ െ ሻ൯ଶݏ డమ௨
డ௦డԻ

 

   ൅ ఊమ

ଶ
Իଶ డమ௨

డԻమ ൅ ሺ݇ݏݎ െ ሻݏ డ௨
డ௦

െ ሼߙሺߚ െ Իଶሻ߮ߛԻሽ డ௨
డԻ

െ   (9)  ,ݑݎ
 
where the parameter ߮ ൌ 0 is the so called market price of risk. The original option 
pricing problem is a final value problem, since the option is known at expiration. 
 
Lemma 1 
The value of the option at time ݐ under the volatility with interest rateݎ given equation 
(9) is : 

,ݏሺݑ   Իሻ ൌ ∑ ቐ
ሾܥ௡ܿݏ݋ ቀ௡గԻ

௞
ቁ ൅

݊݅ݏ௡ܦ  ቀ௡గԻ
௞

ቁሿ ܿݏ݋ ቀ௡గ௦
௞

ቁ
ቑஶ

௡ୀଵ ݁ି௥௦ሺ௞ି௦ሻణିఈሺఉିԻమሻఎ  (10)  

 
Proof  
With equation (9) is associated a characteristic equation;  
ሺ݇ݏ   െ ሻ݀Իଶݏ െ Ի݀ݏ݀ߛߩ2 ൅ ሺݏሺ݇ െ ଶݏଶ݀ߛሻሻିଵݏ ൌ 0,  (11) 
 
which can be factored and written in the form 
  ሺ݀Ի െ ሻሺ݀Իݏ݀ ଵߣ െ ሻݏଶ݀ߣ ൌ 0.  (12) 
 
, ଵߣ  ଶ  are the roots ofߣ
ሺ݇ݏ   െ ሻλଶݏ െ 2ργλ ൅ ሺsሺk െ sሻሻିଵߛଶ ൌ 0.  (13) 
 
 The solutions to (13) will be certain linear transformations 
  Ի െ ݏ ଵߣ ൌ ߴ ൅ η, Ի െ ݏ ଶߣ ൌ ߴ െ η,  (14)  
 
which transform (9) into the elliptic form 
ణణݑ   ൅ ఎఎݑ ൅ ሺ݇ݏݎ െ ణݑሻݏ ൅ ሼߙሺߚ െ Իଶሻሽݑఎ ൅ ݑܴ ൌ െݑ௧.  (15)  
 
 We now introduce a new dependent function ݒ defined by  

ݑ   ൌ   ௥௦ሺ௞ି௦ሻణିఈሺఉିԻమሻఎ,  (16)ି݁ݒ
 
such that (15) becomes for ܴ ൌ 0 (John, 1974) and for ݑ௧ ൌ 0(since ݐ is suppressed)  
௦௦ݒ  ൅ ԻԻݒ ൌ 0,  (17)  
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with initial value  
,ݏሺݒ   Ի, 0ሻ ൌ maxሺܧ െ ,ݏ 0ሻ,  (18)  
 
where ܧ is the exercise price, and boundary conditions are described as 
,ሺ0ݒ   Ի, ሻ ݐ ൌ ,ܧ ሺԻ, ሻݐ א ሾ0, ሿߞ ൈ ሾ0, ܶሿ,  (19) 
,ݏሺݒ   0, ሻ ݐ ൌ maxሺܧ െ ,ݏ 0ሻ , ሺݏ, ሻݐ א ሾ0, ܵሿ ൈ ሾ0, ܶሿ,  (20)  
 
 with lim௦՜ா ,ሺ݇ݒ 0, ሻ ݐ ൌ ,ݏሺݒ 0, ܧ ሻ, for ݐ ൌ ݇ 

  డ௩ሺௌ,Ի,௧ ሻ
డ௦

ൌ 0, ሺԻ, ሻݐ א ሾ0, ሿߞ ൈ ሾ0, ܶሿ,  (21) 

  డ௩ሺ௦,఍,௧ ሻ
డԻ

ൌ 0, ሺݏ, ሻݐ א ሾ0, ܵሿ ൈ ሾ0, ܶሿ.  (22)  
 
 We now apply the method of separation of variables. Namely we suppose the 
solution will be of the form ݒ ൌ ݄ሺݏሻ݃ሺԻሻ. Substituting into (17), we are led to two 
ordinary differential equations for ݄ and ݃ as; 
  ݄ᇳ ൅ ଶ݄ߜ ൌ 0,  (23) 
  ݃ᇳ ൅ ଶ݃ߜ ൌ 0.  (24)  
 
 The general solution of (23) is ݄ሺݏሻ ൌ ܣ cos ݏߜ ൅  B sin  are ܤ and ܣ where ,ݏߜ
constants; the condition డ௩ሺௌ,Ի,௧ ሻ

డ௦
ൌ 0, implies that ݄Ԣሺ0ሻ ൌ 0, so that ܤ ൌ 0. Similarly, 

the condition ݒሺ݇, 0, ሻ ݐ ൌ 0 shows that ݄ሺ݇ሻ ൌ 0 and hence, unless ܣ ൌ 0(this would 
give ݒ ൌ 0), cos ߜ݇ ൌ 0. 
 The only possible values of ߜ are ௡గ

௞
, where ݊ is a range over all positive values 

since we have no method of rejecting any values of ݊. The equation is linear and 
hence the sum of constant multiples of solutions is also a solution. Therefore, possible 
form of ݒ given the solution of (24) is 

ݒ   ൌ ∑ ቄሾܥ௡ܿݏ݋ ቀ௡గԻ
௞

ቁ ൅ ݊݅ݏ௡ܦ  ቀ௡గԻ
௞

ቁሿ ܿݏ݋ ቀ௡గ௦
௞

ቁቅஶ
௡ୀଵ .  (25) 

 
 Combining (25) with (16) gives (10) as required. Figure 1 below describes the 
behavior of the kernel ݑ for ݏ ൒ 0. 
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Figure 1: The behaviour of an option value ݑ with different value the price ݏ and 
variance Ի  
 
 
 We now attempt a solution of the stochastic differential equation (7) to obtain the 
price ݏ of an option. 
 
Proposition 1: Given the SDE in equation (7) the price ݏ is given by; 

ሻݐሺݏ   ൌ  ௞ௌబ௘
ቊೖቆԻ೟ೈభశቆഋష

Ի೟
మ

మ ቇ೟ቇቋ

ଵା௞௘
ቊೖቆԻ೟ೈభశቆഋష

Ի೟
మ

మ ቇ೟ቇቋ
 

  = ௞ௌబ

௘
షቊೖቆԻ೟ೈభశቆഋష

Ի೟
మ

మ ቇ೟ቇቋ
ା ௞

.  (26) 

 
Proof : It is easy to see using Ito’s formula that (7) becomes 

  ln ቀ ௦
௞ି௦

ቁ ൌ ݇ ቀԻ௧ ଵܹ ൅ ቀߤ െ Ի೟
మ

ଶ
ቁ   ቁ,  (27)ݐ

 
hence (26) follows as required. Figure 2 below illustrates the limit behaviours of 
equation (26) with time ݐ in seconds. 
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Figure 2: The case of damped fluctuation as a convergent price path is produced. 
 
 
 
Discussion and conclusion 
We have considered Heston model in this paper to obtain the value of an option given 
the price ݏ. Notice that as ݏ ՜ 0 and Ի ՜ ݑ ,0 ՜ ∑ ௡݁ିఈఉణஶܥ

௡ୀଵ , that is the value of 
an option ݑ, tends to a constant (probably to ݇-the strike price) depending on the mean 
value ߚ at a rate ߙ as the price ݏ at time ݐ ൌ 0 tends to 0. Again as ݏ ՜ ݑ ,∞ ՜ 0; 
that is as the price ݏ increases with time ݐ ൐ 0, the value of the option dampens. Each 
successive cycle has a smaller amplitude than the preceding one (see figure 1), much 
as the way a ripple dies down. Also for ݏ ൌ ݇ and ߚ ൌ Ի, ݑ ൌ  On the .(as in 25) ݒ
other hand, as ݐ ՜ 0, and ܹ ՜ ݏ ,0 ՜ ௞௦బ

ଵା௞
. Also as ݐ ՜ ሻݐሺݏ ,∞ ՜  ଴, as seen inݏ

figure 2.  
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