Estimating Dimension and Codimension by Polynomials on T

M. Taghavi
Department of Mathematics, Shiraz University, Shiraz, Iran
E-mail: taghavi@math.susc.ac.ir

Abstract

In this paper we consider the space of the functions having finitely many singularity points and the closure for the space of the trigonometric polynomials intersecting its conjugate on unit circle. We use polynomials with coefficients on the unit circle to estimate the dimension for their closure and estimate the codimension for their generating subspace.

Keywords: Dimension, Polynomials.

Introduction

Throughout this paper R is the additive group of real numbers and Z is the subgroup consisting of integers. T is the quotient group $R / 2 \pi Z$. Any function on T can be identify by a 2π-periodic function on R. A function f is integrable on T if its corresponding 2π-periodic function is integrable on $[0,2 \pi$) and we consider this interval as a model for T and the Lebesgue measure $d t$ on T. Therefore, by $\int_{T} f(t) d t$ we mean $\int_{0}^{2 \pi} f(x) d x$. For $1 \leq p \leq \infty$ let $L^{p}(\mu)$ be the space of complex-valued measurable functions on T with finite usual norm. That is, if $f \in L^{p}(\mu)$, then $\|f\|_{p}^{p}=\int_{T}|f(t)|^{p} \mu(t) d t \quad$ whenever $1 \leq p<\infty \quad$ and $\|f\|_{p}=\operatorname{esssup}_{T}|f(t)| \mu(t) \quad$ if $p=\infty$. For more details, see [1], [2] and [5].

Given sequences of complex numbers $\left\{a_{k}\right\}_{k=0}^{\infty}$ and $\left\{b_{k}\right\}_{k=0}^{\infty}$, A trigonometric series is any series of the form $a_{0}+\sum_{1}^{\infty}\left(a_{k} \cos (k t)+b_{k} \sin (k t)\right)$, where $t \in R$. Its nth partial sum is of the form $s) n(t)=\sum_{-n}^{n} c_{k} e^{i k t}$, where if we write $b_{0}=0$, then $c_{k}=\left(a_{k}-i b_{k}\right) / 2$ and $c_{-k}=\left(a_{k}+i b_{k}\right) / 2$. For this reason, we also write a trigonometric series in the form
$\sum_{-\infty}^{\infty} c_{k} e^{i k t}$. A trigonometric polynomial on T is an expression of the form $\sum_{-N}^{N} c_{k} e^{i k t}$ and the largest integer n such that $\left|c_{n}\right|+\left|c_{-n}\right| \neq 0$ is called the degree of polynomial. For nonnegative integers k, denote the set of all polynomials of the trigonometric functions $e^{i k x}$ by $h_{p}^{+}(\mu)$. For negative integers k, denote the set of all polynomials of the trigonometric functions $e^{-i k x}$ by $h_{p}^{-}(\mu)$. Also denote $H_{p}^{+}(\mu)$ and $H_{p}^{-}(\mu)$ to be the closures of $h_{p}^{+}(\mu)$ and $h_{p}^{-}(\mu)$ respectively. The following definitions are from [3] and [4].

Definition 1: Let f be a function defined on T. For $1 \leq q \leq \infty$, we say that f has a zero of degree q at a point t in T, if $\frac{1}{f} \notin L_{I}^{q}$, whenever I is an interval containing t.

Definition 2: Let f be a function defined on T. For $1 \leq q \leq \infty$, we say f has a pole of degree q at a point t in T, if $f \notin L_{I}^{q}$, whenever I is an interval containing t.

Definition 3: Let f be a function defined on T having a zero of degree $q(1 \leq q \leq \infty$)at a point t in T. We say k is the the order of q, if there is a $\delta>0$ and an interval $I=(t-\delta, t+\delta)$ such that $(x-t)^{k-1} \frac{1}{f(x)} \notin L_{I}^{q}$, but $(x-t)^{k} \frac{1}{f(x)} \in L_{I}^{q}$.

Definition 4: Let f be a function defined on T. For $1 \leq q \leq \infty$, we say f has a zero of degree q of infinite order at a point t in T, if $(x-t)^{k} \frac{1}{f(x)} \notin L_{I}^{q}$, whenever I is an interval containing t.

Definition 5: Let f be a function defined on T. For $1 \leq q \leq \infty$, we say f has a pole of degree q of infinite order at a point t in T, if $(x-t)^{k} f(x) \notin L_{I}^{q}$, whenever I is an interval containing t.

Dimension of $H_{p}^{+}(\mu) \cap H_{p}^{-}(\mu)$ and codimension of $\overline{H_{p}^{+}(\mu) \cap H_{p}^{-}(\mu)}$

Let μ be a nonnegative measurable function and suppose that for $1 \leq p \leq \infty, \mu^{\frac{1}{p}}$ has poles of degree p at the points $p_{1}, p_{2}, \cdots, p_{n}$ (for $p=\infty$, we set $\mu^{\frac{1}{p}}=\mu$). Let

$$
\begin{equation*}
T(x)=\prod_{j=1}^{n}\left(e^{i x}-e^{i p_{j}}\right)^{b_{j}}, \tag{1}
\end{equation*}
$$

where each $b_{j}(1 \leq j \leq n)$ is the order of p at p_{j}. One can easily see that for every integer $k \geq 0$,

$$
\begin{equation*}
e^{i k x} T(x) \in h_{p}^{+}(\mu) . \tag{2}
\end{equation*}
$$

Lemma 2.1: Every polynomial in $h_{p}^{+}(\mu)$ is a finite linear combination of polynomials of type (2).

Proof: Let $p \in h_{p}^{+}(\mu)$. If for some $1 \leq j \leq n, t_{j}$ is the root of p at p_{j}, then in term of multiplicity t_{j} must be greater than or equal to b_{j}. So the polynomial $\left(\frac{p}{T}\right)\left(e^{i x}\right)$ is algebraic, by fundamental theorem of algebra. Also, for every integer $k<0$,

$$
\begin{equation*}
e^{i k x} \overline{T(x)} \in h_{p}^{-}(\mu) \tag{3}
\end{equation*}
$$

Moreover similar to the Lemma 2.1, any polynomial $p \in h_{p}^{-}(\mu)$ is a finite linear combination of polynomials of type (3), because $e^{-i x} \overline{T(x)} \in h_{p}^{+}(\mu)$.

Suppose that $\mu^{\frac{1}{p}}$ has zeros of degree q at the points $q_{1}, \cdots q_{m}$ so that for $1 \leq j \leq m$ we define a_{j} to be the order of q at q_{j}. Put

$$
\begin{equation*}
S(x)=\prod_{j=1}^{m}\left(e^{i x}-e^{i q_{j}}\right)^{a_{j}} \tag{4}
\end{equation*}
$$

Fix $p \in[1, \infty]$ and define the weight

$$
\begin{equation*}
\tilde{\mu}(x)=|T(x)|^{p} \mu(x) . \tag{5}
\end{equation*}
$$

With respect to the notations, we define $\tilde{q}_{j}(1 \leq j \leq \tilde{m}), \tilde{a}_{j}$ and

$$
\tilde{S}(x)=\prod_{j=1}^{\tilde{m}}\left(e^{i x}-e^{i \tilde{q}_{j}}\right)^{\tilde{a}_{j}} .
$$

We also define $A=a_{1}+\cdots+a_{m}, \tilde{A}=\tilde{a}_{1}+\cdots+\tilde{a}_{\tilde{m}}$ and $B=b_{1}+\cdots+b_{n}$. We have

$$
\frac{\overline{T(x)}}{T(x)}=\frac{\prod_{j=1}^{n}\left(e^{-i x}-e^{-i p_{j}}\right)_{j}^{b}}{\prod_{j=1}^{n}\left(e^{i x}-e^{i p_{j}}\right)_{j}^{b}}
$$

$$
\begin{align*}
& =\frac{\prod_{j=1}^{n} e^{-i\left(x+p_{j}\right) b_{j}}\left(e^{i p_{j}}-e^{i x}\right)_{j}^{b}}{\prod_{j=1}^{n}\left(e^{i x}-e^{i p_{j}}\right)_{j}^{b}} \tag{6}\\
= & (-1)^{B}\left[\prod_{j=1}^{n} e^{-i\left(b_{1} p_{1}+\cdots+b_{n} p_{n}\right)}\right] e^{-i B x} .
\end{align*}
$$

Now, for any integer r consider the polynomial

$$
\begin{equation*}
T_{r}(x)=\sum_{0}^{A-1} c_{j} e^{i j x} \tag{7}
\end{equation*}
$$

so that T_{r} interpolates $e^{i r x}$ in the points on which the zeros of $\mu^{\frac{1}{p}}$ occur and the multiplicity of the interpolation at the point q_{j} is a_{j}. For any integer r, define

$$
\begin{equation*}
g_{r}(x)=e^{i r x}-T_{r}(x) \tag{8}
\end{equation*}
$$

Then

$$
\int_{T} \frac{\left|g_{r}(x)\right|^{q}}{|\mu(x)|^{q}} \mu(x)<\infty,
$$

and so

$$
\begin{equation*}
\frac{g_{r}}{\mu} \in L^{q}(\mu) \tag{9}
\end{equation*}
$$

Moreover if $\int f(x) \overline{g_{r}(x)} d x=0$, whenever f is measurable, then $f=0$ a.e. on T. That is

$$
\begin{equation*}
\int f(x) \overline{g_{r}(x)} d x=0 \Rightarrow f=0 \text { a.e. on } T \text {. } \tag{10}
\end{equation*}
$$

Also if $\left\{P_{r}^{+}\right\}$is a convergent sequence of polynomials in $H_{p}^{+}(\mu)$ that is convergent to a function in $H_{p}^{+}(\mu)$, then for any non negative integer j,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \int_{T} P_{r}^{+}(x) e^{-i j x} d x=\int_{T} \lim _{r \rightarrow \infty} P_{r}^{+}(x) e^{i x} g_{-(j+1)}(x) d x \tag{11}
\end{equation*}
$$

And if if $\left\{P_{r}^{-}\right\}$is a convergent sequence of unimodular polynomials in $H_{p}^{-}(\mu)$, then for any positive integer j,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \int_{T} P_{r}^{-}(x) e^{i j x} d x=\int_{T} \lim _{r \rightarrow \infty} P_{r}^{-}(x) \overline{g_{-j}(x)} d x \tag{12}
\end{equation*}
$$

Note that the convergence mentioned for (11) and (12) are in $L^{p}(\mu)$-norm. To verify (11), by (8)

$$
g_{-j-1}(x)=e^{-i(j+1) x}-T_{-(j+1)}(x),
$$

and

$$
e^{-i x} \overline{g_{-j-1}(x)}=e^{i j x}-e^{-i x} \overline{T_{-(j+1)}(x)} .
$$

Therefore, by (6)

$$
\begin{equation*}
\frac{e^{-i x} \overline{g_{-j-1}(x)}}{\mu(x)} \in L^{q}(\mu), \tag{13}
\end{equation*}
$$

and hence we have (11). Similarly we can proof (12). The following proposition is the summery of our discussion above.

Proposition 2.2: If $\mu^{\frac{1}{p}}$ has at least one pole, then $B>0$. Hence by (2), if $\left\{p_{n}\right\} \subseteq h_{p}^{+}(\mu)$ is a $L^{p}(\mu)$-convergence sequence of trigonometric polynomials, then $\left\{p_{n} T^{-1}\right\} \subseteq h_{p}^{+}(\tilde{\mu})$ is a $L^{p}(\tilde{\mu})$-convergence sequence of trigonometric polynomials. Also, by (3), if $\left\{p_{n}\right\} \subseteq h_{p}^{-}(\mu)$ is a $L^{p}(\mu)$-convergence sequence of trigonometric polynomials, then $\left\{p_{n} T^{-1}\right\} \subseteq h_{p}^{-}(\tilde{\mu})$ is a $L^{p}(\tilde{\mu})$-convergence sequence of trigonometric polynomials.

Theorem 2.3: if $1 \leq p<\infty$, then $H_{p}^{+}(\mu) \cap H_{p}^{-}(\mu)$ is a finite dimensional linear space. If D is its dimension, then $D=\tilde{A}-B$ whenever $\tilde{A}>B$ and otherwise $D=0$.

Proof: First we suppose that μ has no pole (meaning $B=0$). Note that $\left\{\cdots, e^{-2 i x}, e^{-i x}, e^{A i x}, e^{(A+1) i x}, \cdots\right\}$ is complete in $L^{p}(\mu)$ and so for every $j \in\{0,1, \cdots, A-1\}$ there is a sequence of polynomial $\left\{w_{j, k}\right\}$ converging to $e^{i j x}$ so that if $n \in\{0,1, \cdots, A-1\}$, then

$$
\begin{equation*}
\int_{T} w_{j, k}(x) e^{-i n x} d x=0 \tag{14}
\end{equation*}
$$

Now let m be an arbitrary positive integer and p_{m} in $H_{p}^{+}(\mu) \cap H_{p}^{-}(\mu)$ is so that

$$
p_{m}(x)=\sum_{k=-m}^{k=m} c_{k} k^{i k x} .
$$

If $m \geq A-1$, put

$$
\begin{equation*}
p_{m_{1}}(x)=\sum_{k=0}^{A-1} c_{k} e^{i k x} \quad \tilde{p}_{m_{1}}(x)=\sum_{k=0}^{A-1} c_{k} w_{m, k}(x) . \tag{15}
\end{equation*}
$$

If $m<A-1$, put

$$
\begin{equation*}
p_{m_{2}}(x)=\sum_{k=0}^{m} c_{k} e^{i k x} \quad \tilde{p}_{m_{2}}(x)=\sum_{k=0}^{m} c_{k} w_{m, k}(x) . \tag{16}
\end{equation*}
$$

Since $p_{m} \in H_{p}^{-}(\mu)$, for every nonnegative integer r we have

$$
\int_{T} p_{m}(x) \overline{g_{r}(x)} d x=0
$$

By (11) and (12) if $\left\{p_{n}^{-}\right\} \subset h_{p}^{-}(\mu)$ and $\left\{p_{n}^{+}\right\} \subset h_{p}^{+}(\mu)$ are sequences of polynomials so that in $L^{p}(\mu)$-norm,

$$
\lim _{n \rightarrow \infty} p_{n}^{-}(x)=\lim _{n \rightarrow \infty} p_{n}^{+}(x)=p_{m}(x),
$$

then for every positive integer r,

$$
\lim _{n \rightarrow \infty} \int_{T} p_{n}^{-}(x) e^{i r x} d x=c_{r},
$$

and for every integer $r \leq 0$,

$$
\lim _{n \rightarrow \infty} \int_{T} p_{n}^{+}(x) e^{-i r x} d x=\overline{c_{r}} .
$$

Next, suppose that $B>0$. For $\tilde{\mu}$ be as in (5), define the set $H_{p}^{+}(\tilde{\mu}) . F$ to be the set of all functions $f . F$ so that $f \in H_{p}^{+}(\tilde{\mu})$. We similarly define $H_{p}^{-}(\tilde{\mu}) . F$ the set of all functions $f . F$ so that $f \in H_{p}^{-}(\tilde{\mu})$. By Proposition $1, H_{p}^{+}(\mu)=H_{p}^{+}(\tilde{\mu}) . T$ and $H_{p}^{-}(\mu)=H_{p}^{-}(\tilde{\mu}) \cdot \bar{T}$. Therefore the sets $H_{p}^{+}(\mu) \cap H_{p}^{-}(\mu)$ and $\left(H_{p}^{+}(\tilde{\mu}) \cdot e^{i B x}\right) \cap H_{p}^{-}(\tilde{\mu})$ are equal, by (6).

If $\tilde{A} \leq B$, then the system $\left\{e^{k i x}\right\}_{k<0} \cup\left\{e^{k i x}\right\}_{k \geq B}$ is minimal in the space $L^{p}(\tilde{\mu})$. So we may assume that $\tilde{A}>B$. Now similar to the above argument, if for arbitrary positive integer m we let q_{m} be a in $\left(H_{p}^{+}(\tilde{\mu}) . e^{i B x}\right) \cap H_{p}^{-}(\tilde{\mu})$, then all the calculations for $p_{m_{1}}$ and $p_{m_{2}}$ defined in (15) and (16) are valid for $\tilde{p}_{m_{1}}$ and $\tilde{p}_{m_{2}}$. Therefore we have the result.

Next, we present the value for the Codimension of $\overline{H_{p}^{+}(\mu) \cup H_{P}^{-}(\mu)}$, where μ is the nonnegative measurable function as in Theorem 1.

Theorem 2.4: If D_{1} is the Codimension of $\overline{H_{p}^{+}(\mu)+H_{p}^{-}(\mu)}$, the $D_{1}=B-\tilde{A}$ whenever $\tilde{A}<B$ and otherwise $D_{1}=0$.

Proof: first note that if $p \in h_{p}^{-}(\mu)$, then by the Lemma 1 and (6), p is a finite linear combination of polynomials $e^{i k x} \cdot T(x) \in h_{p}^{-}(\mu)$, whenever $k \leq-B-1$. Hence D^{\prime} must be equal to the codimension of $\overline{H_{p}^{+}(\tilde{\mu})+H_{p}^{-}(\tilde{\mu}) \cdot e^{-i B x}}$.

Theorem 2.5: Let $\tilde{A}>B$ and let $\tilde{h}_{p}^{-}(\mu)$ be the linear subspace in $L^{p}(\mu)$ of polynomials of the trigonometric functions $e^{i k x}(k<B-\tilde{A})$. Let $\tilde{H}_{p}^{-}(\mu)$ be the closure of $\tilde{h}_{p}^{-}(\mu)$. Then the dimension of $\tilde{H}_{p}^{-}(\mu) \cap H_{p}^{-}(\mu)$ must be zero.

Proof: By the Lemma 1, the systems $\left\{e^{i k x} T(x)\right\}_{k=0}^{\infty}$ and $\left\{e^{-i k x} \overline{T(x)}\right\}_{k=\tilde{A}-B+1}^{\infty}$ are complete in $H_{p}^{+}(\mu)$ and $\tilde{H}_{p}^{-}(\mu)$ respectively. Therefore, by (6), the system $\left\{e^{-i k x} T(x)\right\}_{k=\tilde{A}+1}^{\infty}$ must be complete in $\tilde{H}_{p}^{-}(\mu)$. Thus the systems $\left\{e^{i k x}\right\}_{k=0}^{\infty}$ and $\left\{e^{-i k x}\right\}_{k=\tilde{A}+1}^{\infty}$ must respectively be complete in $H_{p}^{+}(\tilde{\mu})$ and $\tilde{H}_{p}^{+}(\tilde{\mu})$. Hence the system $\left\{e^{i k x}\right\}_{k=0}^{\infty} \cup\left\{e^{-i k x}\right\}_{k=\tilde{A}+1}^{\infty}$ is complete minimal in $L^{p}(\tilde{\mu})$.

References

[1] N. K. Bary, A treatise on trigonometric series, Macmillan, 1964.n
[2] L. Carlson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966).
[3] D. J. Newman, The nonexistence of projections from L^{1} to H^{1}, Proc. of the AMS, 12 (1961), 98-99.
[4] M. Rosenblum, Summability of Fourier series in $L^{p}(d \mu)$, Trans. Amer. Math. Soc., 105 (1962), 32-42.
[5] A. Zygmund, Trigonometric Series, Vol. 2. Cambridge University Press, 1959.

